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Abstract

In probability theory, local limit theorems provide an asymptotic expansion of the convolution
powers of a probability distribution supported on Z with uniform bounds on the remainders. In
this review, we present some recent results for the iterated convolution of complex valued integrable
sequences in one space dimension. In the so-called parabolic case, we give a complete expansion, at any
accuracy order, for these convolution powers and we provide sharp, pointwise, generalized Gaussian
bounds for the remainders. We also present an extension of our main result to the semi-discrete setting
(time-continuous convolution problems), and discuss several natural perspectives.

1 Introduction

For a given integrable complex valued sequence a ∈ `1(Z;C), we define iteratively:

∀n ∈ N∗ , a(n+1) := a(n) ? a ,

with the initialization a(1) := a. Here, the notation ? stands for the convolution between sequences. More
precisely, for any a = (a`)`∈Z ∈ `1(Z;C) and b = (b`)`∈Z ∈ `1(Z;C), the convolution a ? b is given by

∀ ` ∈ Z , (a ? b)` :=
∑
`′∈Z

a`−`′ b`′ .

The celebrated Young’s inequality ensures that the above convolution a ? b is well defined for any a ∈
`1(Z;C) and b ∈ `1(Z;C), and also belongs to `1(Z;C), which endows this space with a Banach algebra
structure. Our aim is to present a brief survey on recent results on the study of some classes of geometric
sequences in this algebra and, more specifically, develop on those results which provide sharp pointwise
estimates on the sequence a(n) for all n ∈ N∗. As we shall see later on, this problem is connected with
the large time behavior of finite difference approximations for evolutionary partial differential equations,
which is our main motivation for studying this problem.
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When the sequence a is a finitely supported probability distribution, that is, when it is real non
negative, satisfies the normalization condition ∑

`∈Z
a` = 1,

and only finitely many a`’s are nonzero, the asymptotic behavior of a(n) for large values of n is well-known,
and is described by the so-called local limit theorem in probability theory [25, Chapter VII]. Indeed, in
that setting, for each ` ∈ Z, the coefficient a` corresponds to the probability P(X = `) where X is a
given random variable with values in Z. If X1, ..., Xn, ... are independent, identically distributed, random
variables following the same law as X with distribution given by a, then the probability that the random
walk X1 + · · ·+Xn is at lattice site ` corresponds to the value at the index ` of the iterated convolution
(n− 1)-times of the sequence a. That is we have the relation

a
(n)
` = P(X1 + · · ·+Xn = `),

for all n ∈ N∗ and ` ∈ Z. Assuming that the sequence a possesses at least two nonzero elements
and is aperiodic1, the local limit theorem provides the existence of a sequence of real valued functions
Qm : R→ R indexed by m ∈ N∗ such that for all M ∈ N∗:

a
(n)
` −

1√
2πσ2n

exp

(
−
x2
n,`

2

)
−

M∑
m=1

Qm(xn,`)

n(m+1)/2
=

n→+∞
o

(
1

n(M+1)/2

)
, xn,` :=

`− αn
σ
√
n
, (1)

where α :=
∑

`∈Z `a` and σ2 :=
∑

`∈Z `
2a` − α2 > 0 are respectively the mean and the variance of the

random variable X1 with probability distribution a. In the above asymptotic expansion, the error term
is understood to be uniform with respect to ` ∈ Z. In fact, each term Qm appearing in the expansion can

be explicitly computed as a linear combination of derivatives of the Gaussian function x 7→ exp
(
−x2

2

)
and can thus be expressed by using Hermite polynomials. We refer to [25, Chapter VII] for more details.

Over the past decades, there has been a long series of work that have studied the generalization of the
local limit theorem to the case where the sequence a is complex valued [8, 11–14, 17, 19, 26–28, 31, 32]
and thus dropping the positivity assumption of the probabilistic framework. Beyond its own analytical
interest, this problem is particularly relevant for instance when one studies the large time behavior of
finite difference approximation of evolution equations [13, 19, 32] or data smoothing problems [17, 31]. We
also point to the recent article [14] which gives a large overview of examples where this issue is meaningful.
In numerical analysis, when one discretizes by means of a finite difference scheme an evolutionary linear
partial differential equation2 set on the real line R, one is let to study problems of the form

∀n ∈ N , un+1 = a ? un,

for a given initial sequence u0, and a that now encodes the properties of the finite difference scheme.
Assuming that a ∈ `1(Z;C), which is typically satisfied when the stencil of the scheme is finite, one
can define the linear convolution operator La : u 7→ a ? u which acts boundedly on `q(Z;C) for any
q ∈ [1,+∞]. Using the morphism property La ◦Lb = La?b, one has (La)n = La(n) for all n ∈ N∗, such
that Young’s inequality gives

‖un‖`∞ =
∥∥La(n)u0

∥∥
`∞

=
∥∥∥a(n) ? u0

∥∥∥
`∞
≤
∥∥∥a(n)

∥∥∥
`1

∥∥u0
∥∥
`∞

.

1We refer to [21] for the definition of aperiodicity.
2The transport equation or the heat equation are typical examples.
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One then deduces that a sufficient condition3 for the stability of the numerical scheme in the maximum
norm, which reads as

sup
n∈N
|||La(n) |||`∞→`∞ < +∞,

is given by the boundedness of the sequence
(∥∥a(n)

∥∥
`1

)
n∈N. Proving such boundedness is typically achieved

by obtaining pointwise bounds on the iterates a(n), see [11, 32].
As expected (see [8, 11, 12, 27] for many illustrations), a much larger variety of possible behaviors is

obtained by dropping the positivity assumption which correspond, in the language of partial differential
equations, either to parabolic or dispersive behaviors. In this review, we shall only focus on the parabolic
case, which is referred to as the stable case in [32]. This is precisely the situation where the iterated
convolutions will be bounded in the `1 norm. A fundamental result obtained by Randles and Saloff-Coste
[27] is a generalization of the local limit theorem for a large class of complex valued sequences with finite
support and the identification of the leading order term of an asymptotic expansion similar to (1), which
is referred to as the attractor in [27]. Very recently, for the same class of finitely supported complex
valued sequences, Coeuret [8] has proved a generalization of the asymptotic expansion (1) together with
the derivation of a sharp rate of convergence in the form a generalized Gaussian bound for the remainder
of this new-found asymptotic expansion. In the probability framework discussed above, the main result
of [8] ensures that for any sequence a which is a finitely supported probability distribution with at least
two nonzero elements and aperiodic, for any M ∈ N∗ there exist two positive real constants CM > 0 and
cM > 0 such that

∀(n, `) ∈ N∗ × Z ,

∣∣∣∣∣a(n)
` −

1√
2πσ2n

exp

(
−
x2
n,`

2

)
−

M∑
m=1

Qm(xn,`)

n(m+1)/2

∣∣∣∣∣ ≤ CM
n(M+2)/2

exp

(
−cM

x2
n,`

2

)
.

Such a quantified asymptotic expansion already proves very useful in probability theory since it allows to
very easily retrieve (a non-optimal version of ) the well-known Berry-Esseen inequality [3, 16].

All, the results in the above mentioned references [8, 14, 27] contain either technical restrictions on
the class of complex sequences a considered, typically on the Fourier transform4 of a, and/or did not
provide sharp enough estimates for the remainders. In our recent contribution [12], we have managed
to drop all previous technical restrictions and derive an asymptotic expansion up to any order with a
sharp, generalized Gaussian estimate for the remainders. More precisely, we shall consider, from now on,
complex valued sequences which satisfy the following assumption.

Assumption 1 (Holomorphy). The sequence a = (a`)`∈Z belongs to `1(Z;C) and its associated Fourier
series:

Fa : ζ ∈ C 7−→
∑
`∈Z

a` ζ
` ,

defines a holomorphic function on an annulus {ζ ∈ C | 1− ε < |ζ| < 1 + ε} for some ε > 0. Furthermore,
there holds:

sup
κ∈S1

|Fa(κ)| = 1 .

In numerical analysis, the latter normalization for the maximum of |Fa| on the unit circle corresponds
to the so-called von Neumann stability condition [23], and it is made in order to avoid introducing

3It is actually a necessary and sufficient condition, see [32].
4This function is referred to as the characteristic function in probability theory, see [25].
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additional terms in the main result below. Up to multiplying the sequence a by some positive number, one
can always fix the maximum to 1. Lets us also note that thanks to Cauchy’s formula [30], the holomorphy
of Fa on an annulus that contains the unit circle S1 is equivalent to the exponential localization of the
sequence a, that is the existence of a positive constant c such that:

sup
`∈Z

ec |`| |a`| < +∞ .

Given a sequence a that satisfies Assumption 1, it is well-known [6, 11] that one of the following two
alternatives is satisfied. Either Fa(κ) has modulus 1 for any κ ∈ S1 (e.g. Fa is a Blaschke product [30]).
Or, there exists a finite set of pairwise distinct points on the unit circle S1 such that Fa has modulus 1
precisely at these points. The reader interested in the first alternative may consult [19] and [6, Theorem
3.1]. From now on, we shall place ourselves in the second case and make the following assumption.

Assumption 2 (Tangency). Let the sequence a satisfy Assumption 1. We assume that there exists a
finite set of pairwise distinct points {κ1, . . . , κK}, K ≥ 1, in S1 such that Fa(κk) has modulus 1 for any
k ∈ {1, . . . ,K} and:

∀κ ∈ S1 \
{
κ1, . . . , κK

}
,
∣∣Fa(κ)

∣∣ < 1 .

The points Fa(κk) will be referred to the tangency points since these are the points where the curve5

{Fa(κ) |κ ∈ S1} meets the unit circle S1. Our third and last assumption describes the behavior of the
asymptotic expansion of Fa near the tangency points κk, and it will be in this assumption that will be
encoded the parabolic nature of the sequence a already mentioned above.

Assumption 3 (Parabolicity). Let the sequence a satisfy Assumption 1 and Assumption 2. Moreover,
at any point κk ∈ S1, k ∈ {1, . . . ,K}, where the modulus of Fa attains the value 1, there exists a real
number αk, a complex number βk with positive real part and a nonzero integer µk ∈ N∗ such that, as the
complex number ξ tends to zero, there holds:

Fa

(
κk ei ξ

)
= Fa(κk) exp

(
iαk ξ − βk ξ2µk +O(ξ2µk+1)

)
. (2)

Using Assumptions 1, 2 and 3, we consider a point κk ∈ S1 where |Fa(κk)| = 1. For any sufficiently
small ξ ∈ C, we can write Fa

(
κk ei ξ

)
as the following convergent power series:

Fa

(
κk ei ξ

)
= Fa(κk) exp

iαk ξ − βk ξ2µk +
∑

ν≥2µk+1

γk,ν
ν !

(i ξ)ν

 , (3)

where the coefficients γk,ν play the role of cumulants in probability theory. Following Petrov [25], we
expand a power series in two variables (Y, Z) as follows:

exp

∑
ν≥1

γk,2µk+ν

(2µk + ν) !
Y 2µk+ν Zν

 = 1 +
∑
m≥1

Pk,m(Y )Zm , (4)

where the Pk,m’s are polynomials with complex coefficients that depend on the cumulants γk,ν (see several
formulas below based on the Faà di Bruno formula [9]).

5Because of Assumption 1, this curve is located inside the closed unit disk.
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In order to state the main result of [12], we also need to define the aforementioned attractors of [27].
For any nonzero integer µ ∈ N∗ and for any complex number β with positive real part, we introduce the
function:

Hβ
2µ : x ∈ R 7−→ 1

2π

∫
R

e−ix θ e−β θ
2µ

dθ . (5)

The only properties that we shall need on these attractors is the fact for any β with positive real part
and µ ∈ N∗, the function Hβ

2µ has super-exponential decay at infinity as well as its derivatives:

∀N ∈ N , ∃C > 0 , ∀x ∈ R ,
∣∣∣Hβ

2µ(x)
∣∣∣+ · · ·+

∣∣∣(Hβ
2µ)(N)(x)

∣∣∣ ≤ C exp

(
− 1

C
|x|

2µ
2µ−1

)
.

With the above notations, our main result reads as follows.

Theorem 1 (Local limit theorem from [12]). Let the sequence a satisfy Assumptions 1, 2 and 3. Then
there exist an integer L ∈ N∗ and some positive constant c0 > 0 such that for any n ∈ N∗ and ` ∈ Z with
|`| > Ln, there holds: ∣∣∣a(n)

`

∣∣∣ ≤ exp(−c0 n− c0 |`|) . (6)

Moreover, for any integer M ∈ N, there exist some positive constants CM and cM (that depend on M and
a) such that the following holds: for any n ∈ N∗ and ` ∈ Z with |`| ≤ Ln, there holds:∣∣∣∣∣a(n)

` −
K∑
k=1

κ−`k Fa(κk)
n

n1/(2µk)
Hβk

2µk

(
`− αkn
n1/(2µk)

)
−

K∑
k=1

M∑
m=1

κ−`k Fa(κk)
n

n(m+1)/(2µk)

(
Pk,m(−d/dx)Hβk

2µk

)( `− αkn
n1/(2µk)

)∣∣∣∣∣
≤ CM

K∑
k=1

1

n(M+2)/(2µk)
exp

−cM (
|`− αk n|
n1/(2µk)

) 2µk
2µk−1

 , (7)

where the polynomials Pk,m are defined in (4).

We already make a first comment regarding the statement of Theorem 1. Since by Assumption 1 the
Fourier series Fa is only assumed to be holomorphic on a given annulus which contains the unit circle
S1, which we recall equivalently means that the sequence a is exponentially localized, then, for a fixed

n, the decay at infinity of a
(n)
` is at best exponential. This is exactly the result of our first estimate (6).

Nevertheless, if one further assumes that a is finitely supported, then Fa is a trigonometric polynomial
on S1, and in that case, one can prove (see [8]), that our generalized Gaussian bound (7) holds not only
in the large sector {` ∈ Z | |`| ≤ Ln} but for all ` ∈ Z.

Let us come back to our initial example where the sequence a is a finitely supported probability
distribution with a least two nonzero elements and aperiodic. Since the sequence is finitely supported,
has only positive elements which sum to 1, Assumption 1 is therefore satisfied. Furthermore, since a has
at least two nonzero elements, Fa(κ) cannot have modulus 1 for any κ ∈ S1 for otherwise the sequence a
would have a single nonzero element equal to 1. As a consequence, Assumption 2 is also satisfied. The
aperiodicity of a implies that Fa has modulus 1 only at κ = 1 for κ ∈ S1, that is K = 1 in the notation
of Assumption 2. The asymptotic expansion (2) is verified with α1 = α the mean of the random variable
X, µ1 = 1 and 2β1 = σ2 with σ2 > 0 the variance of X, namely one has

Fa

(
ei ξ
)

=
ξ→0

exp

(
iα ξ − σ2

2
ξ2 +O(ξ3)

)
.
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From the definition (5), we compute:

∀x ∈ R , H
σ2

2
2 (x) =

1√
2πσ2

exp

(
− x2

2σ2

)
.

As a consequence, the asymptotic expansion provided by Theorem 1 reads:

a
(n)
` ∼ 1√

2πσ2n
exp

(
−(`− αn)2

2σ2n

)
+
∑
m≥1

1

n(m+1)/2

(
P1,m(−d/dx)H

σ2

2
2

)(
`− αn√

n

)
,

which precisely coincides with (1), since

(
P1,m(−d/dx)H

σ2

2
2

)(
`− αn√

n

)
can be shown to be equal to

Qm(xn,`) given in [25]. For instance, we shall see below that the polynomial P1,1 is given by:

P1,1(X) =
γ1,3

3 !
X3 ,

where γ1,3 is the cumulant of order 3 at the zero frequency, see (3). This means that the two first terms
(M = 1) in the expansion (7) are:

1√
2πσ2n

exp

(
−(`− αn)2

2σ2n

)
− γ1,3

3 !n

(
H

σ2

2
2

)′′′(
`− αn√

n

)
,

and these two first terms can be rewritten as:

1√
2πσ2n

exp

(
−
x2
n,`

2

)
− γ1,3

3 !σ3 n
(x3
n,` − 3xn,`)

1√
2πσ2

exp

(
−
x2
n,`

2

)
, with xn,` =

`− αn
σ
√
n
,

which is with the expression in [25, Theorem 13, page 205].
Next, coming back to the numerical analysis framework, for a given sequence a satisfying Assumptions

1, 2 and 3, an immediate consequence of Theorem 1 is the following explicit expression for the large
time asymptotic of the iterates La(n)u0 = a(n) ? u0 of the numerical scheme for any initial condition
u0 ∈ `q(Z;C) with q ∈ [1,+∞]. More specifically, for any integer M ∈ N, there exists some positive
constant CM such that for any u0 ∈ `q(Z;C) there holds:

∥∥∥a(n) ? u0 −
K∑
k=1

κ−`k Fa(κk)
n

n1/(2µk)
Hβk

2µk

(
· − αkn
n1/(2µk)

)
? u0

−
M∑
m=1

K∑
k=1

κ−`k Fa(κk)
n

n(m+1)/(2µk)

(
Pk,m(−d/dx)Hβk

2µk

)( · − αkn
n1/(2µk)

)
? u0

∥∥∥∥∥
`q

≤ CM ‖u0‖`q
n(M+1)/(2µ)

,

with µ := maxk µk. The generalized Gaussian bound on the remainder terms obtained in Theorem 1 is
thus crucial in the derivation of the above estimate. Indeed, uniform bounds such as the one previously
derived in the literature [25, 27] (see (1) in the probability case) would not have allowed to obtain such
an estimate.

As already emphasized, some analogues of Theorem 1 have been proved in [8, 11, 27], but with either
some restrictions on the number of tangency points and/or the drifts, and/or the number of terms in the
expansion (7). To our best knowledge, it seems that our framework is the most general so far when it
comes to consider sequences a whose Fourier series Fa enjoys an asymptotic expansion of the form (3)
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at each tangency point. Maybe, the main restriction that we manage to lift is the fact that we do not
necessarily consider sequences with finite support. Let us remark that sequences satisfying Assumptions
1, 2 and 3 of Theorem 1 with infinite support naturally arise in the study of implicit schemes in numerical
analysis. An implicit discretization of an evolutionary linear partial differential equation by means of
finite differences in space yields recurrence relations of the form

∀n ∈ N , b ? un+1 = c ? un,

where b and c are two finitely supported sequences, and we assume that the sequence b contains at least
two nonzero elements. Upon assuming that b is invertible on `1(Z;C) for the convolution, which thanks
to the Wiener-Levy theorem [24] is equivalent to the fact that

∀κ ∈ S1 , Fb(κ) =
∑
`∈Z

b`κ
` 6= 0,

then one can rewrite the numerical scheme in the form un+1 = a ?un with a := b−1 ? c ∈ `1(Z;C) which
has an infinite support. We refer the interested reader to [11, Section 4.2] for an example in such a setting.

In the following Section 2, we present the main ideas towards the proof of Theorem 1. Finally, we
conclude in Section 3 by presenting some natural extensions and perspectives related to this work.

2 Sketch of the proof of Theorem 1

The proof of Theorem 1 naturally splits into two parts corresponding to the two regimes leading to
estimates (6) and (7). Nevertheless, the starting point of the analysis in both cases is the following key

expression for the coefficient a
(n)
` which is obtained by inverse Fourier transform

∀(n, `) ∈ N∗ × Z , a
(n)
` =

1

2π

∫ π

−π
e−i ` θ Fa

(
ei θ
)n

dθ . (8)

In the above expression, we will make use of the crucial holomorphy hypothesis of Assumption 1 to
deform appropriately the integral in the complex plane (within the domain of holomorphy of Fa which is
a given annulus around the unit circle S1). The type of deformations will typically depend on the regime
considered for (n, `), and more importantly, we may allow the contours to depend on (n, `).

In the far field regime, that is when the ratio |`|/n is large, the idea is to integrate along a circle with
radius either strictly larger or smaller than 1 depending on the sign of `, and that remains in the annulus
{ζ ∈ C | 1− ε < |ζ| < 1 + ε} for some ε > 0 provided by Assumption 1. Assume for example that ` > 0.
We set % := ln(1 + ε/2), with ε > 0, and Cauchy’s formula readily gives

a
(n)
` =

1

2π

∫ π

−π
e−` %e−i ` θ Fa

(
ei (θ−i %)

)n
dθ .

If C% > 0 denotes the following constant

C% := sup
θ∈[−π,π]

∣∣∣Fa (ei (θ−i %)
)∣∣∣ ,

then one gets the bound

∀(n, `) ∈ N∗ × Z ,
∣∣∣a(n)
`

∣∣∣ ≤ exp (−δ`+ C%n) .
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Upon denoting by b·c the greatest integer function, we let L :=
⌊

2C%
%

⌋
, and for all ` ≥ Ln, we thus have

∣∣∣a(n)
`

∣∣∣ ≤ exp
(
−%

2
`
)
≤ exp

(
−%

4
`− %L

4
n

)
,

which proves (6) for ` > 0 (the case ` < 0 is handled similarly). So from now on we only consider those
values of ` ∈ Z for which |`| ≤ Ln with n ∈ N∗.

One of the main task in proving estimate (7) of Theorem 1 is to make appear each term of the
expansion involving the attractors and the polynomials Pk,m. In order to lighten the presentation and
the notations, we shall only consider the case where there is a single tangency point for Fa, that is K = 1
in Assumption 2, and drop the subscript 1 in our notation. Thus, we have a unique κ = exp(iθ) with
θ ∈ [0, 2π) such that |Fa(κ)| = 1, and for all sufficiently small ξ ∈ C, we can write the convergent power
series

Fa

(
κ ei ξ

)
= Fa(κ) exp

iα ξ − β ξ2µ +
∑

ν≥2µ+1

γν
ν!

(iξ)ν

 ,

with α ∈ R, β ∈ C with Re(β) > 0, µ ≥ 1 an integer and cumulants γν ∈ C. From (4), we get the
existence of complex polynomials Pm defined via

exp

∑
ν≥1

γ2µ+ν

(2µ+ ν) !
Y 2µ+ν Zν

 = 1 +
∑
m≥1

Pm(Y )Zm .

With these notations at hand, we let δ > 0 be a small positive real number that shall be fixed at some
point in the proof, and θ0 ∈ R such that exp(iθ0) does not belong to the arc

{
κeiθ | θ ∈ [−δ, δ]

}
of the

unit circle and θ ∈ [θ0, θ0 + 2π]. We start once again with (8) and write

a
(n)
` =

1

2π

∫ θ0+2π

θ0

e−i ` θ Fa

(
ei θ
)n

dθ ,

and then we further split the integral as

a
(n)
` =

1

2π

∫ θ−δ

θ0

e−i ` θ Fa

(
ei θ
)n

dθ +
1

2π

∫ θ+δ

θ−δ
e−i ` θ Fa

(
ei θ
)n

dθ +
1

2π

∫ θ0+2π

θ+δ
e−i ` θ Fa

(
ei θ
)n

dθ.

From Assumption 2, we note that

∀θ ∈ [θ0, θ − δ] ∪ [θ + δ, θ0 + 2π] ,
∣∣∣Fa (ei θ

)∣∣∣ < 1,

such that there exists c > 0 so that we get∣∣∣∣a(n)
` −

κ−`Fa(κ)n

2π

∫ δ

−δ
e−i ` θ

(
Fa(κ)−1Fa

(
κei θ

))n
dθ

∣∣∣∣ ≤ e−cn ,

where we have performed a change of variables to shift the interval in θ in the remaining integral. We
can then substitute the above convergent power series into the expression to obtain∣∣∣∣∣∣a(n)

` −
κ−`Fa(κ)n

2π

∫ δ

−δ
e−i (`−nα) θ e−nβθ

2µ
exp

n ∑
ν≥2µ+1

γν
ν!

(iθ)ν

 dθ

∣∣∣∣∣∣ ≤ e−cn .

8



Next, we perform a parabolic rescaling in the integral via θ → θ/n
1
2µ , so that we get∣∣∣∣∣∣a(n)

` −
κ−`Fa(κ)n

2π n
1
2µ

∫ δ/n
1
2µ

−δ/n
1
2µ

e−iω θ e−βθ
2µ

exp

(iθ)2µ
∑
ν≥1

γ2µ+ν

(2µ+ ν)!

(
iθ

n
1
2µ

)ν dθ

∣∣∣∣∣∣ ≤ e−cn ,

with ω :=
`− αn

n
1
2µ

.

The above form of the integral motivates the introduction of the following complex valued function of two
arguments:

g(w, z) := exp

w2µ
∑
ν≥1

γ2µ+ν

(2µ+ ν)!
zν

 ,

where we recognize that

exp

(iθ)2µ
∑
ν≥1

γ2µ+ν

(2µ+ ν)!

(
iθ

n
1
2µ

)ν = g

(
iθ,

iθ

n
1
2µ

)
.

Let us already remark that thanks to the holomorphy of Fa on the annulus {ζ ∈ C | 1− ε < |ζ| < 1 + ε},
there exists δ0 > 0 small enough such that g is holomorphic on C × B(0, δ0) where B(0, δ0) denotes the
open disk in the complex plane centered at the origin and of radius δ0 > 0. The next step will now be to
approximate g by its Taylor expansion. More precisely, upon assuming that δ at least satisfies δ ∈ (0, δ0),
for any M ∈ N∗, we obtain∣∣∣∣∣∣a(n)

` −
κ−`Fa(κ)n

2π n
1
2µ

∫ δ/n
1
2µ

−δ/n
1
2µ

e−iω θ e−βθ
2µ

M∑
m=0

(iθ)m

nm/2µm!

∂mg

∂zm
(iθ, 0) dθ

∣∣∣∣∣∣ ≤ e−cn +
∣∣E 1
n,`

∣∣ ,
where the error term is defined as

E 1
n,` :=

κ−`Fa(κ)n

2π n
1
2µ

∫ δ/n
1
2µ

−δ/n
1
2µ

e−iω θ e−βθ
2µ ×

(
g

(
iθ,

iθ

n
1
2µ

)
−

M∑
m=0

(iθ)m

nm/2µm!

∂mg

∂zm
(iθ, 0)

)
dθ.

We shall come back to the estimate of the error term E 1
n,` later on, and we first finish to obtain our

complete expansion which involves the attractors Hβ
2µ and their derivatives.

Inspecting at the definition (5), it is then natural to approximate the integral on the large segment

[−δ/n
1
2µ , δ/n

1
2µ ] by an integral over the whole real line R. Using once more the triangle inequality yields∣∣∣∣∣a(n)

` −
κ−`Fa(κ)n

2π n
1
2µ

∫
R

e−iω θ e−βθ
2µ

M∑
m=0

(iθ)m

nm/2µm!

∂mg

∂zm
(iθ, 0) dθ

∣∣∣∣∣ ≤ e−cn +
∣∣E 1
n,`

∣∣ +
∣∣E 2
n,`

∣∣ ,
where the new error term is given by

E 2
n,` :=

κ−`Fa(κ)n

2π n
1
2µ

∫
R\[−δ/n

1
2µ ,δ/n

1
2µ ]

e−iω θ e−βθ
2µ

M∑
m=0

(iθ)m

nm/2µm!

∂mg

∂zm
(iθ, 0) dθ .

9



Delaying once again the derivation of an estimate for E 2
n,`, it only remains to link the polynomials Pm to

the function g and its partial derivatives. The key observation is the following identity

∀m ≥ 1 , ∀w ∈ C , Pm(w) =
wm

m!

∂mg

∂zm
(w, 0) , (9)

which can be easily verified from the definition (4) of Pm. If ν = (ν1, ν2, . . . ) denotes a finitely supported
integer valued sequence, we shall introduce the following notations:

〈ν〉 :=
∑
`≥1

` ν` , |ν| :=
∑
`≥1

ν` , ν ! :=
∏
`≥1

ν` ! ,

which all make sense for finitely supported sequences as we consider here. Then, combining the expression
(9) obtained on the polynomials Pm and the Faà di Bruno formula, we obtain:

∀m ∈ N , Pm(Y ) = Y m
∑
〈ν〉=m

Y 2µ |ν|

ν !

∏
`≥1

(
γ2µ+`

(2µ+ `) !

)ν`
, (10)

which is the same expression as in [25, Chapter VII]. For instance, we have in particular P0(X) = 1 and

P1(X) =
γ2µ+1

(2µ+ 1) !
X2µ+1 ,

which for µ = 1 justifies the formula we had already postulated for our probability example. So, using

(10) into our last estimate of a
(n)
` together with the properties of the Fourier transform, we have finally

obtained ∣∣∣∣∣a(n)
` −

M∑
m=0

κ−`Fa(κ)n

n(m+1)/2µ

(
Pm

(
− d

dx

)
Hβ

2µ

)
(ω)

∣∣∣∣∣ ≤ e−cn +
∣∣E 1
n,`

∣∣ +
∣∣E 2
n,`

∣∣ ,
which gives precisely the terms of the asymptotic expansion (7). To conclude the proof it thus remains
to obtain sharp generalized Gaussian estimates for the two error terms.

Let us first notice that the second error term E 2
n,` is easily handled by observing that

∣∣E 2
n,`

∣∣ ≤ M∑
m=0

1

2π n(m+1)/2µ

∫
R\[−δ/n

1
2µ ,δ/n

1
2µ ]

e−Re(β)θ2µ |Pm(iθ)| dθ ≤ Ce−cn,

for some positive constants C > 0 and c > 0 that do not depend on n and `.
Before handling the error term E 1

n,`, let us first note that the holomorphy of g ensures the existence

of two constants C > 0 and C0 > 06 together with δ̂ ∈ (0, δ0) such that there holds∣∣∣∣∣g(w, z)−
M∑
m=0

∂mg

∂zm
(w, 0)

zm

m !

∣∣∣∣∣ ≤ C |z|M+1 exp

(
Re(β)

2
(Rew)2µ + C0 (Imw)2µ

)
, (11)

for all (w, z) ∈ C × C(0, δ̂) where C(0, δ̂) =
{
z ∈ C | max(|Re(z)|, Im(z)) < δ̂

}
. And so, we can now fix

once for all δ as δ = δ̂/2 which justifies all our previous computations.

6The constant C0 > 0 can be chosen such that for all u ∈ C, there also holds Re
(
βu2µ

)
≥ Re(β)

2
(Reu)2µ − C0(Imu)2µ.

10



−δ n
1
2µ δ n

1
2µ0

E 1,1
n,` E 1,2

n,`

E 3
n,`

−iΞ

C

• •

• •

Figure 1: The integration contour in the case ω ≥ 0 (in blue). The bullets correspond to the endpoints of the three
segments that define the new contour. The initial contour is depicted in black. Each new integral appears in red.

The final strategy is to use a well-chosen contour in order to derive a sharp bound for E 1
n,`. Without

loss of generality, we may assume that ω ≥ 0, the argument being similar when it is negative, and we
consider the contour depicted in Figure 1 where the constant Ξ appearing there is defined as

Ξ :=



(
ω

4µC0

) 1
2µ−1

, if
ω

4µC0
≤ δ2µ−1 n

2µ−1
2µ ,

δ n1/(2µ) , if
ω

4µC0
≥ δ2µ−1 n

2µ−1
2µ .

(12)

Consequently, with the above definition, for any z on the contour that is depicted in blue in Figure

1, we have max(|Re z|, |Im z|)/n
1
2µ ≤ δ and we shall therefore be able to apply Cauchy’s formula for

holomorphic functions and also use the estimate (11). And Cauchy’s formula gives:

∫ δ n
1
2µ

−δ n
1
2µ

e−iω θ e−β θ
2µ

(
g

(
i θ,

i θ

n
1
2µ

)
−

M∑
m=0

(i θ)m

m !n
m
2µ

∂mg

∂zm
(i θ, 0)

)
dθ = E 1,1

n,` + E 1,2
n,` + E 3

n,` ,

where E 1,1
n,` , resp. E 1,2

n,` , corresponds to the integral on the left, resp. right, vertical segment, and E 3
n,`

corresponds to the integral on the horizontal segment (see Figure 1). Both integrals along the vertical
segments contribute to exponentially decaying terms as it can be noticed by direct computations of the
form ∣∣∣E 1,1

n,`

∣∣∣ +
∣∣∣E 1,2
n,`

∣∣∣ ≤ C e−cn
∫ Ξ

0
exp

(
−2µ− 1

2µ
ω u

)
du ≤ C Ξ e−cn ≤ C̃e−c̃n,

since Ξ ≤ δn
1
2µ . For the last contribution, using the definition of Ξ, we obtain the bound

∣∣E 3
n,`

∣∣ ≤ C exp
(
−ω Ξ + 2C0 Ξ2µ

) ∫ δ n1/2µ

−δ n1/2µ

e−
Re(β)

2
θ2µ |θ − iΞ|M+1

n(M+1)/2µ
dθ

≤ C
(
1 + ΞM+1

)
n(M+1)/2µ

exp

(
−2µ− 1

2µ
ω Ξ

)
.

11



In the first regime of (12), we readily get our desired generalized Gaussian estimate:∣∣E 3
n,`

∣∣ ≤ C

n(M+1)/2µ
exp

(
−c ω

2µ
2µ−1

)
,

while in second regime we simply get an exponential bound∣∣E 3
n,`

∣∣ ≤ Ce−cn,

which implies the estimate

∣∣E 3
n,`

∣∣ ≤ Ce−cn +
C

n(M+1)/2µ
exp

(
−c
(
|`− αn|

n
1
2µ

) 2µ
2µ−1

)
,

that holds for any (n, `) ∈ N∗ × Z. To conclude the proof it only remains to check that the exponentially
small terms in n can be absorbed into the generalized bound. This can always be achieved when |`| ≤ Ln,
and the proof of Theorem 1 is thus complete.

3 Some extensions and perspectives

We now discuss some extensions and possible perspectives related to Theorem 1.

3.1 The semi-discrete case

For a given sequence b ∈ `1(Z;C), we consider linear evolution problems of the form

∀t > 0 , u′(t) = b ? u(t) , (13)

where u′(t) stand for the time derivate of the sequence valued function u : t 7→ u(t) = (u`(t))`∈Z, that is

∀(t, `) ∈ R∗+ × Z ,
(
u′(t)

)
`

=
du`
dt

(t) .

Such a class of evolution problems naturally arise in numerical analysis as the semi-discretization in space
of linear partial differential equations by means of finite differences schemes [1, 2], in probability for the
study of continuous-time random walks [21] or in some applications in biology (e.g. spreading of agents
on a lattice [4, 20]). Since the operator Lb : u 7→ b ? u is a bounded operator on any `q(Z;C) with
q ∈ [1,+∞], it is the infinitesimal generator of a uniformly continuous semigroup acting on any `q(Z;C)
that we shall denote by (Sb(t))t>0 and whose action on `q(Z;C) can be expressed as (see [15]):

∀t > 0 , Sb(t) : u 7→ Sb(t)u =

+∞∑
n=0

tn

n!
b(n) ? u.

The above series is indeed uniformly convergent for any u ∈ `q(Z;C), and for all t > 0 we have the crude
uniform bound

|||Sb(t)|||`q→`q ≤ et‖b‖`1 .

We are interested in deriving a precise pointwise asymptotic expansion of the Green’s function associated
to the semi-group (Sb(t))t>0 which is defined as follows. For any sequence u0 ∈ `q(Z;C) with q ∈ [1,+∞],

12



there exists a unique global solution u ∈ C 0([0,+∞); `q(Z;C)) ∩ C 1((0,+∞); `q(Z;C)) of (13) which
initially satisfies u(0) = u0. This solution is explicitly given through the following representation formula

∀t > 0 , u(t) = Sb(t)u
0 =

+∞∑
n=0

tn

n!
b(n) ? u0.

The Green’s function Gb is then the unique solution associated to the initial condition u0 = δ, where δ
stands for the Dirac delta sequence which satisfies δ` = 1 if ` = 0 and δ` = 0 otherwise. We thus have

∀t > 0 , Gb(t) = Sb(t)δ =
+∞∑
n=0

tn

n!
b(n) ? δ =

+∞∑
n=0

tn

n!
b(n),

since δ is a unitary element for the convolution, that is b ? δ = b. As a consequence, solutions to (13)
starting from u(0) = u0 ∈ `q(Z;C) simply write

∀t > 0 , u(t) = Sb(t)u
0 = Gb(t) ? u0.

We now present the main assumptions in the sequence b considered in this semi-discrete case.

Assumption 4 (Semi-discrete setting). The sequence b = (b`)`∈Z belongs to `1(Z;C) and its associated
Fourier series:

νb : ζ ∈ C 7−→
∑
`∈Z

b` ζ
` ,

defines a holomorphic function on an annulus {ζ ∈ C | 1− ε < |ζ| < 1 + ε} for some ε > 0. Furthermore,
there holds:

sup
κ∈S1

Re(νb(κ)) = 0 .

We also assume that there exists a finite set of pairwise distinct points {κ1, . . . , κK}, K ≥ 1, in S1 such
that the real part of νb(κk) is 0 for any k ∈ {1, . . . ,K} and:

∀κ ∈ S1 \
{
κ1, . . . , κK

}
, Re (νb(κ)) < 0 .

Moreover, at any point κk ∈ S1, k ∈ {1, . . . ,K}, where the the real part of νb(κk) vanishes, that is
νb(κk) = izk for some zk ∈ R, there exists a real number αk, a complex number βk with positive real part
and a nonzero integer µk ∈ N∗ such that, as the complex number ξ tends to zero, there holds:

νb

(
κk ei ξ

)
= izk + iαk ξ − βk ξ2µk +O(ξ2µk+1) . (14)

Under the above assumption on the sequence b, we also have the following convergent power series:

νb

(
κk ei ξ

)
= izk + iαk ξ − βk ξ2µk +

∑
ν≥2µk+1

γk,ν
ν !

(i ξ)ν , (15)

for some complex coefficients γk,ν ∈ C which allow to define the polynomials Pk,m exactly as in (4). An
analogue of Theorem 1 in this semi-discrete setting reads as follows.
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Theorem 2 (Semi-discrete local limit theorem). Let the sequence b satisfy Assumption 4. Then there
exist a positive real number L > 0 and some positive constant c0 > 0 such that for any t ≥ 1 and ` ∈ Z
with |`| > L t, there holds: ∣∣∣Gb` (t)∣∣∣ ≤ exp(−c0 t− c0 |`|) . (16)

Moreover, for any integer M ∈ N, there exist some positive constants CM and cM (that depend on M and
a) such that the following holds: for any t ≥ 1 and ` ∈ Z with |`| ≤ L t, there holds:∣∣∣∣∣Gb` (t)−

K∑
k=1

κ−`k ei t zk

t1/(2µk)
Hβk

2µk

(
`− αkn
t1/(2µk)

)
−

K∑
k=1

M∑
m=1

κ−`k et i zk

t(m+1)/(2µk)

(
Pk,m(−d/dx)Hβk

2µk

)(`− αkn
t1/(2µk)

)∣∣∣∣∣
≤ CM

K∑
k=1

1

t(M+2)/(2µk)
exp

−cM (
|`− αk n|
t1/(2µk)

) 2µk
2µk−1

 . (17)

It is important to remark that estimates (16) and (17) are only valid for large times, here taken as
t ≥ 1. Indeed, for small times 0 < t < 1, we do not expect the validity of such an estimate, and one needs
to be careful with the singularity at t = 0. Theorem 2 was already proved in [4] in a specific case at order
M = 1 with a different method of proof. Instead of using Fourier series on Z, [4] uses Laplace transform
in time to derive an alternate representation formula for the Green’s function Gb(t). Here, for any t > 0
and ` ∈ Z, we have the following analogue of (8) that is

Gb` (t) =
1

2π

∫ π

−π
e−i ` θ et νb(eiθ) dθ .

With this representation formula, we observe that the proof of Theorem 1 readily applies to the continuous
setting without any difficulty. Coming back to the example addressed in [4], it corresponds in our setting
to the finitely supported sequence b defined as

b−1 =
1

χ
, b0 = −χ− 1

χ
, b1 = χ, with b` = 0 for |`| ≥ 2,

for some χ > 1. In that case, the associated amplification factor reads

νb(e
iθ) =

1

χ
e−iθ − χ− 1

χ
+ χeiθ = −

(
χ+

1

χ

)
(1− cos(θ)) + i

(
χ− 1

χ

)
sin(θ), θ ∈ [0, 2π),

such that there is a unique tangency point at the origin for θ = 0 with asymptotic expansion

νb(e
iξ) = i

(
χ− 1

χ

)
ξ −

(
χ+

1

χ

)
ξ2

2
−
(
χ− 1

χ

)
(iξ)3

3!
+O(ξ4),

as ξ → 0. This implies that α = χ− 1
χ > 0, β = χ

2 + 1
2χ , µ = 1 and we can even deduce the first cumulant

γ3 = −α = χ− 1
χ . As a consequence, Theorem 2 applied to this case with M = 1 gives for all t ≥ 1 and

|`| ≤ Lt for some L > 0:∣∣∣∣Gb` (t)− 1√
4πβt

exp

(
−x`(t)

2

2

)
− α

24β2
√

2πt

(
x`(t)

3 − 3x`(t)
)

exp

(
−x`(t)

2

2

)∣∣∣∣ ≤ C

t3/2
exp

(
−c x`(t)2

)
,
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for two positives constants C, c > 0, and where we have set

x`(t) :=
`− αt√

2βt
.

This above expansion7 is precisely the one derived in [4, Proposition 4.1] .

3.2 The dispersive case

As we already explained in the introduction, the parabolicity hypothesis of Assumption 3 is one of two
possible behaviors referenced by Thomée [32], the other behavior being the dispersive case which is also
referred to as the unstable case since it yields unboundedness of the sequence

(∥∥a(n)
∥∥
`1

)
n∈N, see [19, 32].

Let a be a given sequence that satisfies Assumption 1 and Assumption 2, a tangency point κk is said to
be dispersive if the asymptotic expansion of the modulus of the amplification factor function Fa near this
point satisfies the following property. There exist a real number αk, a complex number βk with positive
real part, two nonzero integers νk, µk ∈ N verifying 1 < νk < 2µk and a real polynomial pk with pk(0) 6= 0
such that

Fa

(
κk ei ξ

)
= Fa(κk) exp

(
iαk ξ + iξνkpk(ξ)− βk ξ2µk +O

(
ξ2µk+1

))
, (18)

for all complex number ξ that tends to zero. We refer to [5, 10, 19, 27] for examples of sequences yielding
dispersive tangency points. In numerical analysis, a celebrated example where the above expansion holds
is given by the so-called Lax-Wendroff scheme for the transport equation [18, 22] and is characterized by
a sequence a taking values

a−1 =
−λ+ λ2

2
, a0 = 1− λ2, a1 =

λ+ λ2

2
, with a` = 0 for |`| ≥ 2

for some λ ∈ (−1, 1). A straightforward computation yields∣∣∣Fa (eiθ
)∣∣∣ = 1− 4λ2(1− λ2)

(
sin

θ

2

)4

, θ ∈ R,

which implies that the modulus of Fa has a unique tangency point κ = 1 with Fa(1) = 1 together with
asymptotic expansion

Fa

(
ei ξ
)

=
ξ→0

exp

(
iλ ξ − i

λ(1− λ2)

6
ξ3 − λ2(1− λ2)

8
ξ4 +O

(
ξ5
))

,

which is of the form of (18) with ν = 3 and 2µ = 4. To our best knowledge, it is still an open problem
to prove an analogue of Theorem 1 for dispersive tangency points. The more advanced result available
in the literature is [27, Theorem 1.2] which provides the leading order term of a(n). Specified to the
Lax-Wendroff example, [27, Theorem 1.2] shows that

a
(n)
` =

1

n1/3
Ai$

3

(
`− λn
n1/3

)
+ o(n−1/3),

uniformly with respect to ` ∈ Z, where $ = λ(1−λ2)
6 and the function Ai$

3 is defined as the oscillatory
integral8:

∀x ∈ R Ai$
3 (x) =

1

2π

∫
R

e−ixu e−i$u
3
du .

We shall deal with the local limit theorem (up to any order) in the dispersive case in a subsequent work.

7Borrowing the notation from [4], one has α = c∗ and β = cosh(λ∗).
8The function A

i/3
3 is the classical Airy function.
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3.3 The multi-dimensional case

Another very interesting perspective is the generalization of Theorem 1 in the multi-dimensional setting
where the sequence a is now indexed on the d-dimensional lattice Zd, with some integer d ≥ 2. We refer
to the fascinating recent developments [7, 26, 28, 29] on the subject. As expected, the multi-dimensional
setting presents a much richer classification of the tangency points compared to the one-dimensional
case which has essentially two cases (parabolic and dispersive)9. Borrowing the terminology used in
the aforementioned references, the multi-dimensional analogue of the parabolic case studied here would
correspond to the case where all tangency points of Fa are of positive homogeneous type, see [28, Definition
1.3.]. In that case, one can hope to prove a result analogous to Theorem 1, and we leave it for future
work.

9We do not address here the more degenerate case where Fa(κ) has modulus 1 for any κ ∈ S1. We refer to [5] for some
examples in that case and formal results.
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