Correction exercices complémentaires TD7

Irène Meunier

6 novembre 2020

Exercice 39.

Étudier la fonction définie par $f(x) = \log(e^x + e^{-x} - x)$. On s'intéressera aux droites asymptotes en $+\infty$ et $-\infty$.

On étudie $f: x \mapsto \ln(e^x + e^{-x} - x)$. Si on note $u(x) = e^x + e^{-x} - x$ a dérivée est $f'(x) = \frac{u'(x)}{u(x)} = \frac{e^x - e^{-x} - 1}{e^x + e^{-x} - x}$. Or, e^x étant convexe, elle est au-dessus de sa tangente en $0: e^x \geqslant x + 1$ (vérifiez-le avec la formule de la tangente!). Donc $e^x + e^{-x} - x \ge 1 + e^{-x} > 0$. Donc f' est du signe de son numérateur.

Je vais chercher le zéro de f' (ça n'est pas dans l'énoncé, juste pour vous montrer une technique en maths).

$$e^{x} - e^{-x} - 1 = 0 \Leftrightarrow e^{-x}(e^{2x} - 1) = 1 \Leftrightarrow e^{2x} - 1 = e^{x}$$

Si on note $X=e^x$, l'équation si-dessus se réécrit $X^2-X-1=0$. La racine positive (car X positif) est $\frac{1+\sqrt{5}}{2}$. Donc, si on note x_0 la racine de f', on a $e^{x_0} = \frac{1+\sqrt{5}}{2}$. Donc $x_0 = \ln(\frac{1+\sqrt{5}}{2})$ est la racine de f'. f' est croissante, négative avant sa racine et positive ensuite.

En résumé, $\lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = +\infty$ et f décroit jusqu'à x_0 et croit ensuite.

x	$-\infty$ $\ln(\frac{1+\sqrt{5}}{2})$	$+\infty$
f'(x)	- 0 +	
f	$+\infty$ $f(x_0)$	$+\infty$

En regardant l'expression de f, on peut sentir que les asymptotes obliques sont x en $+\infty$ et -x en $-\infty$. Je fais le cas $+\infty$ et je vous laisse le cas en $-\infty$ qui est similaire.

Il s'agit de calculer $\lim_{x\to+\infty} f(x) - x$.

On a $\ln(e^x + e^{-x} - x) - x = \ln(e^x + e^{-x} - x) - \ln(e^x) = \ln(\frac{e^x - e^{-x} - x}{e^x})$. Or, $\frac{e^x - e^{-x} - x}{e^x} = 1 - e^{-2x} - \frac{x}{e^x} = 1 - e^{-2x} - \frac{x}{e^x$ $\lim_{x\to+\infty}e^{-2x}=0$. Au bilan $\lim_{x\to+\infty}\ln(e^x+e^{-x}-x)-x=\ln(1)=0$. On a donc bien $\{y=x\}$ pour asymptote en $+\infty$.

Exercice 40.

Soit f la foction définie sur $]0; +\infty[$ par $f(x) = \frac{e^x}{x}$ et C_f sa courbe représentative. Démontrez que \mathcal{C}_f n'admet aucune asymptote oblique en $+\infty$.

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$. On veut calculer $\lim_{x \to +\infty} \frac{e^x}{x} - ax - b$. On factorise par $e^x : e^x(1/x - axe^{-x} - be^{-x})$. Or:

$$\lim_{x \to +\infty} axe^{-x} = 0 \text{ et } \lim_{x \to +\infty} be^{-x} = 0$$

De plus,

$$\lim_{x \to +\infty} e^x / x = +\infty$$

Donc, au bilan,

$$\lim_{x \to +\infty} \frac{e^x}{x} - ax - b = +\infty$$

Donc on n'a pas d'asymptote en $+\infty$.