
More on second-order properties of the Moreau regularization-approximation
of a convex function

J.-B. Hiriart-Urruty
Institut de Mathématiques
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Introduction
Go to an Optimization congress, more precisely in sessions devoted to large scale prob-

lems such as those found in mathematical imagery, automatic learning or statistics (Ma-
chine Learning), and you will hear about Moreau’s regularization, proximal (algorithmic)
methods, etc. To understand them, you need a minimum of basic theoretical (i.e., math-
ematical) knowledge. It is to this need that I had to respond by teaching in a Master 2R
of Operation Research (course entitled “Contemporary Themes in (continuous) Optimiza-
tion” during the last six years. The audience of students (all at the graduate level) mainly
came from four engineering schools in Toulouse as well as the Paul Sabatier University2.

For these purposes, we have chosen to start from a beginner level in the targeted field,
hence the title of the pedagogical text [8], avoiding the temptation to take for granted
things that seem simple to us (so much we are “in” by our own practices and work in
Optimization).

The text referenced in [8] is divided into six parts of very unequal lengths. After the
introductory paragraphs of Analysis (§1) and modern Convex Analysis (§2), we present in
§3 the properties of Moreau’s regularization (to first order); everything is distilled in the
form of “facts” (= statements) without proofs (as we will do in section 2 of the current
paper). It is, for the student-reader, the basis for understanding the so-called proximal
algorithmic methods.

Section 4 is dedicated to the second-order properties of Moreau’s regularization; in
addition to summarizing the results available in terms of classical differential calculus, we

1Postal address:118 route de Narbonne 31062 Toulouse Cedex 09, France.
E-mail: jbhu@math.univ-toulouse.fr
2Oleg Burdakov was familiar with this ecosystem of engineering schools and universities in Toulouse.

He was senior scientific adviser at CERFACS in 1995-1997. It was then that I had the opportunity to meet
him for the first time.
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improve some results from the literature. This is the subject of our paper here. The main
results are displayed in section 3.

“Theory is the first term in the Taylor series of practice” (Th. M. Cover, 1990
Shannon Lecture).

1. Moreau’s construction
In works dating from 1963− 1965, including a founding paper published in 1965 ([1]),

the archetype, in my opinion, of an elegant and profound article of mathematics, the
mechanic-mathematician J.-J. Moreau3 defined and studied the approximate-regularized
(or envelope) of a convex function, which bears his name.

Consider a lower-semicontinuous (l.s.c.) convex function f : Rn → R∪{+∞} and r > 0
a parameter. Then, one defines the function Mrf on Rn in the following way:

Mrf(x) = inf
u∈Rn

{
f(u) +

r

2
‖x− u‖2

}
. (1)

Here, ‖.‖ stands for the usual Euclidean norm on Rn. One remarks that the role of the
parameter r is not essential in the construction of Mrf since

Mrf(x) = r inf
u∈Rn

{
f(u)/r +

1

2
‖x− u‖2

}
. (1’)

Hence, if one is able to derive properties of the construction of Moreau with the parameter
r = 1, one will deduce similar conclusions for any parameter r > 0. That is what we will
do for second-order differentiability properties. Indeed, the simplified notation Mf will be
used for M1f.

The unique minimizer in the optimization problem (1) defining Mrf(x) is the proximal
point of x; it is denoted by proxrf (x). The mapping proxrf : Rn → Rn is called proximal
mapping or proximal operator attached with the function f and the parameter r.

Example 1. Let C be a (nonempty) closed convex set in Rn and f the l.s.c. convex
function which takes the value 0 on C and +∞ elsewhere (called the indicator function of
C). Simple calculations lead to:

Mrf(x) =
r

2
(dC(x))2, (2)

proxrf (x) = pC(x) for all x ∈ Rn. (3)

Here, dC(x) denotes the Euclidean distance from x to C, and pC(x) is the projection of x
onto C. This is this initial example that lead Moreau to coin the qualifier proximal.

Example 2 (with Figure 1). Let f : x ∈ R 7→ f(x) = |x|. Then

Mrf(x) =

{
r
2
x2 if x ∈ [−1/r, 1/r] ,
|x| − 1

2r
if |x| > 1/r,

; (4)

3J.-J. Moreau (1923− 2014), who made his career at the University of Montpellier (France).
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proxrf (x) =


0 if x ∈ [−1/r, 1/r] ,
x− 1/r if x > 1/r,
x+ 1/r if x 6 −1/r

. (5)

If we stick to a condensed formula for proxrf (x), one can write

proxrf (x) = [|x| − 1/r]+ sign(x),

where sign(x) equals 1 if x > 0, −1 if x > 0, 0 if x = 0.
The function 1

r
Mrf is the so-called Huber function, much used in Statistics. It is a

compromise between quadratic behavior (near 0) and linear behavior (when the variable
is large).
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Example 3. A third example is with a convex quadratic function (of several variables)
f : x ∈ Rn 7→ f(x) = 1

2
〈Ax, x〉, where A is a symmetric positive semidefinite (n, n) matrix.

Then, for all x ∈ Rn,{
Mrf(x) = 1

2
〈Arx, x〉 ,

with Ar = A(In + 1
r
A)−1 = r

[
In − (In + 1

r
A)−1

]
;

(6)

proxrf (x) = (In +
1

r
A)−1(x). (7)
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Explicit calculations (I am not talking about numerical approximations by calculations)
of Mrf and of proxrf are sometimes possible; a repository is dedicated to them (see [2]), we
will use it later (in section 3). From the point of view of numerical calculations, note the
decomposable character of 1

2
‖x− u‖2 =

∑n
i=1

1
2
(xi−ui)2. Thus, if f is itself decomposable,

f(x) =
∑n

i=1 fi(xi), the calculations of Mrf(x) and proxrf (x) amount to n independent
computations with functions fi of a single real variable xi. This is what happens with the
(important) norm function f(x) = ‖x‖1 =

∑n
i=1 |xi|.

In short, we have understood in view of these few examples that it is better to have to
deal with convex functions f “prox friendly” (as I have seen it written by certain authors).

2. First-order properties of Mrf and proxrf : a digest
The subject of modern Convex Analysis is widely covered in many books, whether

teaching-research or corrected exercises ([3] for example). We only use here the rudiments
on two essential objects: the subdifferential ∂f and the Legendre-Fenchel conjugate
f ∗ of a convex function f .

An absolutely extraordinary result of Moreau, concerning the regularization which
bears his name, is that when we have regularized f , we have also regularized f ∗, because:

Mf(x) +Mf ∗(x) =
1

2
‖x‖2 , (8)

proxf (x) + proxf∗(x) = x for all x ∈ Rn. (9)

We understand that this will have consequences on the second-order differentiability of
Mf and of Mf ∗: they are twice differentiable or not at x at the same time. We will come
back to this in section 3.

Here below are collected under the name of “Facts” the main results to know about
Mrf and proxrf . They are presented without proofs, knowing that they can be found in
various books (Example: [3, Vol. 2, pages 317− 330].

Fact 1. Mrf is a convex function, everywhere finite and differentiable on Rn (even
with a Lipschitz gradient, but no more).

Fact 2. For all y ∈ Rn, (
proxrf

)−1
(y) = y +

1

r
∂f(y).

The prox mapping proxrf sends Rn onto D = {x ∈ domf : ∂f(x) is nonempty} (ex-
actly, no more, no less).

Fact 3. For all x ∈ Rn,

∇Mrf(x) = r(x− proxrf (x)),

proxrf (x) = x− 1

r
∇Mrf(x).

Fact 4. (r = 1) “When you have one, you have the other one”:

Mf ∗(x) =
1

2
‖x‖2 −Mf(x),
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proxf∗(x) = x− proxf (x) (= ∇Mf(x)).

Two remarks are in order here:
- The function Mf is not “too convex”, in fact “less convex” than (1/2)‖.‖2, since

it is necessary to add another convex function, namely Mf ∗, to get at (1/2)‖.‖2. This
assertion, a little vague at this point, will be clarified a little more during the study of the
second-order differentiation of Mf in section 3.

- The mapping proxf is a “gradient field” (or “derives from a potential function”), i.e.,
it is the gradient of a function. This has an immediate consequence: at a point x where the
mapping proxf is differentiable, the Jacobian matrix J(proxf )(x) is necessarily symmetric
(a result in Differential Calculus).

Fact 5. The mapping proxf is r−Lipschitz on Rn, that is to say:∥∥proxf (x)− proxf (y)
∥∥ 6 r ‖x− y‖ for all x, y in Rn.

An example of consequence: Mf is a convex function with 1−Lipschitz gradient map-
ping.

Fact(s) 6. Concerning lower bounds and minimizers of f and Mrf , we have:

inf
x∈Rn

f(x) = inf
x∈Rn

Mrf(x);

(x minimizes f on Rn)⇔ (x minimizes Mrf on Rn) .

The next four statements are equivalent:

(i) x minimizes f (or Mrf ) on Rn ;

(ii) proxrf (x) = x ;

(iii) f(proxrf (x)) = f(x) ;

(iv) Mrf(x) = f(x).

3. Second-order properties of Mrf : what to expect, what can be proved
One is tempted to say - and I had the opportunity to read it - this: if the convex

function f is twice differentiable (even of class C∞) on int(domf), that is say on the largest
set where it could be, then Mrf is twice differentiable. This is clearly wrong, it suffices
to see that to consider the indicator function f of [−1, 1], which leads to a Moreau-
regularized Mrf which is not twice differentiable at the points −1 and 1 (see Example 1 or
Example 4). Yet the result is true if f is assumed to have finite values (everywhere), that
is to say if domf = Rn. The studies on this subject of twice differentiability of Mrf are
old, they date from the years 1994− 1997; see for example the works [4], [5], [6]. We take
up the essentials here in synthetic form, improving them in passing; Corollary 2 below is
an example of covering and improving the existing results.
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3.1 Preamble on the almost everywhere second-order differentiatibility of a
convex function

Let us go back to basics, with functions f : Rn → R ∪ {+∞}.
- We say that f admits at x0 a Taylor-Young second-order expansion when: f is

differentiable at x0 and there exists a symmetric matrix (denoted A2f(x0)) such that

f(x0 + h) = f(x0) + 〈∇f(x0), h〉+
1

2

〈
A2f(x0)h, h

〉
+ o(‖h‖2). (10)

The notation A is for A. D. Alexandroff who, in 1939, published a paper proving
that this takes place for almost any x0 when the function f is convex, i.e. outside a set of
null measure (in the Lebesgue sense).

This is weaker than the (usual) second-order differentiability of f at x0. But for a convex
function it comes down to about the same: If the convex function is (once) differentiable
in a neighborhood of x0, we have ( 10) if and only if f is twice differentiable at x0, with
∇2f(x0) = A2f(x0). This is far from being easy to prove ([7, Corollary 2.13]).

- According to R. T. Rockafellar and F. Mignot (in works published in 1976),
one says that the set-valued mapping ∂f (for a convex function f) is differentiable at x0
if, firstly f is differentiable at x0, and then there exists a matrix D2f(x0) (that we could
also denote as J(∂f)(x0)) such that{

‖∂f(x)−∇f(x0)−D2f(x0)(x− x0)‖ = o (‖x− x0‖)
(with o(.) uniform for the s ∈ ∂f(x)).

(11)

In a more detailed form, that means : For all ε > 0, there exists δ > 0 such that{
(‖x− x0‖ 6 δ and s ∈ ∂f(x))⇒

(‖s−∇f(x0)−D2f(x0)(x− x0)‖ 6 ε ‖x− x0‖).
(11bis)

Mignot proved in a paper published in 1976 that ∂f is differentiable at almost all points
x0. In [7, Proposition 2.11], I proved that this matrix D2f(x0) is necessarily symmetric
and positive semidefinite. In [7, Corollary 2.12], I also proved the following “logical and
expected” result: f admits at x0 a Taylor-Young second-order expansion if, and only
if, ∂f is differentiable at x0. In short, A2f(x0) = D2f(x0). By abuse of language, we
therefore say that “f (convex) is twice A-differentiable at x0” when we have (10) or (11),
and we will keep the notation A2f(x0) (which - let us recall it - is ∇2f(x0) when f is twice
differentiable (in the usual sense) at x0).

- A word about the counterpart of (10) for the conjugate function f ∗: If we have the
second-order expansion (10) at x0, we have something similar for f ∗ at s0 = ∇f(x0),
provided that A2f(x0) is invertible ([3, Vol. 2, page 89]):{

f ∗(s0 + p) = f ∗(s0) + 〈x0, p〉+ 1
2

〈
[A2f(x0)]

−1
p, p
〉

+ o(‖p‖2),
(with x0 = ∇f ∗(s0), we recall it).

(10*)

In what follows, one will choose, according to the case, the expansion (10) or (11);
formulation (10) is more “palpable”, while formulation (11) is more “powerful” (especially
in proofs).
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3.2 Getting twice differentiability of Mrf from that of f
To lighten the notations, and without loss of generality, we now make r = 1 in the

Moreau regularization process.
Let us recall (cf. Fact 3) that the twice differentiability of the function Mf at x0, that is

to say the differentiability of the mapping ∇Mf at x0, is equivalent to the differentiability
of the mapping proxf at x0, with

∇2Mf(x0) = In − J(proxf )(x0). (12)

This relation confirms that J(proxf )(x0) is a symmetric matrix, as we announced it
previously (at the end of Fact 4).

The key result linking the second-order differentiability of f and that of Mf is as
follows.

Theorem 1. If f is twice A-differentiable at proxf (x0), then Mf is twice differentiable
(in the usual sense) at x0, with

∇2Mf(x0) = In −
[
In + A2f(proxf (x0))

]−1
. (13)

The proof is postponed in the Appendix.
Note immediately that formula (13) remains valid even if A2f(proxf (x0)) is singular

(i.e., is not invertible). Since A2f(proxf (x0)) is positive semidefinite, In +A2f(proxf (x0))
is positive definite, hence invertible.

Even if f is twice differentiable (in the classical sense) wherever possible, i.e. at best
on int(domf), the above result shows that this does not imply that Mf is twice differ-
entiable everywhere: it depends on the proximal points proxf (x), if these fall in the twice
differentiability zone of f or not. The case where proxf (x) falls on a boundary point of
domf , this being however a point where the subdifferential of f is not empty, is particularly
interesting; it will be considered below.

The “dual” version of Theorem 1 consists in writing the same result on the conjugate
f ∗, remembering that ∇2Mf(x0) = In −∇2Mf ∗(x0).

Theorem 1*. If f ∗ is twice A-differentiable at proxf∗(x0) (= x0 − proxf (x0)), then
Mf is twice differentiable (in the usual sense) at x0, with

∇2Mf(x0) =
[
In + A2f ∗(proxf∗(x0))

]−1
. (13∗)

The two theorems above, Theorem 1 and Theorem 1∗, do not lead to the twice differ-
entiabilty of Mf at the same points x0; the next example is an illustration of that.

Example 4. Let f be the indicator function of [−1, 1]. Then, f is trivially twice
differentiable on int(domf) = (−1, 1), but

x 7→Mf(x) =


0 if x ∈ [−1, 1] ,

1
2
(x− 1)2 if x > 1,

1
2
(x+ 1)2 if x 6 −1,
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is not twice differentiable everywhere. Theorem 1 can be applied at x0 ∈ (−1, 1) since,
in that case, proxf (x0), which equals x0, is in the twice differentiability zone of f . When
x0 /∈ (−1, 1), proxf (x0) = ±1 and everything can happen : Mf can be twice differentiable
at x0 just as Mf cannot be twice differentiable at x0.

The dual version of this example is as follows. One has f ∗ = |.|. Then, f ∗ is clearly
twice differentiable at all points except at 0, but

x 7→Mf ∗(x) =


1
2
x2 if x ∈ [−1, 1] ,
x− 1

2
if x > 1,

−x− 1
2

if x 6 −1,

is not everywhere twice differentiable, exactly as (and at the same points ±1 as) Mf . The-
orem 1∗ can be applied (to f ∗) at x0 /∈ (−1, 1) since, in that case, proxf∗(x0), which is differ-
ent from 0, lies in the twice differentiability zone of f ∗. When x0 ∈ [−1, 1], proxf∗(x0) = 0
and everything can happen: Mf ∗ can be twice differentiable at x0 just as Mf ∗ cannot be
twice differentiable at x0.

By combining the two results, we arrived at the twice differentiability of Mf and Mf ∗

everywhere except perhaps in ±1, and this is indeed the best we could do.
Let us draw some corollaries from the result of Theorem 1.

Corollary 2. Let f : Rn → R ∪ {+∞} be convex, l.s.c., satisfying the following
assumption:

(H)

{
f is twice differentiable on int(domf),

∂f(x) is empty at any point of the boundary of domf.

Then Mf is twice differentiable everywhere on Rn.

The proof of Corollary 2 is fairly simple from the result of Theorem 1. Indeed, for
all x ∈ Rn, proxf (x) is a point where the subdifferential of f is not empty (see Fact 2).
However, by hypothesis (H), such a point can only be inside domf , the zone where precisely
f has been assumed to be twice differentiable. �

Note that the second part of hypothesis (H) only concerns points which are both on
the boundary of domf and in domf (since, by definition, ∂f(x) is empty when x /∈ domf).

Corollary 3. Let f : Rn → R be convex twice differentiable on Rn (resp. of class C2
on Rn). Then Mf is twice differentiable on Rn (resp. of class C2 on Rn).

For the twice differentiabilty of Mf , Corollary 2 trivially applies since the boundary of
the domain of f is empty.

Let us see for the C2 property. We have A2f(.) = ∇2f(.) which is continuous by
hypothesis, the mapping proxf (.) which is continuous (cf. Fact 5), and the formula:

∇2Mf(x) = In −
[
In +∇2f(proxf (x))

]−1
. (14)
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Then, it suffices to observe that ∇2Mf(.) results from the chaining (or composition) of
continuous mappings. �

In the case of functions f of a single variable, formula (14) takes a simplified form:

(Mf)′′(x) =
f ′′(proxf (x))

1 + f ′′(proxf (x))
. (15)

We will have the opportunity to illustrate it several times.
Example 5 (with Figure 2). Let f : R→ R∪ {+∞} be the basic and familiar convex

function defined by: f(x) = −ln(x) if x > 0, + ∞ otherwise. Thus assumption (H) in
Corollary 2 is satisfied, and thus Mf is twice differentiable on the whole of R. This example
is interesting because it shows that we could modify f by making it an affine function
on a subinterval of (0,+∞) or by modifying its behavior when x → +∞, provided of
course that we preserve its twice differentiability on (0,+∞), without destroying the twice
differentiability of the resulting Mf.

If we want to have explicit calculations for the function f of this example, here they
are: 

proxf (x) = x+
√
x2+4
2

,

Mf(x) = − ln(x+
√
x2+4
2

) + 1
4
(x2 + 2− x

√
x2 + 4),

(Mf)′(x) = x−
√
x2+4
2

,
(Mf)′′(x) = 1

2
( 1√

x2+4
− x).

(16)

One illustrates in this example, firstly (Mf)′(x) = x−proxf (x), and secondly (Mf)′′(x) =
f ′′(proxf (x))

1+f ′′(proxf (x))
(formula (15)).

1 0 1 2 3 4 5

1

0

1

2

3

4

f(x) = ln(x) + i]0, + [(x)
Mf(x)
proxf(x)

9



Figure 2

Example 6 (with Figure 3). Let f : R→ R ∪ {+∞} be defined by

f(x) =

{
−1

2
x2 −

√
1− x2 if x ∈ [−1, 1] ,

+∞ otherwise.

This example is interesting in the sense that at the boundary points ±1 of domf = [−1, 1],
the subdifferential of f is empty. Thus, the hypothesis (H) in Corollary 2 is verified, and
the function Mf therefore is twice differentiable everywhere on R. Here again, we can
carry out explicit calculations, here they are:

proxf (x) = x√
1+x2

,

Mf(x) = 1
2
x2 −

√
1 + x2,

(Mf)′(x) = x− x√
1+x2

,

(Mf)′′(x) = 1− 1
(1+x2)3/2

.

(17)

Again in this example, one illustrates that firstly (Mf)′(x) = x − proxf (x), and secondly

(Mf)′′(x) =
f ′′(proxf (x))

1+f ′′(proxf (x))
(formula (15)).
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Example 7. Let f : R→ R be convex and twice differentiable on R. We know, from
Corollary 3, that Mf is twice differentiable on R, and even with its “curvature” bounded
above by that of f and by 1:

(Mf)′′(x) =
f ′′(proxf (x))

1 + f ′′(proxf (x))
6 min(1, f ′′(proxf (x)). (18)

This type of upper bound will be taken up more generally in Corollary 4 below.
One can multiply illustrations with functions of a single variable, as in Examples 5− 7

above, as long as explicit calculations of proxf (x) are available. For this, one can consult
the repository [2].

Example 8 (Example 3 revisited). With the example of quadratic forms f , it is time
to give variants of formula (14) and its cousins. Let f : x ∈ Rn → R be defined by
f(x) = 1

2
〈Ax, x〉, where A is a positive semidefinite (symmetric) matrix. Then, by defining

S = In − [In + A]−1, we have:
proxf (x) = [In + A]−1x = x− Sx,

Mf(x) = 1
2
〈Sx, x〉 ,

∇Mf(x) = Sx,
∇2Mf(x) = S.

(19)

This is the prototype of the formula (14).
Since A is positive semidefinite, it turns out that

(S = ) In − [In + A]−1 = A [In + A]−1 (20.1)

= [In + A]−1A = A− A [In + A]−1A (20.2)

= (if A is invertible)
[
In + A−1

]−1
. (20.3)

These relations between matrices are a bit tricky to prove... You have to use UU−1 =
U−1U = In with several different matrices U (formed with A and In). The matrix S shown
in (20.1)−(20.3) is sometimes called in the literature the parallel sum of A and In. Clearly,
Ker S = Ker A, Im S = Im A.

For our use here, (20.1)−(20.3) yield variants of the expression for∇2Mf(x0) in formula
(14).

The different matrix forms seen in (20.1) − (20.3) lead to specify a little more the
relation between ∇2Mf(x) and ∇2f(proxf (x)). In the next statement, the inequality
A 4 B between (symmetric) positive semidefinite matrices means, as usual, that B −A is
positive semidefinite.

Corollary 4. Let us place ourselves under the assumptions of Corollary 2 . Then, for
all x0 ∈ Rn :

∇2Mf(x0) 4 ∇2f(proxf (x0)) ; (21.1)

∇2Mf(x0) 4 In ; (21.2)
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If λ1, ..., λn denote the eigenvalues of ∇2f(proxf (x0)),

then those of ∇2Mf(x0) are λ1
1+λ1

, ..., λn
1+λn

(thus, λi
1+λi
6 min(1, λi)).

(21.3)

The main result so far is that we have been able to prove the twice differentiability of
f at x0 whenever proxf (x0) “falls” in the zone of twice differentiability of f . Question:
What if otherwise? Let us start with two very simple examples (the first one seen in
Example 2). If f is not twice twice differentiable at proxf (x0) (for example, is not once
differentiable), Theorem 1 cannot apply to x0 nor to all x which have been “contaminated”,
those of x0 +∂f(x0) (since they give the same proxf (x0)!). Consider therefore the function
x ∈ R 7→ f(x) = |x|. In cases where proxf (x0) = 0, Theorem 1 does not apply; in fact
all the “contaminated” x’s are those of [−1, 1]; and indeed Mf is not twice differentiable
at −1 and at 1, but nevertheless Mf is twice differentiable at (−1, 1) (Mf(x) equals 1

2
x2

there).
The dual version of this example is the function f of Example 4. For x0 > 1, we have

proxf (x0) = 1, and f is not differentiable there. Theorem 1 does not apply; in fact all the
“contaminated” x’s are those of [1,+∞); and indeed Mf is not twice differentiable at 1,
yet Mf is twice differentiable at any x ∈ (1,+∞) ((Mf)′′(x) equals 1 there).

How to explain this phenomenon? The answer is in the following theorem (adapted
from [6]).

Theorem 2. Let u0 be a point where f is not differentiable. Consider the closed
convex set C(u0) = u0 + ∂f(u0), that is the set of points x0 for which proxf (x0) = u0.
Then Mf is twice differentiable on intC(u0), with

∇2Mf(x0) = In for all x0 ∈ intC(u0). (22)

There is, of course, a dual version of this theorem with f ∗.
Proof. Let x0 ∈ intC(u0). There exists a neighborhood N de x0 tel que N ⊂ C(u0).

For all x ∈ N , proxf (x) is constantly equal to u0. Consequently, the mapping proxf is
differentiable x0 and J(proxf )(x0) = 0. Thus (see (12)),

∇2Mf(x0) = In − J(proxf )(x0) = In. (�)

Let us summarize what has been seen on the twice differentiability of Mf depending
on the places “touched” by the proximal mapping proxf :
∗ If proxf (x0) is a point where f is twice differentiable, then Mf is twice differentiable

at x0;
∗ If proxf (x0) is a point of “maximal” nondifferentiability of f , i.e. with ∂f(proxf (x0))

of nonempty interior, then Mf is twice differentiable at x0 (and we even know that
∇2Mf(x0) = In);
∗ If proxf (x0) is a point of “partial” nondifferentiability of f , i.e. when ∂f(proxf (x0))

has a nonempty interior, then we cannot conclude, with the knowledge developed here,
whether Mf is twice differentiable at x0 or not.
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Example 9 (from [4, 5]).
This last example echoes the last point raised above, when ∂f(proxf (x0)) is not reduced

to a point (f is therefore not differentiable at proxf (x0)), but ∂f(proxf (x0)) has an empty
interior. As surprising as it may seem, Mf could nevertheless be twice differentiable at x0.
To illustrate this possibility, it is necessary to consider functions of at least two variables.

Let f : (x, y) 7→ f(x, y) = |x| + 1
2
y2. In a neighborhood of (0, 0), the function f has

the “smooth” appearance of the letter U in the y direction, and the “kink” appearance
of the letter V in the x direction. Simple calculations - moreover already done since f
is separable in x and y - show that Mf(x, y) = 1

2
x2 + 1

4
y2 and proxf (x, y) = (0, y

2
) in

a neighborhood of (0, 0). Thus Mf is twice differentiable at (0, 0). This example is the
root of the “U-V model” of nondifferentiable convex optimization developed over the past
25 years by several authors like C. Lemaréchal, F. Oustry, C. Sagastizabal, A.
Lewis, and so on.

Brief conclusion
It has been almost 60 years since J.-J. Moreau introduced the approximation-regularization

process that bears his name, as well as the name and properties of the proximal mapping
that go with it. Since then, but especially in recent times where fields of application are
very greedy for optimization algorithms (mathematical imaging, automatic or statistical
learning (Machine Learning)), it is very common to call on these notions:

“Proximal methods are the natural algorithms for solving regularized learning problems”
([9]).

But to understand them, you need a minimum of basic theoretical knowledge, because:
“Nothing is more practical than a good theory” (O. von Helmholtz).

This was the aim of our presentation here, concentrated on the second-order smoothness
properties of Moreau’s approximation-regularization process.

Appendix
Proof of Theorem 1. The used techniques are rather classical in advanced Differential

Calculus. The followed ideas are:
∗ Since Mf is (once) differentiable (on Rn) with ∇Mf(x) = x−proxf (x), we show that

the mapping proxf : Rn→ Rn is differentiable at x0 with the following Jacobian matrix:

J(proxf )(x0) =
[
In + A2f(proxf (x0))

]−1
.

∗ As we have recalled, proxf (x) is (In + ∂f)−1 (x) for all x; that means that proxf (.) is
the single-valued inverse of the set-valued mapping (In + ∂f) (.).

To simplify the writing, we set pf (.) = proxf (.) and G = In + ∂f.
According to the assumption made on f (differentiability of the set-valued mapping

∂f at pf (x0)) and the definition just above of G, the set-valued mapping G satisfies
G(pf (x0)) = x0 and is differentiable at x0 with JG(pf (x0)) = In + A2f(pf (x0)). Thus,
because A2f(pf (x0)) is positive semidefinite, JG(pf (x0)) is positive definite, hence invert-
ible.
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As a consequence of the assumption made on f , pf (x0) lies in the interior of the do-
main of f . Furthermore, since ‖pf (x0 + h)− pf (x0)‖ 6 ‖h‖ (because pf is a 1-Lipschitz
mapping), for ‖h‖ small enough, pf (x0 + h) also lies in the interior of f.

Consider now the expression

pf (x0 + h)− pf (x0)− [JG(pf (x0))]
−1 h. (A1)

Our objective is to prove that this quantity is a o(‖h‖), which will ensure that pf is

differentiable at x0 with Jpf (x0) = [JG(pf (x0))]
−1 (= [In + A2(pf (x0))]

−1
).

Let us proceed. We have:
pf (x0 + h)− pf (x0)− [JG(pf (x0))]

−1 h

= − [JG(pf (x0))]
−1︸ ︷︷ ︸ [h− JG(pf (x0))(pf (x0 + h)− pf (x0))]︸ ︷︷ ︸

a fixed term a quantity that we express otherwise.

(A2)

Now, recalling that G = In + ∂f , pf = (In + ∂f)−1 = G−1, we have :

x0 ∈ G(pf (x0)), in fact x0 = G(pf (x0)) ; x0 + h ∈ G(pf (x0 + h)) ;

consequently,
h− JG(pf (x0))(pf (x0 + h)− pf (x0))

= (x0 + h)− x0 − JG(pf (x0))(pf (x0 + h)− pf (x0))
∈ G(pf (x0 + h))−G(pf (x0))− JG(pf (x0))(pf (x0 + h)− pf (x0)),

(A3)

and we almost are done.
Indeed, let us express that the (set-valued) mapping G is differentiable at pf (x0):

Given ε > 0, there exists δ > 0 such that ‖y − pf (x0)‖ 6 δ
implies ‖G(y)−G(pf (x0))− JG(pf (x0))(y − pf (x0))‖ 6 ε ‖y − pf (x0)‖

(inequality uniform with respect to the elements of G(y)).
(A4)

But, if ‖h‖ 6 δ, on also has ‖pf (x0 + h)− pf (x0)‖ 6 δ (this is the magic of the 1-
Lipschitz property of pf ) ; so, following (A4):{

‖h‖ 6 δ ⇒ ‖G(pf (x0 + h))−G(pf (x0))− JG(pf (x0))(pf (x0 + h)− pf (x0))‖
6 ε ‖pf (x0 + h)− pf (x0)‖ 6 ε ‖h‖ .

We therefore have proved that G(pf (x0 + h))−G(pf (x0))− JG(pf (x0))(pf (x0 + h)−
pf (x0)) is a o(‖h‖), which, with (A2) and (A3), allows us to conclude that the quantity in
(A1) is also a o(‖h‖).

Comments.
The proof above has the taste of the so-called theorem of inverse functions, it looks

like the theorem of inverse functions, but it is not the theorem of inverse functions. Which
made it possible to avoid recourse to the theorem of inverse functions is :
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- to know from the beginning that JG(pf (x0)) was invertible;
- the control of increments in pf (u) by those in u ;
- knowing from the beginning that there was an inverse to G, that is to say pf , whereas

in usual Differential Calculus it is a consequence of the theorem of inverse functions.
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