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Abstract. We show that derived Lie algebras and restricted Lie algebras classify formal
moduli problems on Artin divided power algebras and truncated algebras, respectively.

1. Introduction

Given a moduli space over a field k and a k-rational point x ∈ M(k), derived deformation
theory aims to describe the formal neighbourhood of the point x in terms of the tangent
complex TxM. As a classical example, H0(TxM) can be identified with the set of first order
infinitesimal paths at x, and the obstruction to lifting an n-th order path to an (n+1)-st order
path is given by a specific class in H1(TxM). The relation between formal neighbourhoods
and their tangent complexes has been made more precise in terms of derived geometry.
Indeed, the formal neighbourhood of a (sufficiently well-behaved) derived k-stack around a
k-point is encoded by a formal moduli problem, that is, a functor

(1.1) X : Artk S

from the ∞-category of Artin simplicial k-algebras with residue field k, satisfying a derived
version of the Schlessinger condition. When k is a field of characteristic zero, a fundamental
result of Lurie and Pridham states that taking the tangent complex refines to an equivalence
between the ∞-category of such formal moduli problems and that of (shifted) dg-Lie algebras.

This has recently been generalised to arbitrary fields by Brantner and Mathew [55], who
show that taking tangent complexes refines to an equivalence between the ∞-categories of
formal moduli problems (1.11.1) and partition Lie algebras. These partition Lie algebras are
homotopy-theoretic refinements of shifted dg-Lie algebras, and carry an algebraic structure
controlled by the Σr-equivariant topology of (suspensions of) the partition complexes Tr.

The aim of this note is to describe two, arguably more classical, variants of this result
by Brantner–Mathew. First, we show that formal moduli problems on Artin simplicial
k-algebras with divided powers are classified by derived Lie algebras (Example 2.32.3). Here we
assume Artin divided power algebras to also be nilpotent with respect to their divided power
structure; our methods do not apply to the (geometrically more interesting) case of formal
moduli problems defined on divided power algebras that are only nilpotent as k-algebras.

Second, we show that derived restricted Lie algebras are equivalent to certain truncated
formal moduli problems. Over a perfect field, these can also be understood more geometrically
as describing formal moduli problems equipped with a trivialisation of the Frobenius, i.e. a
factorisation of the Frobenius over the basepoint (Section 55).

The main idea behind these results is that the structure of shifted derived (restricted) Lie
algebras is also encoded by the partition complexes Tr. To make this more precise, we will
make use of the operadic formalism developed in [44]: the cochains on the partitions complexes
can be organised into a derived operad Lieπ∆, which simultaneously controls the three types
of Lie algebras mentioned above by varying its action on the ∞-category of k-modules.

Notation and conventions. Throughout, let k be a field of characteristic p > 0. The
unbounded derived ∞-category of k will be denoted Modk; we will refer to its objects
as k-modules. We will write Vectωk ⊆ Vectk ⊂ Modk for the full subcategories of (finite
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dimensional) k-vector spaces, concentrated in degree 0. Furthermore, we let Modft,cnk and
Modft,ccnk denote the full subcategories of Modk spanned by the connective, resp. coconnective
k-modules M such that each πi(M) ∈ Vectωk . Equivalently, these subcategories are spanned
by the geometric realisations of simplicial objects, resp. totalisations of cosimplicial objects
in Vectωk . Finally, all operads and symmetric sequences are assumed to be concentrated in
arity ≥ 1.

Acknowledgements. The idea that partition Lie algebras with a trivialised Frobenius can
be understood as restricted Lie algebras originated from Lukas Brantner. I am grateful for
his generous help and useful comments.

2. Recollections on derived algebras

Throughout this paper, we will freely make use of the formalism of (non-abelian) derived
functors developed in [55], see also [1212]. In this section, we will provide a brief reminder on
how this can be used to define and study various types of algebras in the unbounded derived
∞-category Modk. To this end, let us use introduce the following terminology:

Definition 2.1. Let D be an ∞-category with small limits and colimits and let F : Modk −→
D be a functor. We will say that F is a (non-abelian) derived functor if it preserves all sifted
colimits, as well as totalisations of cosimplicial diagrams in Vectωk that are m-coskeletal for
some m.

Every derived functor can be recovered from its restriction to Vectωk by a combination of left
and right Kan extension [55, Construction 3.22] . On the other hand, a functor F : Vectk −→
Vectk preserving filtered colimits extends uniquely to a derived functor Modk −→ Modk
as soon as F can be written as a filtered colimit of functors of finite degree [55, Theorem
3.27]. In this case, the derived functor preserves totalisations of all cosimplicial diagrams in
Vectωk [44, Remark 2.45]. Taking derived functors is compatible with composition, so that the
derived functor of a monad T : Vectk −→ Vectk gives rise to a monad T : Modk −→ Modk;
we will refer to its algebras as derived T -algebras.

Example 2.2. Taking augmentation ideals defines a functor Ringaugk −→ Vectk from the
(ordinary) category of augmented commutative k-algebras to vector spaces. This is a monadic
functor, with left adjoint sending V 7→ Sym(V ). The resulting monad on Vectk is a sum
of finite degree functors and hence yields a derived monad on Modk. We will denote its
∞-category of algebras simply by DAlgk and refer to its objects as derived augmented
(commutative) k-algebras.

One can apply the same argument to augmented k-algebras that are truncated (xp = 0
for every x in the augmentation ideal) or come with a divided power structure on the
augmentation ideal. Taking the augmentation ideal is then a monadic right adjoint, with
left adjoint sending a vector space V to the truncated symmetric algebra Symtr(V ) and
divided power algebra Γ(V ). The corresponding monads can be derived, so that we obtain
∞-categories of derived truncated algebras and derived divided power algebras over k, related
by forgetful functors

DAlgpdk DAlgtrk DAlgk.
forget forget

Example 2.3. Consider the monads Lie, Lieres : Vectk −→ Vectk taking the free Lie algebra
(with [x, x] = 0) and restricted Lie algebra. Both monads preserve filtered colimits and are
given by sums of finite degree functors, and hence yield derived monads on Modk. We will
refer to algebras over these monads as derived (restricted) Lie algebras and denote their
∞-categories by

DLiek and DLieresk .
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The theory of operads provides another way to define and study algebras in Modk. Recall
that classically, a (k-linear) operad is a symmetric sequence of k-vector spaces, endowed with
an associative algebra structure with respect to the composition product. The category of
symmetric sequences acts on the category of k-vector spaces, so that every operad P gives
rise to a monad and hence to a notion of P-algebra. All of this can be extended to the level
of the derived ∞-category Modk by taking derived functors. More precisely, the category of
symmetric sequences has a certain derived analogue that fits into a sequence of inclusions

(2.4) k[OΣ] sSeqgen,cnk sSeqgen,∨k .

Here the (ordinary) category k[OΣ] is the smallest full additive subcategory of the category
of symmetric sequences of k-vector spaces that contains all symmetric sequences k[Σr/H]
spanned by a Σr-orbit (for any arity r ≥ 1). We write sSeqgen,cnk = PΣ(k[OΣ]) for its
completion under sifted colimits and refer to its objects as (connective) derived symmetric
sequences.

Note that sSeqgen,cnk decomposes into a product of ∞-categories, one for each arity
r ≥ 1. For each derived symmetric sequence X, its arity r part X(r) is the restriction of
X : k[OΣ] −→ S to the full additive subcategory generated by the k[Σr/H] for a fixed arity r.
Informally, one can think of the value of X on k[Σr/H] as encoding the genuine fixed points
X(r)H .

Example 2.5. There is a left adjoint functor k[−] :
∏

r≥1 S
Σr → sSeqgenk sending each

sequence of genuine Σr-spaces X to its k-linearisation k[X]. This functor sends each orbit
Σr/H to the corresponding object in k[OΣ] and is extended by colimits.

For example, the k-linearisation of the terminal object of
∏

SΣr defines a derived symmetric
sequence Com with Com(r)H = k for all H < Σr. Note that this differs from the usual
(“Borel”) symmetric sequence E∞ with E∞(r) = k and E∞(r)H = 0 for all {e} ≠ H < Σr.

The ∞-category sSeqgen,∨k appearing in (2.42.4) is a certain compactly generated stable
∞-category, equipped with a left complete t-structure whose connective part is sSeqgen,cnk .
We refer to [44, Definition 3.72] for a precise definition of sSeqgen,∨k and content ourselves with
recalling its main features. Most importantly, the formalism of derived functors extends to
sSeqgen,∨k :

Construction 2.6. Let us say that F : sSeqgen,∨k −→ D is a derived functor if it preserves
sifted colimits and totalisations of cosimplicial diagrams in k[OΣ]. Every derived functor can
be obtained from its restriction to k[OΣ] by a combination of left and right Kan extension [44,
Construction 2.44].

Conversely, suppose that D is a sufficiently nice stable ∞-category, such as Modk or
sSeqgen,∨k , and that F : k[OΣ] −→ D is a filtered colimit of finite degree functors. Then
F admits a (unique) derived functor F : sSeqgen,∨ −→ D [44, Proposition 2.46]. A similar
construction applies to functors in multiple variables [44, Theorem 2.52].

Using this, all the standard operations on symmetric sequences have natural extensions to
sSeqgen,∨k . In particular, one can endow the ∞-category sSeqgen,∨k with a monoidal structure

◦ : sSeqgen,∨k × sSeqgen,∨k sSeqgen,∨k

which is derived from the usual composition product of symmetric sequences of vector spaces
◦ : k[OΣ] × k[OΣ] −→ k[OΣ]. We will refer to a (co)algebra with respect to this monoidal
structure as a derived (co)operad. Given a suitable action of sSeqgen,∨k on Modk, we can then
define algebras over such derived operads.

Definition 2.7. Let ⊙ : k[OΣ] × Vectωk −→ Vectωk be an action of the monoidal category(
k[OΣ], ◦

)
. We will say that ⊙ is of composition type if the following holds.
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(1) It is additive in the first variable.
(2) Each functor k[Σr/H]⊙− : Vectωk −→ Vectωk is of degree ≤ r.

By [44, Theorem 2.52], these conditions imply that the action extends to an action

⊙ : sSeqgen,∨k ×Modk Modk

preserving sifted colimits and totalisations of cosimplicial diagrams in k[OΣ]×Vectωk .

Example 2.8. We have the following examples of actions of composition type:
(1) The composition product and restricted composition product [77]

X ◦ V =
⊕
r≥1

[
X(r)⊗ V ⊗r

]
Σr

X ◦V =
⊕
r≥1

[
X(r)⊗ V ⊗r

]Σr
.

(2) The image of the norm map Nm: X ◦ V ↠ X ◦(1) V ↪→ X ◦V [66].
(3) For every action of composition type ⊙, one obtains another action X ⊙V = (X∨⊙V ∨)∨

by conjugating with linear duality. This relates ◦ with ◦ and ◦(1) with itself.

Example 2.9. The symmetric sequence Com from Example 2.52.5 has the natural structure of
a derived operad (in arity ≥ 1). Its ∞-categories of algebras with respect to ◦, ◦(1) and ◦ are
precisely the ∞-category of derived (augmented, truncated, divided power) algebras over k
from Example 2.22.2; here we use the equivalence between augmented algebras and non-unital
algebras by taking augmentation ideals.

Finally, let us recall the adjoint pair (−)∨ : sSeqgen,∨k ⇆
(
sSeqgen,∨k

)op
: (−)∨ sending each

object to its k-linear dual. This functor is derived from the equivalence k[OΣ] −→ k[OΣ]
op

taking k-linear duals and (hence) preserves colimits and totalisations of cosimplicial objects
in k[OΣ].

Definition 2.10. A connective derived symmetric sequence X ∈ sSeqgen,cnk is said to
be (almost) perfect if it defines an (almost) compact object in the ∞-category sSeqgen,cnk .
Equivalently, X can be written as the geometric realisation of a simplicial object in k[OΣ], cf.
[1111, Lemma C.6.6.3].

Lemma 2.11 ([44, Proposition 3.75]). Let ⊙ be an action of composition type. Then:
(1) The restriction of (−)∨ : sSeqgen,∨k −→

(
sSeqgen,∨k

)op to the almost perfect connective
derived symmetric sequences is fully faithful and strong monoidal with respect to ◦.

(2) The equivalence (−)∨ : Modft,cnk
∼−→ Modft,ccnk is compatible with the action of almost

perfect connective derived symmetric sequences, in the following sense: if X ∈ sSeqgen,cnk

is almost perfect and M ∈ Modft,cnk , there is a natural equivalence (X ⊙ M)∨ ≃
X∨ ⊙M∨.

Remark 2.12. Let Modgrk and Modfiltk = Fun((Z,≥),Modk) denote the ∞-categories of
graded and (decreasingly) filtered k-modules. The derived functor formalism from Definition
2.12.1 carries over verbatim to these ∞-categories, with the role of Vectωk being played by:
(1) the full subcategory Vectgr,ωk ⊆ Modgrk of graded vector spaces of finite total dimension.

(2) the full subcategory Vectfilt,ωk ⊆ Modfiltk of diagrams F ∗V such that F iV = 0 for i ≫ 0,
F iV = F i−1V for i ≪ 0 and each F iV ↪→ F i−1V is injective with finite dimensional
cokernel.

Using this, any action of composition type extends to an action of sSeqgen,∨k on Modgrk
and Modfiltk : on the above two subcategories, we declare that acting by k[Σr/H] ∈ k[OΣ]
multiplies the (filtration) weight by r and then take derived functors. By construction, these
actions of sSeqgen,∨k are preserved by the functors

colim: Modfiltk −→ Modk gr : Modfiltk −→ Modgrk
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sending a filtered complex F ∗V to its colimit and associated graded. Likewise, taking k-linear
duals respects the action of almost perfect connective derived symmetric sequences on almost
perfect objects in Modfiltk and Modgrk , as in Lemma 2.112.11. We refer to [88, 1212] for a detailed
description.

3. Koszul duality

In this section, we will discuss how for a suitable augmented derived operad P, the
∞-category of formal moduli problems on Artin P-algebras is equivalent to the ∞-category
of algebras over its Koszul dual (Corollary 3.73.7); see [55, Section 5.3] for a similar discussion
with slightly different hypotheses.

Given an augmented derived operad P, its bar construction Bar(P) = 1 ◦P 1 has the
structure of a co-augmented derived cooperad [1010, Section 5.2.2]. One can identify Bar(P)
with the coendomorphism coalgebra of the right P-module 1 in sSeqgen,∨k . In particular, the
unit symmetric sequence 1 has a commuting right P-module structure and a left Bar(P)-
comodule structure. For any action of composition type, this induces an adjoint pair between
algebras and coalgebras

BarP : AlgP(Modk,⊙) CoalgBar(P)(Modk,⊙) :CobarP

where the left adjoint sends A to 1⊙P A =
∣∣Bar•(1,P, A)∣∣ [44, Section 3.4].

Definition 3.1. Let us say that an augmented derived operad P is almost of finite type if it
is connective, P(1) = 1 and Bar(P) is an almost perfect derived symmetric sequence. It is of
finite type if in addition, each Bar(P)(r) is perfect.

Lemma 3.2. Let P be almost of finite type. Then then the right P-module 1 admits a natural
exhaustive filtration F∗1 with associated graded Grr1 ≃ Bar(P)(r) ◦ P. In particular, 1 is an
almost perfect right P-module.

Proof. Set F01 = 0 and proceed by induction as follows. For each r ≥ 1, let Xr be the
arity r part of the fibre fib(Fr−11 → 1)(r) and define Fr1 to be the cofibre of the map
Xr ◦ P → Fr−11. Each Fr1 → 1 is then an equivalence in arities ≤ r, so the filtration is
exhaustive. Upon applying − ◦P 1, the filtration splits and one finds that Xr ≃ Bar(P)(r),
as desired. In particular, we see that the associated graded consists of almost perfect right
P-modules whose connectivity tends to ∞. This implies that the colimit 1 is almost perfect
as well. □

Lemma 3.3. Let P be of finite type and let A• : ∆ −→ AlgP(Modgrk ,⊙) be a cosimplicial
diagram of graded P-algebras (Remark 2.122.12). Suppose that each An is a graded vector
space concentrated in strictly positive weights. Then the natural map BarP(Tot(A

•)) −→
Tot(BarP(A

•)) is an equivalence.

Proof. For any graded P-algebra A in strictly positive weights, the map Fr1⊙PB → BarP(A)
is an equivalence in weights ≤ r. It thus suffices to verify that Fr1⊙P− : AlgP(Modgrk ,⊙) −→
Modgrk preserves the totalisation of A• for each r. Note that functors with this property are
closed under finite colimits and retracts and that the forgetful functor P⊙P − preserves such
totalisations. The result then follows from Fr1 being a perfect right P-module, as it admits
a finite filtration whose associated graded Bar(P)(i) ◦ P is perfect for each i. □

Definition 3.4. Let P be an augmented derived operad that is almost of finite type. For any
action of composition type on Modk, let us write ArtP,⊙ ⊆ AlgP(Modk,⊙) for the smallest
full subcategory of P-algebras such that:
(1) it contains the zero algebra 0.
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(2) for each A ∈ ArtP,⊙, V ∈ Vectωk and n ≥ 1, given a pullback square of P-algebras

(3.5)
B 0

A triv(ΣnV )

where triv(ΣnV ) is the trivial P-algebra (i.e. acted upon via P → 1), we have that
B ∈ ArtP,⊙.

The k-module underlying an Artin P-algebra is contained in Modft,cnk . Lemma 3.23.2 therefore
implies that BarP(A) is concentrated in Modft,cnk as well. Let us now pass to the k-linear dual
picture and consider the Koszul dual derived operad KD(P) = Bar(P)∨. By Lemma 2.112.11,
linear duality yields a (contravariant) equivalence between Bar(P)-coalgebras in Modft,cnk and
KD(P)-algebras in Modft,ccnk with respect to the ⊙-action. In particular, we obtain a functor

KDP : ArtP,⊙ CoAlgBar(P)(Modft,cnk ,⊙) AlgKD(P)

(
Modk,⊙

)op
.

BarP (−)∨

The second functor is fully faithful, with essential image given by the KD(P)-algebras in
Modft,ccnk .

Theorem 3.6. Let P be an augmented derived operad that is almost of finite type. Then
KDP : ArtP,⊙ −→ AlgKD(P)(Modk,⊙)op is fully faithful and preserves all pullbacks of the
form (3.53.5).

Proof. This type of result is well known, see e.g. [55, Section 5.3]. To see that KDP preserves
pullbacks of the form (3.53.5), let us say that an Artin P-algebra is good if the natural map of
KD(P)-algebras

KDP(A)⨿KDP

(
triv(ΣmW )

)
KDP(A× triv(ΣmW ))

is an equivalence for all m ≥ 0 and W ∈ Vectωk . Note that KDP(triv(M)) ≃ KDP ⊙M∨ is
the free KD(P)-algebra on M∨ for any M ∈ Modft,cnk . This implies that triv(M) is good.

We now claim the following: given a pullback square (3.53.5) such that A is good, then (a)
its image under KDP is a pushout square and (b) B is good. Assuming this, it follows by
induction that KDP preserves all pullbacks of the form (3.53.5).

To prove claim (a) and (b), we will endow the objects involved with a decreasing filtration,
as follows. We put A and triv(ΣmW ) in filtration weight 0 (i.e. F 1 = 0), while triv(ΣnV )
is put in filtration weight 1 (F 2 = 0). Taking the fibre product then yields a filtration on
B × triv(ΣmW ) with F 1 = Σn−1V and F 2 = 0.

Let R be any of the P-algebras from the previous paragraph and let F ∗R be its (finite)
filtration. By Remark 2.122.12, the functors BarP and KDP have natural analogues in the filtered
and graded setting. Since F ∗R defines an almost perfect connective object in Modfiltk , Lemma
3.23.2 implies that the same holds for BarP(F

∗R). Consequently, BarP(F ∗R) arises as the
geometric realisation of a simplicial object in Vectfilt,ωk [1111, Lemma C.6.6.3]. Taking linear
duals, it follows that KDP(F

∗R) is the totalisation of a cosimplicial diagram in Vectfilt,ωk .
This implies that KDP(F

∗R) gives an exhaustive filtration on KDP(R), whose associated
graded can be identified with KDP(gr(F

∗R)).
We thus obtain natural increasing filtrations on the Koszul duals of all P-algebras involved

in (3.53.5). It now suffices to verify claim (a) and (b) at the level of the associated graded, i.e.
we need to check that the following maps are equivalences:

KDP(A)⨿KDP(triv(ΣnV )) 0 KDP(gr(B))

KDP

(
gr(B)

)
⨿ BarP

(
triv(ΣmW )

)
KDP

(
gr(B)× triv(ΣmW )

)
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Here A and triv(ΣmW ) are concentrated in weight 0 and triv(ΣnV ) is in weight 1. The
above maps are then equivalences because gr(B) ≃ A × triv(Σn−1V ) and A was good by
assumption.

Finally, we need to verify that MapP(A,B) → MapKD(P)

(
KDP(B),KDP(A)

)
is an equiv-

alence for all A,B ∈ ArtP,⊙. Since KDP sends pullbacks to pushouts of KD(P)-algebras,
we can reduce to the case where B = triv(ΣnV ) for some vector space V . In this case,
KDP(B) = KD(P)⊙Σ−nV ∨ is free and the map can be identified with the composite

MapP(A, triv(ΣnV )) Mapk
(
BarP(A),ΣnV

)
Mapk

(
Σ−nV ∨,KDP(A)

)
.

This is an equivalence by definition of the bar construction and ΣnV being dualisable. □

Corollary 3.7. Let P be almost of finite type and let ⊙ be an action of composition type.
Then there is an equivalence between the category AlgKD(P)

(
Modk,⊙) and the category of

formal moduli problems on ArtP,⊙, that is, functors ArtP,⊙ −→ S preserving the terminal
object and all pullback squares (3.53.5).

Proof. Extending KDP : ArtP,⊙ ↪→ AlgKD(P)

(
Modk,⊙)op freely by colimits and taking oppo-

sites, we obtain an adjoint pair D∗ : AlgKD(P)

(
Modk,⊙) ⇆ P(ArtP,⊙)

op : D∗. By Theorem
3.63.6 and the fact that oblv : AlgKD(P)

(
Modk,⊙) −→ Modk preserves sifted colimits, (D∗,D∗)

defines a deformation theory in the sense of [1111, Definition 12.3.3.2]. The result then follows
from [1111, Theorem 12.3.3.5]. □

4. Derived (restricted) Lie algebras

We will now spell out the results of the previous section in the particular case of the
derived (non-unital) commutative operad, whose Koszul dual will be denoted

Lieπ∆ := KD(Com).

The three actions of the derived commutative operad on Modk (Example 2.92.9) give rise to
three categories of formal moduli problems

FMPk FMPtr
k FMPpd

k
oblv oblv

defined on Artin augmented k-algebras, truncated k-algebras and divided power algebras,
respectively. In the last case, note that if an (augmented) divided power algebra A is Artin
in the sense of Definition 3.43.4, then π0(mA) is also nilpotent with respect to its divided power
structure. We will apply Corollary 3.73.7 in this setting:

Lemma 4.1. Let k be a field of characteristic p > 0. Then the derived k-linear operad Com
is of finite type.

Proof. We need to verify that each Bar(Com)(r) is perfect and that its connectivity tends
to ∞ if r → ∞. To see this, recall that Bar(Com)(r) ≃ k[Tr] arises as the k-linearisation of
the reduced-unreduced suspension of the r-th partition complex. Since Tr has finitely many
non-degenerate simplices, each k[Tr] is a perfect derived symmetric sequence.

For the connectivity statement, let Tr,F → Tr be the counit map for restriction and left
Kan extension along the inclusion OF ⊆ OΣr

, where F is the family of p-subgroups. Then
the map k[Tr,F] −→ k[Tr] is an equivalence [33, Proposition 4.6]. It hence suffices to verify
that Tr becomes increasingly connective as a genuine F-equivariant space, which follows from
[22, Corollary 6.8]. □
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Corollary 4.2. There are equivalences of ∞-categories

FMPk FMPtr
k FMPpd

k

AlgLieπ∆(Modk, ◦) AlgLieπ∆(Modk, ◦(1)) AlgLieπ∆(Modk, ◦).

oblv

T ∼ T ∼

oblv

T∼

oblv oblv

The ∞-category of Lieπ∆-algebras with respect to the action ◦ is precisely the ∞-category
of partition Lie algebras from [55]. Our main goal is to identify the other two types of
Lieπ∆-algebras with derived (restricted) Lie algebras (as defined in Example 2.32.3):

Theorem 4.3. There are equivalences of ∞-categories, acting as the desuspension on the
underlying complex

AlgLieπ∆(Modk, ◦) DLie AlgLieπ∆(Modk, ◦(1)) DLieres.Σ−1 Σ−1

The main idea will be to show that the monads Lieπ∆ ◦ (−) and Lieπ∆ ◦(1)(−) send the
suspension of a vector space V to the suspension of the free (restricted) Lie algebra on V .
To do this, let us start by recalling some facts about the classical (restricted) Lie monad.
Let us write T

• ⊆ T • for the usual (non-unital, resp. unital) associative monad on k-vector
spaces. For any vector space V , there are inclusions

Lie(V ) Lieres(V ) T •(V )

exhibiting the free (restricted) Lie algebra as the smallest subspace of the tensor algebra that
contains V and is closed under the commutator bracket (and p-th powers). Using this, we
can identify the (restricted) Lie monad as a sub-monad of the associative monad:

Lemma 4.4. Let L ↪→ T • be a sub-monad on Vectk that preserves filtered colimits. For any
V ∈ Vectωk and r ≥ 0, let us write L(V )(r) = L(V )×T•(V ) V

⊗r. If

dim(L(V )(r)) = dim(Lie(V )(r)) resp. dim(L(V )(r)) = dim(Lieres(V )(r)),

for each r ≥ 1, then L = Lie or L = Lieres, respectively.

Proof. It suffices to verify that L(V ) ⊆ T •(V ) is closed under the commutator brackets (and
p-th powers); this will yield an inclusion Lie(res) ⊆ L which is an isomorphism for dimension
reasons. Looking at L(k⊕2) and using naturality with respect to the projection and sum
maps k⊕2 −→ k, one sees that L(k⊕2) contains the element x⊗ y− y⊗ x. By naturality and
the monad structure on L, this implies that L(V ) is closed under the commutator bracket.
Similarly, L(pn)(k) being one-dimensional implies that L(V ) is closed under p-th powers. □

Remark 4.5. If V is of dimension n, the dimensions appearing above have well-known
descriptions in terms of words on n letters: the dimension dim(Lie(V )(r)) is the number of
Lyndon words of length r and dim(Lieres(V )(r)) is the number of words of length r of the
form wpk

, where w is a Lyndon word [1515].

To apply Lemma 4.44.4, let us consider the map Lieπ∆ = KD(Com) −→ KD(Ass) that is
Koszul dual to the usual map Ass −→ Com from the derived (non-unital) associative operad
to the derived commutative operad. Since the associative operad is Σ-free, it has the same
algebras with respect to ◦, ◦ and ◦(1), and its Koszul dual is the usual shifted associative
operad [99]. In other words, KD(Ass) restricts to the usual (non-unital) associative monad

T
•
: Vectk ΣVectk ΣVectk Vectk.

Σ KD(Ass) Σ−1

For every vector space V , we thus obtain a natural map of k-modules Σ−1Lieπ∆◦ΣV −→ T
•
V ,

whose pullback along V ⊗r → T
•
V coincides with Σ−1Lieπ∆(r) ◦ ΣV .
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Proposition 4.6. Let V ∈ Vectωk . For each r ≥ 1, the maps

(4.7) Lieπ∆(r) ◦ ΣV Σ(V ⊗r) Lieπ∆(r) ◦(1) ΣV Σ(V ⊗r)

are inclusions of linear subspaces, whose dimensions coincide with dim(Lie(V )(r)) and
dim(Lieres(V )(r)).

Proof. We will just treat the case of Lieπ∆(r) ◦ ΣV ; the case of Lieπ∆(r) ◦(1) ΣV is similar
and we will indicate the necessary changes in Remark 4.144.14. Since each Lieπ∆(r) is a perfect
derived symmetric sequence (Lemma 4.14.1), the domain of (4.74.7) is an almost perfect k-module.
It therefore suffices to show that the k-linear dual map

(4.8) Σ−1V ⊗r ≃ Bar(Ass)(r) ◦Σ−1V Bar(Com)(r) ◦Σ−1V

is a surjective map between desuspended vector spaces, with codomain of the correct
dimension.

To identify this map, let us work throughout in the positively graded setting from Remark
2.122.12. For psychological reasons, we will furthermore work with the augmented versions of
associative and divided power algebras, rather than the non-unital versions that fit into
the operadic formalism. Throughout, we consider V as a graded vector space concentrated
in weight 1 and write triv(Σ−1V ) = k ⊕ Σ−1V for the trivial graded algebra, with k in
weight 0 and Σ−1V in weight 1. The map (4.84.8) is then precisely the weight r part of the
natural comparison map φ : BarAss(triv(Σ

−1V )) −→ BarCom(triv(Σ
−1V )) between the bar

constructions of the trivial algebra, viewed as an associative and as a divided power algebra,
respectively.

We will use explicit resolutions to show that φ is a surjective map of desuspended graded
vector spaces. To this end, let us consider the classical (graded) shuffle Hopf algebra

H(V ) =
⊕
r≥0

V ⊗r.

This is a commutative Hopf algebra with divided powers [11], whose coproduct is given by
de-concatenation and whose product is the shuffle product (together with its natural system
of divided powers). The graded dual of H(V ) is the tensor algebra T •(V ∨), so one obtains a
natural surjection of graded vector spaces (finite dimensional in each weight)

(4.9) H(V ) = T •(V ∨)∨ Lie(V ∨)∨ =: coLie(V ).

We now recall that H(V ) is free as a divided power algebra and that (4.94.9) is the natural
projection onto its indecomposables. The second assertion follows from [11, Proposition 8, 9
and 21], and [1414, Theorem 1] then shows that any section of (4.94.9) induces an isomorphism
Γ(coLie(V )) ∼= H(V ) of divided power algebras. Alternatively, one can prove this (over Z)
using the Lyndon basis [1313, Theorem 5.3].

Let us now consider the cosimplicial cobar construction of the coalgebra H(V ). This
comes with a natural map of diagrams of graded vector spaces

(4.10)
k H(V ) H(V )⊗H(V ) . . .

k triv(V ) triv(V ⊕ V ) . . .

sending all higher tensor powers of V to 0. Note that (4.104.10) is an isomorphism in weights 0
and 1 and that the cobar construction of H(V ) is acyclic in weights ≥ 2 because H(V ) is a
cofree coalgebra. Consequently, (4.104.10) induces an equivalence on totalisations. Using that
H(V ) is a divided power Hopf algebra, (4.104.10) is a diagram of divided power algebras, where
the bottom row consists of trivial divided power algebras [11, Lemma 22]. We conclude that
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the top row of (4.104.10) provides a cosimplicial resolution of triv(Σ−1V ) by free divided power
algebras.

Next, let us regard the diagram (4.104.10) not as a diagram of divided power algebras, but
of augmented associative algebras. Of course, in this case the top row no longer provides
a resolution of triv(Σ−1V ) by free algebras. Instead, let us observe that as a diagram of
associative algebras, (4.104.10) can be extended naturally by

(4.11)
k T •(H(V )) T •(H(V )⊕H(V )

)
. . .

k H(V ) H(V )⊗H(V ) . . .

Here we write H(V ) for the augmentation ideal of the Hopf algebra H(V ) and the vertical
maps are given on generators by sending the i-th summand H(V ) to the augmentation ideal
of the i-th factor H(V ). In the top row, each α : [m] → [n] in ∆ induces a map of tensor
algebras

α∗ : T
•(H(V )⊕m

)
−→ T •(H(V )⊕n

)
as follows. Let us write (v1 . . . vk)

(i) for an element from the i-th summand H(V ) ⊆ H(V )⊕m.
Then α∗(v1 . . . vk)

(i) is given by∑
0≤j1≤···≤jt≤k

(
v1 . . . vj1

)
(α(i)) ⊗

(
vj1+1 . . . vj2

)
(α(i)+1) ⊗ · · · ⊗

(
vjt+1 . . . vk

)
(α(i+1)−1)

where t = α(i+ 1)− α(i) and ⊗ denotes the product in the tensor algebra. The composite
map from the top row of (4.114.11) to the bottom row of (4.104.10) induces an isomorphism in
weights ≤ 1, and the top row of (4.114.11) is acyclic in weights ≥ 2 because it computes the
cobar construction of the cofree coalgebra H(V ) as well. Consequently, the top row of (4.114.11)
provides a cosimplicial resolution of triv(Σ−1V ) by free graded (augmented) associative
algebras.

We will use these resolutions to compute the associative and commutative bar construction
of the trivial graded algebra triv(Σ−1V ). More precisely, taking bar constructions we obtain
the following diagram of k-modules

(4.12)
BarAss(triv(Σ

−1V )) 0 H(V ) H(V )⊕2 . . .

BarCom(triv(Σ
−1V )) 0 coLie(V ) coLie(V )⊕2 . . . .

φ

Here the vertical maps arise from (4.114.11) and are given by the projection H(V ) → coLie(V ).
The rows of (4.124.12) are limit diagrams in Modk by Lemma 3.33.3 and Lemma 4.14.1 (and its easier
analogue for the associative operad). The map φ can thus be identified with the desuspension
of the map (4.94.9) and the result follows. □

Remark 4.13 (Cobar constructions). Let us briefly comment on the claims about the
acyclicity of the cobar construction of the (cofree) graded coalgebra H(V ) appearing in the
proof of Proposition 4.64.6. Recall that for any graded coaugmented coalgebra C, corestriction
along the coaugmentation k −→ C has a right adjoint functor

k ⊗C (−) : ComodC(Modgrk ) −→ Modgrk .

By definition, this sends each cofree comodule C ⊗W to W . The cobar construction of C is
the value of this functor on the trivial comodule k, and can be computed in various ways:
(1) The trivial comodule arises as the totalisation of the usual cobar resolution B•(C,C, k),

because its image in Modk admits extra codegeneracies. Since k ⊗C (−) is a right
adjoint, we have k ⊗C k ≃ Tot

(
B•(k,C, k)

)
. When C = H(V ), this is precisely the

bottom row of (4.114.11).
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(2) The trivial comodule arises as the totalisation of a cosimplicial diagram of cofree
C-comodules of the form

C C ⊗ T •(C) C ⊗ T •(C⊕2
)

. . .

Let us denote an element in cosimplicial degree n by c(0) ⊗ c(i(1))1 . . . c(i(t))t , where c(0)

is contained in the tensor factor of C = k · 1 ⊕ C and each c(i(s))s denotes an element
in the i(s)-th copy of the augmentation coideal C, for 1 ≤ i(s) ≤ n. The coface and
codegeneracy maps act on each of the factors of such an element as follows (and are
extended multiplicatively):

(a) σi: we send each c(j) to itself if j ≤ i, to zero if j = i+ 1 and to c(j−1) if j > i+ 1.
(b) δi for i > 0: for c ∈ C, let us denote its coproduct by

∆(c) = 1⊗ c+ c⊗ 1 +
∑
α

aα ⊗ bα where aα, bα ∈ C.

Then we send c(j) to itself if j < i, to c(j+1) if j > i and to c(i+1)+c(i)+
∑

a(i)
α ⊗b(i+1)

α

if j = i.
(c) δ0: we send each factor c(i) with i > 0 to c(i+1) and c(0) with c ∈ C to 1(0) ⊗ c(1) +

c(0) +
∑

α a(0)
α ⊗ b(1)α . Finally, we send 1(0) to 1(0).

(d) At the level of k-vector spaces, this admits an extra codegeneracy σ−1: this sends

1(0) ⊗ c(1)c(i(2))2 . . . c(i(t))t 7−→ c(0) ⊗ c(i(2)−1)

2 . . . c(i(t)−1)

t

1(0) ⊗ c(i(1))1 . . . c(i(t))t 7−→ 1(0) ⊗ c(i(1)−1)

1 . . . c(i(t))t

in the case where all i(s) ≥ 2. All other elements (for example, starting with c(0)

where c ∈ C or containing multiple factors c(1)i ) are sent to 0.
The functor k ⊗C (−) therefore sends this to a cosimplicial diagram of tensor algebras
T •(C⊕•) whose totalisation is k ⊗C k. When C = H(V ), this is precisely the top row
of (4.114.11).

(3) Finally, suppose that C = H(V ) =
⊕

V ⊗n is the cofree graded coalgebra on V .
Then the trivial module arises as the fibre of the map of cofree H(V )-comodules
H(V ) → H(V ) ⊗ V sending v1 . . . vn to (v1 . . . vn−1) ⊗ vn. Using this, one finds that
k ⊗H(V ) k ≃ k ⊕ Σ−1V . In particular, it is acyclic in weights ≥ 2.

Remark 4.14. For the case of restricted Lie algebras, we apply the same argument, but
viewing H(V ) as a truncated commutative algebra instead (i.e. we forget the divided power
operations). Note that the free divided power algebra H(V ) (generated by xi) is also free
as a truncated polynomial ring (generated by γpn(xi)). The comparison map between the
bar constructions of triv(Σ−1V ) as an associative and a truncated commutative algebra
can then be identified with the desuspension of a surjective map of graded vector spaces
T

•
(V ) −→ coLieres(V ), whose codomain has the correct dimension in each weight by Remark

4.54.5.

Proof of Theorem 4.34.3. Let us consider the monad L : Modk −→ Modk given by either
L(V ) = Σ−1Lieπ∆ ◦ ΣV or L(V ) = Σ−1Lieπ∆ ◦(1) ΣV . We need to show that this coin-
cides with the derived (restricted) Lie algebra monad. Lemma 4.44.4 and Proposition 4.64.6 imply
that L restricts to the usual (restricted) Lie algebra monad on Vectk. It then suffices to
observe that L preserves sifted colimits and totalisations of m-coskeletal diagrams of vector
spaces (see Definition 2.12.1). The first assertion follows from Lieπ∆ ◦ (−) preserving sifted colim-
its, and the second from L being a direct sum of the r-excisive functors Σ−1Lieπ∆(r) ◦ Σ(−)
[55, Proposition 3.37]. □
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5. Frobenius neighbourhoods

From a geometric point of view, one can think of a formal moduli problem defined on Artin
augmented k-algebras as a pointed stack (X,x) over k describing a formal neighbourhood
of its basepoint. The restriction of X to Artin truncated k-algebras can then be viewed as
encoding the Frobenius neighbourhood of the basepoint, i.e. the fibre of the relative Frobenius
ϕ : X → X(1) over x. The aim of this section is to flesh out this idea in the case where k is
a perfect field. Let us start with a categorical description of the process of trivialising the
relative Frobenius.

Definition 5.1. Let us refer to an action of the monoidal category (Z,≤,⊗ = +) on an
∞-category C as a Z-twisting. We will write (−)(1) : C −→ C for the automorphism associated
to 1 ∈ Z, with inverse (−)(−1), and ϕ : idC → (−)(1) for the natural transformation associated
to 0 ≤ 1. A Zop-twisting is defined similarly.

Lemma 5.2. Let C be a pointed Z-twisted ∞-category with finite limits (colimits). Then the
endofunctor

fibϕ = fib(ϕ : idC → (−)(1)) resp. cofibϕ = cofib(ϕ : (−)(−1) → idC)

has the natural structure of a comonad (monad).

If C has finite limits and colimits, then the comonad fibϕ is right adjoint to the monad
cofibϕ.

Proof. We will only check the case of cofibϕ, the other case follows by taking opposites. The
action of (Z,≤) on C extends to an action of P(Z,≤)ω∗ on C that preserves finite colimits in
each variable; here P(Z,≤)ω∗ is the category of compact objects in pointed presheaves, with
the Day convolution product. In P(Z,≤)ω∗ , the cofibre of the map of (pointed) representable
presheaves (h−1)+ → (h0)+ is the presheaf A whose value is S0 at 0 and ∗ for all i ∈ Z \ {0}.
One readily verifies that A has a unique unital algebra structure. □

Definition 5.3. Let C be a pointed ∞-category with finite limits and colimits equipped
with a Z-twisting. We will write Cϕ=0 for the ∞-category of algebras over the monad cofibϕ.
The forgetful functor oblv : Cϕ=0 −→ C admits a left and right adjoint denoted (abusively)
cofibϕ and fibϕ; the compositions of these functors with oblv are indeed the functors from
Lemma 5.25.2.

Example 5.4. Let k be a perfect field. The category Vectωk carries a Zop-twisting where
V (n) = (ϕn)∗V and each V (n+1) → V (n) is zero. Taking derived functors, this ex-
tends to a Z-twisting of Modk. The Schwede–Shipley theorem [1010, Theorem 7.1.2.1]
identifies oblv : Modϕ=0

k → Modk with the forgetful functor Modk[η] → Modk, where
k[η] = LSymk(Σk

(1)) = triv(Σk(1)) denotes the free (equivalently, square zero) algebra
generated by Σk(1).

Example 5.5. The category Polyk of finite type free augmented k-algebras carries a Zop-
twisting, where A(n) = (ϕn)∗A and ϕ : A(n+1) → A(n) is the relative Frobenius. Taking
derived functors, this induces a Zop-twisting on the ∞-category DAlgcnk of connective derived
augmented k-algebras. The composite

DAlgcn,ϕ=0
k → DAlgcnk → Modcnk

exhibits the domain as the category of algebras over a sifted colimit-preserving monad.
This monad restricts to the Symtr-monad on Vectk, as Symtr(V ) ∼= k ⊗ϕ

Sym(V ) Sym(V ). We
therefore obtain

(5.6) DAlgcn,ϕ=0
k ≃ DAlgtr,cnk .
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The Zop-twisting of DAlgcnk from Example 5.55.5 restricts to a Zop-twisting of the full
subcategory Artk. Indeed, each equivalence (−)(n) preserves pullbacks of the form (3.53.5): the
Frobenius twist of a square zero extension I → B → A is a square zero extension of A(n) by
(ϕn)∗I. This extends uniquely to a Z-twisting of the free sifted cocompletion PΣ(Artopk ), as
well as its left Bousfield localisation FMPk at the maps arising from (3.53.5). Using this, we
obtain a diagram

O : FMPk DAlgcn,opk :Spf

of Z-twisted ∞-categories. Here O is the unique sifted colimit preserving extension of the
inclusion Artopk ↪→ DAlgcn,opk ; it is compatible with the Z-twistings since the Z-twisting
on FMPk is extended from the one on Artopk by sifted colimits. Its right adjoint Spf
(automatically compatible with Z-twistings) can be identified with the restricted Yoneda
embedding.

Passing to categories of objects with a trivialisation of ϕ and using the equivalence (5.65.6),
we then obtain a fully faithful functor

Spf : Arttr,opk ⊆ DAlgcn,opk −→ FMPϕ=0
k

sending each Artin truncated k-algebra A to the (corepresentable) formal moduli problem
Spf(A), with trivialisation of the Frobenius determined by the truncated algebra struc-
ture on A. This sends each pullback square (3.53.5) to a pushout square in FMPϕ=0

k , since
oblv : FMPϕ=0

k −→ FMPk detects limits and colimits. Consequently, we obtain a commuting
diagram of right adjoint functors

FMPk FMPϕ=0
k FMPtr

k .
Ψ

oblv

fibϕ

were Ψ sends each X ∈ FMPϕ=0
k to the formal moduli problem given by

Ψ(X)(A) = MapFMPϕ=0
k

(Spf(A), X).

By construction, the top horizontal composite Ψ ◦ fibϕ is naturally equivalent to the forgetful
functor appearing in Corollary 4.24.2.

Theorem 5.7. The functor Ψ is fully faithful. Furthermore, its essential image contains all
truncated formal moduli problems whose tangent complex is eventually coconnective.

In particular, this has the following consequence. If X is a formal moduli problem classified
by a partition Lie algebra g, then the Frobenius neighbourhood fib(ϕ : X → X(1)), together
with its trivialisation of ϕ, is classified by the shifted derived restricted Lie algebra underlying
g. Without the data of a trivialisation of ϕ, the formal moduli problem fib(ϕ : X → X(1)) is
classified by a partition Lie algebra of the form g⊕ Σ−1g(1).

Construction 5.8. Consider the functor triv : Modcnk −→ DAlgcnk taking trivial augmented
algebras. This intertwines the Zop-twistings from Example 5.45.4 and Example 5.55.5. We therefore
obtain a functor

trivtrk[η] : Modcnk[η] ≃ Modcn,ϕ=0
k DAlgcn,ϕ=0

k ≃ DAlgtr,cnk

which commutes both with forgetting the ϕ-trivialisation and with the functors fibϕ. The
composite

trivtr : Modcnk Modcnk[η] DAlgtr,cnk
triv trivtr

k[η]

sends a connective k-module to the trivial truncated algebra. Indeed, this holds because
trivtr preserves sifted colimits and trivtr(N) is a trivial truncated algebra when N is a vector
space.
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Now let M be a 1-connective perfect k-module and consider the connective k[η]-module
fibϕ(M) ≃ Homk

(
k[η],M

)
≃ M ⊕ Σ−1ϕ∗M . Using that k[η] is the cofibre of a map

Σ−1k → Σϕ∗k of trivial k[η]-modules, one obtains a natural fibre sequence of truncated
algebras

(5.9) fibϕ
(
triv(M)

)
≃ trivtrk[η]

(
fibϕ(M)

)
trivtr(Σ−1ϕ∗M) trivtr(ΣM).

Consequently, fibϕ
(
triv(M)

)
is contained in Arttrk .

Lemma 5.10. Let Φ: FMPtr
k −→ FMPϕ=0

k denote the left adjoint of Ψ. For any Y ∈ FMPtr
k

and any 1-connective perfect k-module M , there is a natural equivalence

Mapk
(
M∨, TΦ(Y )

)
≃ Y

(
fibϕ

(
triv(M)

))
where TΦ(Y ) denotes the tangent complex of the formal moduli problem underlying Φ(Y ) ∈
FMPϕ=0

k .

Proof. For each Y ∈ FMPtr
k , consider the reduced excisive functor

FY : Perf1−cn
k −→ S; FY (M) = Y

(
fibϕ(triv(M))

)
.

We have to show that under the equivalence Modk ≃ Exc∗(Perf
1−cn
k , S) that identifies a

k-module N with the reduced excisive functor M 7→ Mapk(M
∨, N), this corresponds to

TΦ(Y ).
If Y = Spf(A) is corepresentable by A ∈ Arttrk , this follows from the natural equivalences

Mapk
(
M∨, TΦ(Spf(A))

)
≃ MapDAlgcn

k

(
oblv(A), triv(M)

)
≃ MapDAlgtr,cn

k

(
A,fibϕ

(
triv(M)

))
.

For a general Y , let
∫
Y denote the full subcategory of

(
FMPtr

k

)
/Y

on the maps Spf(A) → Y ,
where A is an Artin truncated algebra. This ∞-category is sifted, because it has finite
coproducts, and Y is the pointwise colimit of the canonical diagram

∫
Y −→ FMPtr

k sending
Spf(A) → Y to Spf(A).

We can thus write FY ≃ colim∫
Y FSpf(A) as a sifted colimit in Exc∗(Perf

1−cn
k , S). Con-

sequently, the module classifying FY is the colimit of the modules classifying the FSpf(A).
The result then follows from the fact that TΦ(Y ) ≃ colim∫

Y TΦ(Spf(A)), since Φ and taking
the tangent complex of a formal moduli problem are both functors that preserve sifted
colimits. □

Lemma 5.11. For each Y ∈ FMPtr
k , there is a natural fibre sequence TY → TΦ(Y ) →

Σ−1ϕ∗TY in Modk.

Proof. For each 1-connective perfect k-module M , the fibre sequence (5.95.9) gives rise to a
fibre sequence of spaces Y (trivtr(M)) → Y (fibϕ(triv(M))) → Y (trivtr(Σ−1ϕ∗M)). Varying
M , the outer terms are classified by TY and Σ−1ϕ∗TY and the middle term is classified by
TΦ(Y ) by Lemma 5.105.10. □

Proof of Theorem 5.75.7. Let X ∈ FMPϕ=0
k and consider the counit ϵ : ΦΨ(X) → X. It suffices

to verify that ϵ induces an equivalence between the tangent complexes of the underlying
formal moduli problems. To see this, let M be a 1-connective perfect k-module and consider
the map ϵ∗ : Mapk(M

∨, TΦΨ(X)) −→ Mapk(M
∨, TX). Using Lemma 5.105.10, we can identify ϵ∗

with the map

MapFMPϕ=0
k

(
Spf

(
fibϕ(triv(M))

)
, X

)
−→ MapFMPk

(
Spf

(
triv(M)

)
, X

)
restricting along Spf

(
triv(M)

)
−→ Spf

(
fibϕ(triv(M))

)
. Since the ϕ-trivial formal moduli

problem Spf
(
fibϕ(triv(M))

)
≃ cofibϕ

(
Spf(triv(M))

)
is the universal ϕ-trivial formal moduli

problem receiving a map from Spf
(
triv(M)

)
, the above map is an equivalence. Consequently,

TΦΨ(X) → TX is an equivalence.
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Next, let us fix Y ∈ FMPtr
k such that TY is n-coconnective. By the fibre sequence from

Lemma 5.115.11, TΦ(Y ) is n-coconnective as well. Since oblv : FMPϕ=0
k −→ FMPk is comonadic,

we can write Φ(Y ) as a totalisation of a cosimplicial diagram of iterated fibres fibnϕ(Φ(Y )).
Applying Ψ and using that TΨ(fibϕ(X)) ≃ TX for any X ∈ FMPk, it follows that TΨΦ(Y ) is the
totalisation of a cosimplicial diagram of n-coconnective modules, and hence n-coconnective
itself. Using Lemma 5.115.11 once more, we obtain a fibre sequence F → G → Σ−1ϕ∗F where
F = fib(Tη : TY → TΨΦ(Y )) and G = fib(TΦ(Y ) → TΦΨΦ(Y )). The triangle identities show
that G ≃ 0. Because F is n-coconnective and ϕ∗ is an (exact) equivalence, it then follows
by induction that F ≃ 0. We conclude that the unit Y → ΨΦ(Y ) is an equivalence, as
desired. □
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