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operators acting on h whose eigenvalues are equal to the coordinates of the
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Introduction

This note arose from our attempt to understand a theorem discovered by
the physicists, [BCDS], [Fr] (a), [FLO], to the effect that the masses of
particles (the first r excitations) in affine Toda field theories are equal to
the coordinates of the Perron – Frobenius eigenvector of the Cartan matrix
A. In the text below we review the proof of this elegant result (together
with a little generalization), and write down differential equations, similar
to the Toda field equations, giving rise to particles whose masses are
absolute values of the coordinates of all other eigenvectors of A. One
observes some interesting regularities in their shape related to the geometry
of the action of the Coxeter element on the Cartan algebra.

Let A = (〈αi, α∨j 〉)ri,j=1 be the Cartan matrix of the root system R ⊂ h∗

corresponding to a simple finite dimensional complex Lie algebra g with a
fixed Cartan subalgebra h. Let k1 < k2 < . . . < kr be the exponents of R .
Here and below we suppose for simplicity that R is not of type D2n, to
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avoid the case when one of the exponents has multiplicity 2. The
eigenvalues of A are

λi = 2(1− cos(kiθ)), θ = π/h,

where h is the Coxeter number of R. Let ∗ : g
∼−→ g be a Cartan antilinear

involution and H(x, y) = (x, y∗) the corresponding Hermitian form, (x, y)
being the Killing form.

The principal result of this paper (see Theorem 5.2) is a construction of
certain family of mutually commuting hermitian operators
M (i) : h −→ h, 1 ≤ i ≤ r, such that for each i the eigenvalues µ(i)

1 , . . . , µ
(i)
r

of M (i) (in the appropriate order) form an eigenvector of A with eigenvalue
λi.

Actually, the definition of these operators is quite simple (we give a sketch
here in the introduction, the details the reader will find in the main body of
the paper). One starts with a cyclic element in the sense of Kostant, [K],

e =
r∑
i=0

ciei, ci 6= 0,

where ei ∈ gαi
, α0 := −θ, θ being the highest root. Its centralizer h′ := Z(e)

is a Cartan subalgebra which is, as Kostant puts it, in apposition to h. Let
g = ⊕h−1

i=0 gi be the principal gradation, (cf. 1.2). The spaces h′(i) := h′ ∩ gki ,
1 ≤ i ≤ r, are one-dimensional.

Let e(i) ∈ h′(i) be a nonzero vector, for example e(1) = e. The operators
ade(i) ade(i)∗ preserve h; let M̃ (i) denote its restriction to h. By definition
M (i) is a suitable square root of M̃ (i).

The relation to eigenvectors of A is based on a wellknown relation between
A and the Coxeter transformation c, due to Coxeter, cf. [Co], (1.5), (1.7),
see §3 below for the details3.

The Coxeter element plays a ubiquitous role throughout various domains of
Representation theory, cf. [BGP].

An eigenvector p ∈ h∗ with the lowest eigenvalue λ1, a Perron – Frobenius
vector, plays a distinguished role. The assertion that the eigenvalues of M (1)

coincide with its coordinates has been proven in [Fr] (a), [FLO]; a
generalization to i > 1 is straightforward. The coordinates of p have a
remarkable physical meaning, cf. [Cor]. There exist some mysterious

3Note that A is (close to) a symmetric matrix, whereas c is an orthogonal matrix, the
passage from one to another is somewhat similar to the classical Cayley transform.
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formulas expressing them as certain products of values of Gamma function,
cf. [CAS].

In the Goddard – Nuyts – Olive dual picture the numbers µ(i)
j appear as the

charges of static soliton solutions of Toda field equations with the purely
imaginary coupling constant, corresponding to the Langlands dual Lie
algebra g∨, cf. [Fr] (b).

In the last §7 we describe some factorization patterns in the shape of the
Cartan eigenvectors. Namely, among them there are exactly φ(h) vectors of
PF type whose coordinates are, up to signs, permutations of the coordinates
of the PF eigenvector. The nonzero components of the other eigenvectors
consist of several clusters, each cluster corresponding to a PF eigenvector of
a root subsystem R′ ⊂ R with the Coxeter number h′ dividing h.

We are grateful to M. Finkelberg for stimulating discussions, and to P.
Dorey and V. Kac for a useful correspondence. We understand that P.
Dorey has obtained some results close to our Theorem 5.2. Our special
thanks go to the referee for the useful criticism which allowed us to improve
the exposition.

1 Principal element and Cartan subalgebras
in apposition

1.1. Setup. Let g be a simple finite-dimensional complex Lie algebra; (, )
will denote the Killing form on g. We fix a Cartan subalgebra h ⊂ g; let
R ⊂ h∗ be the root system of g with respect to h, {α1, . . . , αr} ⊂ R a base
of simple roots,

g = (⊕α<0gα)⊕ h⊕ (⊕α>0gα),

the root decomposition. For α =
∑r

i=1 miαi we set

htα =
r∑
i=1

mi.

Let

θ =
r∑
i=1

niαi,

be the longest root; we set

α0 := −θ, n0 := 1.
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The number

h =
r∑
i=0

ni = 1 + ht θ,

is the Coxeter number of g; set ζ = exp(2πi/h).

For each α ∈ R choose a base vector Eα ∈ gα.

The Killing form (, ) induces a W -invariant scalar product on h. Using it we
identify h

∼−→ h∗, and each root may be considered as an element of h.
Thus,

[h, x] = (h, α)x, α ∈ R, x ∈ gα. (1.1.1)

For x ∈ g, Z(x) = gx will denote the centralizer of x.

Let G denote the adjoint group of g, e.g., the (Zarisky closure of the)
subgroup G ⊂ GL(g) generated by the elements eadx , x ∈ g, and

exp : g −→ G

the exponential map. For g ∈ G and x ∈ g, the result of the action of g on x
will be denoted Adg(x). If g is realized as a Lie subalgebra of a matrix
algebra then

Adexp(y)(x) = eyxe−y. (1.1.2)

1.2. Principal element and principal gradation. Let ρ∨ ∈ h be defined
by

〈αi, ρ∨〉 = 1, i = 1, . . . , r.

Another definition of ρ∨:

ρ∨ =
1

2

∑
α∨∈R∨>0

α∨

where R∨ ⊂ h is the dual root system. It follows that for all α ∈ R

〈α, ρ∨〉 = htα.

We set
P = exp(2πiρ∨/h) ∈ G.

For all α ∈ R,
AdP (Eα) = ζhtαEα.
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Thus, AdP defines a Z/hZ-grading on g,

g = ⊕h−1
k=0 gk, gk = {x ∈ g| AdP (x) = ζkx}.

We have g0 = h, and g1 admits as a base the set

Eα0 , Eα1 , . . . , Eαr .

(Note that htα0 = − ht θ = 1− h, so that AdP (Eα0) = ζEα0 .)

1.3. The Cartan subalgebra h′. Fix complex numbers mi,m
′
i such that

mim
′
i = ni, i = 0, . . . , r, m0 = m′0 = 1 and define elements

E =
r∑
i=0

miEαi
, Ẽ =

r∑
i=0

m′iE−αi
.

We have E ∈ g1, Ẽ ∈ gh−1.

1.3.1. Lemma. [E, Ẽ] = 0.

Kostant calls E, Ẽ cyclic elements; these are z0, z̃0 in the notation of [K],
Thm. 6.7.

We define, with Kostant, [K], the subspace

h′ := Z(E) = Z(Ẽ) ⊂ g.

It is proven in [K], Thm. 6.7, that h′ is a Cartan subalgebra of g, called the
Cartan subalgebra in apposition to h with respect to the principal element P .

The subspace h′ ∩ gi is nonzero iff i ∈ {k1, k2, . . . , kr} where
1 = k1 < k2 < . . . < kr = h− 1 are the exponents of g. We have
ki + kr+1−i = h.

Set
h′(i) := h′ ∩ gki , 1 ≤ i ≤ r;

these are the subspaces of dimension 1.

We denote by
T ′ = exp(h′) ⊂ G,

the maximal torus corresponding to h′.

If x ∈ h′, that is, [x,E] = 0, then

0 = [AdP (x),AdP (E)] = ζ[AdP (x), E],
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whence AdP (h′) ⊂ h′, e.g., P ∈ NT ′ .

Let R′ ⊂ h′∗ be the set of roots of g with respect to h′, and denote by
h′∗R ⊂ h′∗ the real linear subspace generated by R′.

Recall that the set of (unordered) bases of simple roots in R′ is in bijection
with the set of chambers, the connected components of

h′∗R \ ∪α′∈R′α′⊥.

The set of bases is a W ′-torsor where W ′ is the Weyl group of R′.

A Coxeter element in W ′ is an element of the form

c = sα′1 . . . sα′r

where {α′1, . . . , α′r} ⊂ R′ is some base of simple roots. All Coxeter elements
are conjugate, cf. [B], Ch. V, §6, Prop. 1.

1.4. Theorem. (Kostant) The image of P in NT ′/T
′ = W ′ is a Coxeter

element.

Proof. See [K], Corollary 8.6.

As Kostant shows, one can go backwards: starting from a Cartan
subalgebra h′ and from an arbitrary Coxeter element c ∈ W (h′), one can
reconstruct h. We shall use this in §5 below.

1.5. Thus we have

h = gP := {x ∈ g| AdP (x) = x},

and
h′ = gE := {x ∈ g| AdE(x) = [E, x] = 0}.

So,
E ∈ h′ ∩ g1, Ẽ ∈ h′ ∩ gh−1.

It follows that E (resp. Ẽ) is an eigenvector of c with eigenvalue ζ (resp.
ζ−1).

2 Diagonalization of some operators

2.1. Consider the root decomposition of g with respect to h′:

g = h′ ⊕α′∈R′ gα′ , R′ ⊂ h′∗.



Coxeter element and particle masses 7

Recall that AdP leaves h′ stable and induces the action of a Coxeter
element c ∈ W ′ on h′,

W ′ = NT ′/T
′ ∼= Nh′/h

′.

Recall the the order of c in W ′ is equal to h.

2.2. Proposition. It is possible to choose nonzero root vectors eα′ ∈ gα′ in
such a way that

AdP (eα′) = ec(α′)

for all α′ ∈ R′.

Proof. See [K], Theorem 8.4.

2.3. According to [K], the action of c on R′ has r orbits Ωi, i = 1, . . . , r,
each of them containing h elements:

R′ =
r∐
i=1

Ωi;

here the prime reminds us that the orbits lie in R′ ⊂ h′∗.

By the way, it follows that |R′| = dim g− r = hr, whence

dim g = h(r + 1).

For example, for g = sl(n), r = n− 1, h = n and dim g = n2 − 1.

For every 1 ≤ i ≤ r, define with Kostant an element

ai =
∑
α′∈Ωi

eα′ .

It follows from Prop. 2.2 that AdP (ai) = ai, e.g., all ai ∈ h = gP .

According to [K], Theorem 8.4, a1, . . . , ar forms a base of h.

Let us pick an element γi ∈ Ωi, so that Ωi = {ck(γi)|k = 0, . . . , h− 1}.
For any x ∈ gm ∩ h′, m ∈ Z/hZ we have (cf. [Fr] (a))

[x, eck(γi)] = ζ−km〈γi, x〉eck(γi). (2.3.1)

Indeed,

[x, eck(γi)] = [x,AdkP (eγi)] = AdkP [Ad−kP (x), eγi ]

= ζ−km AdkP [x, eγi ] = ζ−km AdkP (〈γi, x〉eγi)
= ζ−km〈γi, x〉eck(γi).
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It follows that for any y ∈ g−m ∩ h′,

[y, [x, eck(γi)]] = 〈γi, y〉〈γi, x〉eck(γi).

Summing up by k, we get the following theorem.

2.4. Theorem. For all m ∈ Z/hZ, x ∈ gm ∩ h′, y ∈ g−m ∩ h′, 1 ≤ i ≤ r,

[y, [x, ai]] = 〈γi, y〉〈γi, x〉ai.
In other words, {a1, . . . , ar} is a base of h which diagonalizes the operator
ady adx.

3 Coxeter element, Cartan matrix, and their
eigenvectors

3.1. Let R ⊂ V be a reduced irreducible root system in a real vector space
V of dimension r (in particular R generates V ), W the Weyl group of R,
(, ) a W -invariant scalar product on V . We identify V with V ∗ using (, ) so
that α∨ = 2α/(α, α), cf. [B], Chapitre V, §1, Lemme 2.

Let {α1, . . . , αr} ⊂ R be a base of simple roots.

Choose a black/white colouring of the set I of vertices of the Dynkin graph
of R (which is a tree) such that neighbouring vertices have different colours.
Identify I with {1, . . . , r} in such a way that the vertices {1, . . . , p} are
black, and the vertices {p+ 1, . . . , r} are white.

We denote si := sαi
. Consider a Coxeter element

c = cbcw, cb =

p∏
i=1

si, cw =
r∏

i=p+1

si,

the order inside the products defining cb and cw does not matter since
reflections si, sj commute once i and j have the same colour. Evidently

c2
w = c2

b = 1,

whence
(cb + cw)2 = c+ c−1 + 2.

Let A = (nij) = (〈αi, α∨j 〉)ri,j=1 be the Cartan matrix of R. We denote by
Â : V −→ V an operator defined by

Â(αi) =
r∑
j=1

nijαj.
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3.2. Lemma. We have
cb + cw = 2I − Â.

Proof. The matrix A has a block form

A =

(
2Ip X
Y 2Ir−p

)
.

On the other hand, calculating the action of the (commuting) simple
reflections, one finds the matrices of the operators cb and cw in the base
α1, . . . , αr to be

cb =

(
−I −X
0 I

)
, cw =

(
I 0
−Y −I

)
,

whence
cb + cw =

(
0 −X
−Y 0

)
= 2I − Â.

3.3. Lemma. All the eigenvalues of Â have the form 2(1− cos kiθ1),
i ∈ {1, . . . , r} where ki are the exponents of g and θ1 = π/h.

Proof. We shall use the identity

(2I − Â)2 = c+ c−1 + 2. (3.3.1)

The eigenvalues of c are e2kjπi/h, 1 ≤ j ≤ r, cf. [Co]. It follows from (3.3.1)
that if e2iθ is an eigenvalue of c, then 4 cos2 θ is an eigenvalue of (2I − Â)2,
so 2(1± cos θ) is an eigenvalue of Â.

Note that
2(1 + cos θ) = 2(1− cos(π − θ)),

and kr−i = h− ki, which implies the assertion of the lemma.

3.4. For a vector

x =
r∑
i=1

xiαi ∈ V,

we have
Âx =

∑
i

xi(
∑
j

nij)αj =
∑
j

(
∑
i

xinij)αj.
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Thus, Âx = λx is equivalent to∑
i

xinij = λxj, j = 1, . . . , r. (3.4.1)

Define a colour function ε : {1, . . . , r} −→ {±1} by

ε(i) =

{
1 if i ≤ p
−1 if i > p.

3.5. Duality Lemma. Let x satisfy (3.4.1) with λ = 2(1− cos θ), that is,

r∑
i=1

xinij = 2(1− cos θ)xj, j = 1, . . . , r. (3.5.1)

Then
r∑
i=1

ε(i)xinij = 2(1 + cos θ)ε(j)xj, j = 1, . . . , r. (3.5.2)

Proof. Recall that the matrix A has a block form
(

2Ip X
Y 2Ir−p

)
and write

xb = (x1, .., xp) and xw = (xp+1, .., xr). The identity xA = λx gives :{
2xb + xwY = 2(1− cos θ)xb
xbX + 2xw = 2(1− cos θ)xw.

Then {
2xb − xwY = 2(1 + cos θ)xb
xbX − 2xw = 2(1 + cos θ)(−xw).

This means that x̃ = (ε(1)x1, ..., ε(r)xr) satisfies (3.4.1) with
λ = 2(1 + cos θ).

3.1

Now set

xb =

p∑
i=1

xiαi, xw =
r∑

i=p+1

xiαi.

Lemma. (a) cw(xw) = −xw, cb(xb) = −xb. (b)
cw(xb) = xw + 2 cos θxb, cb(xw) = xb + 2 cos θxw.
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3.7. Corollary. Define y = e−iθ/2xw + eiθ/2xb. Then

c(y) = e2iθy.

3.8. Lemma. For all j = 1, . . . , r,

(y, αj) = iε(j)e−iε(j)θ/2 sin θ · (αj, αj)xj.

Proof. Recall that (αk, αj) = 1
2
(αj, αj)nkj, k, j = 1, . . . , r. We have

(y, αj) =
(αj, αj)

2

(
eiθ/2

p∑
k=1

xknkj + e−iθ/2
r∑

k=p+1

xknkj

)
.

Since
p∑

k=1

xknkj =
1

2

(
r∑
i=1

xinij +
r∑
i=1

ε(i)xinij

)
,

and
r∑

k=p+1

xknkj =
1

2

(
r∑
i=1

xinij −
r∑
i=1

ε(i)xinij

)
,

the application of Lemma 3.5 gives the result.

3.9. Lemma. The elements ε(i)αi, 1 ≤ i ≤ r, belong to r different orbits of
the action of c on R.

Proof. Kostant proves in [K], Thm 8.1 and Thm 8.4, that exactly r
negative roots, say {β1, ..., βr}, become positive under the action of c on R
and they belong to r different orbits of this action.

In the proof of Lemma 3.2, we have seen that

c = cbcw =

(
−I +XY X
−Y −I

)
and c−1 = cwcb =

(
−I −X
Y Y X − I

)
,

where X and Y are matrices with nonpositive entries, such that

A =

(
2Ip X
Y 2Ir−p

)
.

For 1 ≤ i ≤ p, c−1(αi) is a negative root, whence αi = c(βk) for some k in
{1, .., r}. For p+ 1 ≤ i ≤ r, c(−αi) is a positive root, whence −αi = βj for
some j in {1, .., r}.
Thus, to each root c(i)αi, we have associated a root βj in the same orbit,
and this is a one-to-one correspondence.
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4 Cartan involution and Hermitian form

4.1. Recall the setup 1.1. Let us choose, with F.Bruhat [Br] and Kostant
[K], p. 1003, a Weyl basis {eα ∈ gα}. By definition, this means that all
eα 6= 0, (eα, e−α) = 1, and if we denote

[eα, eβ] = nαβeα+β,

then nαβ = n−α,−β. Here we have chosen the Kostant’s normalization of the
Weyl basis. We set hi := [eαi

, e−αi
], 1 ≤ i ≤ r.

Let k ⊂ g be the real Lie subalgebra with the base

eα − e−α, i(eα + e−α), ihj, α ∈ R+, 1 ≤ j ≤ r.

It is a compact form of g, which means by definition that

g = k⊕ ik,

and the restriction of the Killing form to k is negative definite.

Define, following Kostant, an involution (·)∗ : g
∼−→ g by

(x+ iy)∗ = x− iy, x, y ∈ ik.

Then (λx)∗ = λ̄x, λ ∈ C, and

[x, y]∗ = [y∗, x∗].

The sesquilinear form on g

H(x, y) = (x, y∗)

is Hermitian positive definite, cf. [Br], (21).

With respect to this form
(adx)

∗ = adx∗

One computes that
e∗α = e−α, α ∈ R. (4.1.1)

4.2. Now let us return to the setup of Sections 1 and 2. However now we
will work with specifically chosen Weyl vectors eα, instead of arbitrary root
vectors Eα.
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Fix nonzero complex numbers mi such that mim̄i = ni, 1 ≤ i ≤ r. Let

e =
r∑
i=1

mieαi
+ e−θ

be the cyclic element.

By (4.1.1),

e∗ =
r∑
i=1

m̄ie−αi
+ eθ.

Recall that [e, e∗] = 0.

Let h′ = Z(e) = Z(e∗) be the corresponding Cartan subalgebra in
apposition to h, as in 1.3.

For all m ∈ Z/hZ
∗ : gm ∩ h′

∼−→ g−m ∩ h′

4.3. Let us apply Theorem 2.4 to y = x∗. With ai ∈ h and γi ∈ R′ ⊂ h′∗ as
in 2.3, we obtain

adx adx∗(ai) = γi(x)γi(x
∗)ai, 1 ≤ i ≤ r.

4.4. Lemma. γi(x∗) = γi(x).

Proof. Consider the equality (2.3.1):

adx(z) = ζ−kmγi(x)z

where we set for brevity z = eck(γi). It follows that

H(adx(z), z) = ζ−kmγi(x)H(z, z).

Similarly,
adx∗(z) = ζkmγi(x

∗)z,

whence
H(adx∗(z), z) = ζkmγi(x

∗)H(z, z).

The assertion follows now from the adjointness of the operators adx and
adx∗, since H(z, z) 6= 0.
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5 Main theorem

5.1. Let us start with a Cartan subalgebra h′ ⊂ g, whence the root system
R′ ⊂ h′∗. Choose a base of simple roots {α′i} ⊂ R′ and a bicolouring of the
Dynkin graph as in §3. Thus, α′i with 1 ≤ i ≤ p (resp. with p+ 1 ≤ i ≤ r)
will denote the black (resp. white) simple roots. Let

c′ = c′bc
′
w, c

′
b =

p∏
i=1

s′i, c
′
w =

r∏
i=p+1

s′i,

where s′i := sα′i be the corresponding Coxeter element.

Let G be the adjoint group of g, T ′ ⊂ G the maximal torus with
Lie(T ′) = h′, so that the Weyl group W ′ ⊂ Aut(R′) will be identified with
NG(T ′)/T ′. Let P ′ ∈ NG(T ′) be an element that projects to c′. Set

h = gP
′
.

Then h is a Cartan subalgebra, and h′ is in apposition to h with respect to
P ′, cf [K], Theorem 8.64.

Consider the principal gradation generated by P ′, g = ⊕gi, where gi is the
ζ i-eigenspace of AdP ′ , as in §1, and one-dimensional spaces h′(i) := h′ ∩ gki ,
1 ≤ i ≤ r.

We can choose an involution ∗ as in §4 in such a way that it leaves h′
invariant, for every x ∈ h′ the operator adx∗ is Hermitian conjugate to adx,
and (h′(i))∗ = h′(r−i).

Indeed, this is true for the gradation induced by the principal element
P = P0 as defined in 1.2, and the involution (let us denote it ∗0) defined as
in §4 starting from h. Afterwards one can use the conjugacy Theorem 7.3
from [K] to define the desired involution for the principal gradation induced
by P ′.

5.2. Theorem. Let i be an integer, 1 ≤ i ≤ r. Let e(i) be a nonzero vector
in h′(i), whence e(i)∗ ∈ h′(r−i). Consider a selfadjoint nonnegative operator

M̃ (i) := ade(i) ade(i)∗ : h −→ h.

Let µ̃(i)
1 , . . . , µ̃

(i)
r denote its eigenvalues.

4The couple of Cartan subalgebras (h, h′) from [K], §6 becomes (h̃, h) in op. cit., 8.6.
Two occurences of h in [K], p. 1023, 2nd line, should be replaced by h̃.
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There exists an (essentially unique) operator M (i) ∈ gl(h) whose square is
equal to M̃ (i) such that the column vector of its eigenvalues in the
approriate numbering

µ(i) := (µ
(i)
1 , . . . , µ

(i)
r )t (5.2.1)

is an eigenvector of the Cartan matrix A with eigenvalue

λi := 2(1− cos(2kiπ/h)).

In particular, for i = 1 there exists an eigenvector of At with all coordinates
positive (a Perron – Frobenius vector), and we may take as M (1) the
positive square root of M̃ (1).

The operators M (1), . . . ,M (r) commute with each other.

Proof. All the necessary tools have been already prepared. Let
x = (x1, . . . , xr)

t be an eigenvector of At (sic!) with eigenvalue λ = λi.
Starting from it, define an eigenvector y of the Coxeter element c′, with
eigenvalue e

√
−1θ, θ = kiπ/h, cf. Corollary 3.7. By Lemma 3.8, we have

(y, α′j) =
√
−1ε(j)e−

√
−1ε(j)θ/2 sin θ · (α′j, α′j)xj, 1 ≤ j ≤ r. (5.2.2)

On the other hand, we know from §4 the eigenvalues of the operator
M̃ = M̃ (i) : as follows from 4.3 and 4.4, they are |γj(e(i))|2, 1 ≤ j ≤ r where
γj ∈ h′∗, 1 ≤ j ≤ r, are arbitrary representatives of different orbits of the
action of c on R′,

Let us identify h′ with h′∗ using the scalar product (, ), so that we can
consider γj as vectors belonging to h′, and |γj(e(i))|2 = |(e(i), γj)|2.
Recall that e(i) is an eigenvector of c′ in h′ : c′(e(i)) = λe(i) (c′ acts as AdP ′
on h′), whence

e(i) = µy

for some µ ∈ C∗.

Let us rewrite (5.2.2) in the form

(y, ε(j)α′j) =
√
−1e−

√
−1ε(j)θ/2 sin θ · x̃j, 1 ≤ j ≤ r, (5.2.2)

where x̃j = (α′j, α
′
j)xj.

Note that x̃ = (x̃1, . . . , x̃r)
t is a λ-eigenvector of A.

Due to Lemma 3.9, the vectors ε(j)α′j, 1 ≤ j ≤ r, are representatives of r
orbits of c′-action on R′, so we can set

γj := ε(j)α′j.
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It follows that the eigenvalues of M̃ = M̃ (i) are

|(e(i), γj)|2 = |µ|2 sin2 θ · x̃2
j , 1 ≤ j ≤ r

(note that x̃j are real numbers, not necessarily positive).

Thus, the sequence of eigenvalues of M̃ (i) is

(|µ|2 sin2 θx̃2
1, . . . , |µ|2 sin2 θx̃2

r).

On the other hand, a λi-eigenvector of A is

(x̃1, . . . , x̃r)
t

Moreover, the operators M̃ (1), . . . , M̃ (r) mutually commute since the
elements e(1), . . . , e(r) ∈ h′ mutually commute.

Now, as an operator M = M (i), we take (the unique) one of the 2r square
roots of M̃ whose j-th eigenvalue, if nonzero, has the same sign as that of
xj. The set of eigenvalues of M (i) will be

(|µ sin θ|x̃1, . . . , |µ sin θ|x̃r),

and this vector is a λi-eigenvector of A.

5.3. We can start with an arbitrary pair of Cartan subalgebras h, h′ where
h′ is in apposition to h with respect to a principal element P . Defining
operators M̃ (i) as in 5.2, we arrive at the same conclusions for their spectra
as in 5.2, due again to the Kostant’s conjugacy theorem, [K], Theorem 7.3.

6 Affine Toda field equations

6.1. Affine Toda field theories. Consider a classical field theory whose
fields are smooth functions φ : X −→ h where X = R2 space - time, with
coordinates x1, x2.

The Lagrangian density of the theory depends on an element e ∈ h′ where
h′ is a Cartan algebra in apposition to h, and is given by

Le(φ) =
1

2

2∑
a=1

(∂aφ, ∂aφ)−m2(Adexp(φ)(e), e
∗).

Here ∂a := ∂/∂xa.
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The Euler –Lagrange equations of motion are

De(φ) := ∆φ+m2[Adexp(φ)(e), e
∗] = 0, (6.1.1)

where ∆φ =
∑2

a=1 ∂
2
aφ. It is a system of r nonlinear differential equations of

the second order. To write them down explicitly one uses the formula
(1.1.2).

The usual ATFT correponds to the choice of e ∈ g(1) as in 4.2, cf. [Fr].

The linear approximation to the nonlinear equation (6.1.1) is a Klein –
Gordon equation

∆eφ := ∆φ+m2 ade ade∗(φ) = 0 (6.1.2)

It admits r normal mode solutions

φj(x1, x2) = ei(kjx1+ωjx2)yj, k
2
j + ω2

j = m2µ2
j ,

1 ≤ j ≤ r, where µ2
j are the eigenvalues of the square mass operator

M2
e := ade ade∗ : h −→ h

and yj are the corresponding eigenvectors, cf. [H] (1.4), (1.5).

In other words, (6.1.2) decouples into r equations describing scalar particles
of masses µj, which explains the name masses for them.

Due to commutativity of h′, for all e, e′ ∈ h′,

[∆e,∆e′ ] = 0.

7 Factorization patterns in Cartan
eigenvectors

7.1. We recall the eigenvectors µ(i) from Theorem 5.2; they are in bijection
with the exponents ki, 1 ≤ i ≤ r. In particular, µ(1) is a Perron – Frobenius
eigenvector.

The exponents come in pairs ki, kr−i = h− ki. According to Lemma 3.5, the
eigenvector µ(r−i) is obtained from µ(i) by multiplying the coordinates by
the sequence (ε(1), . . . , ε(r)), with ε(j) = ±1.

Below we will use the following notation. For a vector v = (x1, . . . , xr) we
denote ṽ = (|x1|, . . . , |xr|). For σ ∈ Sr (the symmetric group),
vσ := (xσ(1), . . . , xσ(r)).



18 L. Brillon and V. Schechtman

The notation gcd(a, b) will mean the greatest common divisor of a and b.

Consider first the case g = sl(m). A Perron–Frobenius vector for the Lie
algebra sl(m) has the form

µ(1) = vPF (m) := (sin(π/m), . . . , sin((m− 1)π/m)

Let g = sl(n), and let us describe the other eigenvectors µ(i),
1 ≤ i ≤ r = n− 1.

Let p(i) = gcd(i, n), n = p(i)q(i).

Consider first the case p(i) = 1. In this case it is not difficult to see that all
the components of µ(i) are nonzero, and form, up to a sign, a permutation
of the components of µ(1).

(The permutations involved will be described in 7.2 below. )

For an arbitrary p(i), among the components of µ(i) there are exactly
p(i)− 1 zeros, and the remaning p(i)(q(i)− 1) components may be
decomposed into p(i) groups, the numbers inside each group forming, up to
a sign, a Perron – Frobenius eigenvector for sl(q(i)).

7.1.1. Example. For the Cartan matrix of sl(12), the eigenvectors are
µ(i), 1 ≤ i ≤ 11, with µ̃(i) = µ̃(12−i). Then we have
µ̃(2) = (vPF (6), 0, vPF (6)), µ̃(3) = (vPF (4), 0, vPF (4), 0, vPF (4))
µ̃(4) = (vPF (3), 0, vPF (3), 0, vPF (3), 0, vPF (3)) µ̃(5) = vPF (12)σ, with
σ = (1 5)(7 11),
µ̃(6) = (vPF (2), 0, vPF (2), 0, vPF (2), 0, vPF (2), 0, vPF (2), 0, vPF (2)).

�

For an arbitrary g we have a similar pattern. Let R be a finite reduced
irreducible root system of rank r and the Coxeter number h, 1 ≤ i ≤ r, ki
the corresponding exponent.

Note that according to [B], Chapitre VI, §1, Proposition 30, all numbers
1 ≤ k ≤ h− 1 prime to h are among the exponents.

Let p(i) = gcd(ki, h).

7.2. Proposition. Suppose that R is simply laced. (a) The eigenvector µ(i)

has all components different from 0 iff p(i) = 1, and if this is the case, we
have

µ̃(i) = µ̃(1)
σi

for some σi ∈ Sr.
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There are φ(h)/2 such permutations σi, and they form a group isomorphic
to U(Z/hZ)/{1,−1}.
(b) If p(i) is arbitrary, then one can associate to such i a root subsystem
Rp(i) ⊂ R whose Coxeter number is q(i) = h/p(i) in such a way that the
nonzero components of µ(i) are decomposed into p(i) groups, each group
being, up to signs, a permutation of the coordinates of a PF vector for Rp(i).

These facts may be verified case-by-case, using the explicit formulas for the
vectors µ(i) given in [Do], Table 2 on p. 659.

However, it would be desirable to have a uniform proof of this.

We believe that the same holds true for non-simply laced R as well.

7.3. Example. For the root system of type E8, we have h = 30, the
exponents are
1, 7, 11, 13, 17, 19, 23, 29; they include exatly all prime numbers ≤ 30 not
dividing 30 (and 1). Let us denote the corresponding eigenvectors
v1, . . . , v29, so that vk has eigenvalue 2(1− cos(kπ/30)). The first one
v1 = vPF is a Perron – Frobenius vector. It is equal to

vPF =

(1,
1

µ
(µ2−1), µ, µ2−1,

1

µ
(µ4−3µ2+1), µ4−4µ2+2,

1

µ
(µ6−5µ4+5µ2−1), µ6−6µ4+9µ2−3)

where µ = 2 cos(π/30).

Then we have ṽ1 = ṽ29, ṽ7 = ṽ23, ṽ11 = ṽ19, ṽ13 = ṽ17 and

ṽ7 = (v1)σ, ṽ11 = (v1)σ2 , ṽ13 = (v1)σ3

with σ = (1742)(3658) ∈ S8. The cyclic subgroup G = {1, σ, σ2, σ3} ⊂ S8 is
isomorphic to U(Z/30Z)/{1,−1}.

�
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