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1 – REACTION-DIFFUSION EQUATIONS

The scalar extended FKPP equation writes

∂tρ = −ε∂4
xρ + ∂2

xρ︸ ︷︷ ︸
diffusion term

+ ρ(1− ρ)︸ ︷︷ ︸
reaction term

, (eFKPP)

where t > 0, x ∈ R and the unknown ρ(t, x) ∈ [0, 1] is a concentration. Such
an equation modelize a propagation phenomenon: tumor growth, invasion
of species. When ε = 0, it reduces to the Fisher-KPP equation:

∂tρ = ∂2
xρ + ρ(1− ρ). (FKPP)

2 – TRAVELLING FRONT SOLUTIONS

Both (FKPP) and (eFKPP) admits travelling front solutions of the form
ρ(t, x) = ūc(x− ct) where the speed c is greater than a critical speed c∗(ε) =
2− ε + o(ε).
Furthermore, ūc is monotonic, converges to 0 (resp. 1) at +∞ (resp. −∞), and
satifies

∂tu = −ε∂4
xu + ∂2

xu + c∂xu + u(1− u). (1)

For ε = 0, it was shown by KPP in 1937. For ε > 0 small enough, this result
was proved by Rottschäfer and Wayne [3].
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Figure 1: Fronts ūc(x) for c ≥ c∗ at left and c < c∗ at right.

3 – ASYMPTOTIC STABILITY

For the dynamic given by (1), ū is an equilibrium. We want to study its
asymptotic stability. With u(t, x) = ū(x) + p(t, x), the perturbation p satisfies

∂t p = Lp +N (p), (2)

where L : L2(R) −→ L2(R) is a linear operator with domain H4(R), and
N (p) = O(‖p‖2).
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Figure 2: Numerical solutions of equation (1) : ū(x) at left, and u(t, x) =
ū(x) + p(t, x) at right. The initial condition u0 is plotted in red.

7 – SLOW-FAST DYNAMIC

Writting the ODE satisfied by the front as both the slow and the fast system:
u′0 = u1,
u′1 = u2,√

εu′2 = u3,√
εu′3 = u2 + cu1 + u0(1− u0),


u̇0 =

√
εu1,

u̇1 =
√

εu2,
u̇2 = u3,
u̇3 = u2 + cu1 + u0(1− u0),

[3] showed that ū is smooth in ε.

4 – STABILISATION OF LINEAR SPECTRUM

The linear dynamic of (2) is unstable (see figure 3). We restrict ourselves to
perturbations that write

p(t, x) = ω(x) q(t, x),

with q ∈ H4(R) and a weight ω (smooth positive function that decays expo-
nentially). The equation satisfied by q writes

∂tq = Lωq +Nω(q), (3)

where Lω = ω−1Lω. For a particular exponentially decaying weight ω, the
essential spectrum of Lω lies at the left of the imaginary axis.
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Figure 3: Essential spectrum of the linear operators. It is unstable for L
(at left) and stable for Lω (at right).

5 – KNOWN RESULTS

In the general case, [3] showed an asymptotic stability result thanks to energy
estimates.
Theorem – Asymptotic stability, ε > 0

Take 0 < ε < ε0. There exists δ > 0 such that for all q0 ∈ H5(R) with
‖q0‖H3 ≤ δ, equation (3) with initial condition q0 admits a unique solution
q(t, x) that vanishes as t→ +∞:

‖ω q(t, ·)‖L∞ −→ 0.

In the case ε = 0, Faye and Holzer [1] showed a more precise result.

Theorem – Explicit algebraic decay, ε = 0

Take ε = 0. There exists δ > 0 such that for all q0 ∈ H2(R) with

‖q0‖L∞ + ‖(1 + |x|) q0(x)‖L1 ≤ δ,

equation (3) with initial condition q0 admits a unique solution q(t, ·) that
decays algebraically with time:∥∥∥∥ 1

1 + |x| q(t, x)
∥∥∥∥

L∞
≤ Cδ

(1 + t)3/2 .

This algebraic decay was already obtained by Gallay. I aim to adapt the proof
of this latter theorem in the case ε > 0.

6 – LAPLACE TRANSFORM

We note G(t, x, y) the Green kernel of the linear dynamic and Gλ(x, y) its
Laplace transform. Then for a suitable integration contour Γ ⊂ C,

G(t, x, y) =
1

2iπ

∫
Γ

eλtGλ(x, y)dλ. (4)

Proposition – Control of spectral Green function

For |λ| � 1 and λ /∈ σ(Lω) we have:

|Gλ(x, y)| ≤ C(ε)e−Re
√

λ|x−y|.

Using a contour Γ that depends on t, I obtained a short time control of the
linear dynamic, similarly to what is done in [2].

Proposition – Control of temporal Green function

There exists K, η > 0 such that if t < 1, or if|x− y| ≥ K t ε1/4, we have

|G(t, x, y)| ≤ C

(ε t)1/4 e
−η

|x−y|4/3

(ε t)1/3 .

The next goal is to control G(t, x, y) for large time.
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