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4 — STABILISATION OF LINEAR SPECTRUM

1 — REACTION-DIFFUSION EQUATIONS

The scalar extended FKPP equation writes

dip = —edyp + 050 + p(1—p),
\ﬁ/_/ \‘,—/
diffusion term reaction term

(eFKPP)

where t > 0, x € R and the unknown p(¢, x) € |0,1] is a concentration. Such
an equation modelize a propagation phenomenon: tumor growth, invasion
of species. When ¢ = 0, it reduces to the Fisher-KPP equation:

oo = dxp +p(1—p). (FKPP)

2 — TRAVELLING FRONT SOLUTIONS

Both (FKPP) and (eFKPP) admits travelling front solutions of the form
o(t,x) = iic(x — ct) where the speed c is greater than a critical speed c.(g) =
2—¢e+o0(e).
Furthermore, 71, is monotonic, converges to 0 (resp. 1) at 400 (resp. —0), and
satifies

Oy = —edsu + 02u + coyu + u(1 — u). (1)

For ¢ = 0, it was shown by KPP in 1937. For ¢ > 0 small enough, this result
was proved by Rottschafer and Wayne [3].
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Figure 1: Fronts ii.(x) for ¢ > c, at left and ¢ < ¢, at right.

3 — ASYMPTOTIC STABILITY

For the dynamic given by (1), @ is an equilibrium. We want to study its
asymptotic stability. With u(t, x) = #i(x) + p(t, x), the perturbation p satisfies

orp = Lp + N (p), (2)

where L : L?(R) — L?(R) is a linear operator with domain H*(IR), and

N(p) =O(llpl*).
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Figure 2: Numerical solutions of equation (1) : i(x) at left, and u (¢, x) =
i(x) + p(t, x) at right. The initial condition u is plotted in red.

7 — SLOW-FAST DYNAMIC

Writting the ODE satisfied by the front as both the slow and the fast system:

iy = /€U,

] = /€Uy,

Up = us,

3 = up + cug + ug(1l — up),

/
u() — Uy,
/
ul — Uy,
/
VEu, = us,

Veus = uy + cug + up(l — ug),

[3] showed that 7 is smooth in &.
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The linear dynamic of (2) is unstable (see figure 3). We restrict ourselves to
perturbations that write

p(t,x) = w(x)q(t x),

with g € H*(IR) and a weight w (smooth positive function that decays expo-
nentially). The equation satisfied by g writes

019 = Lowq + Nw(9q), (3)

where L, = w™!Lw. For a particular exponentially decaying weight w, the
essential spectrum of L, lies at the left of the imaginary axis.
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Figure 3: Essential spectrum of the linear operators. It is unstable for L

(at left) and stable for L, (at right).

5 — KNOWN RESULTS

In the general case, [3] showed an asymptotic stability result thanks to energy
estimates.

Theorem — Asymptotic stability, € > 0

Take 0 < ¢ < gp. There exists 6 > 0 such that for all g9 € H>(R) with
90|l gz < I, equation (3) with initial condition gy admits a unique solution
q(t, x) that vanishes as t — +oo:

|lwq(t,-)|[> — 0.

In the case ¢ = 0, Faye and Holzer [1] showed a more precise result.
Theorem — Explicit algebraic decay, ¢ = 0
Take ¢ = 0. There exists § > 0 such that for all gy € H*(R) with

g0z + [[(1 + [x]) go(x) |1 <9,

equation (3) with initial condition gy admits a unique solution g(¢,-) that
decays algebraically with time:
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This algebraic decay was already obtained by Gallay. I aim to adapt the proof
of this latter theorem in the case ¢ > 0.

6 — LAPLACE TRANSFORM

We note G(t, x,y) the Green kernel of the linear dynamic and G, (x,y) its
Laplace transtform. Then for a suitable integration contour I' C C,

1

G(t,x,y) = 5~ /r MGy (x,y)dA. (4)

Proposition — Control of spectral Green function
For |A| < 1and A ¢ o(L, ) we have:

G (x,y)| < C(e)e Re VAlx—y|

Using a contour I' that depends on ¢, I obtained a short time control of the
linear dynamic, similarly to what is done in [2].

Proposition — Control of temporal Green function

There exists K, 77 > 0 such that if t < 1, or if|x — y| > Kte!/%, we have
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G(t,x,y)| <

The next goal is to control G(¢, x, y) for large time.




