Asymptotic stability for a singular reaction-diffusion problem

Louis GARÉNAUX – Institut de Mathématiques de Toulouse

Supervisor: Grégory FAYE

1 - REACTION-DIFFUSION EQUATIONS

The scalar extended FKPP equation writes

$$\partial_t \rho = \underbrace{-\varepsilon \partial_x^4 \rho + \partial_x^2 \rho}_{\text{diffusion term}} + \underbrace{\rho(1-\rho)}_{\text{reaction term}},$$
 (eFKPP)

where $t > 0, x \in \mathbb{R}$ and the unknown $\rho(t, x) \in [0, 1]$ is a concentration. Such an equation modelize a propagation phenomenon: tumor growth, invasion of species. When $\varepsilon = 0$, it reduces to the Fisher-KPP equation:

$$\partial_t \rho = \partial_x^2 \rho + \rho (1 - \rho).$$
 (FKPP)

4 – STABILISATION OF LINEAR SPECTRUM

The linear dynamic of (2) is unstable (see figure 3). We restrict ourselves to perturbations that write

 $p(t, x) = \omega(x) q(t, x),$

with $q \in H^4(\mathbb{R})$ and a weight ω (smooth positive function that decays exponentially). The equation satisfied by *q* writes

$$\partial_t q = L_\omega q + \mathcal{N}_\omega(q),\tag{3}$$

where $L_{\omega} = \omega^{-1}L\omega$. For a particular exponentially decaying weight ω , the

2 – TRAVELLING FRONT SOLUTIONS

Both (FKPP) and (eFKPP) admits travelling front solutions of the form $\rho(t, x) = \bar{u}_c(x - ct)$ where the speed *c* is greater than a critical speed $c_*(\varepsilon) = 0$ $2-\varepsilon+o(\varepsilon).$

Furthermore, \bar{u}_c is monotonic, converges to 0 (resp. 1) at $+\infty$ (resp. $-\infty$), and satifies

$$\partial_t u = -\varepsilon \partial_x^4 u + \partial_x^2 u + c \partial_x u + u(1-u). \tag{1}$$

For $\varepsilon = 0$, it was shown by KPP in 1937. For $\varepsilon > 0$ small enough, this result was proved by Rottschäfer and Wayne [3].

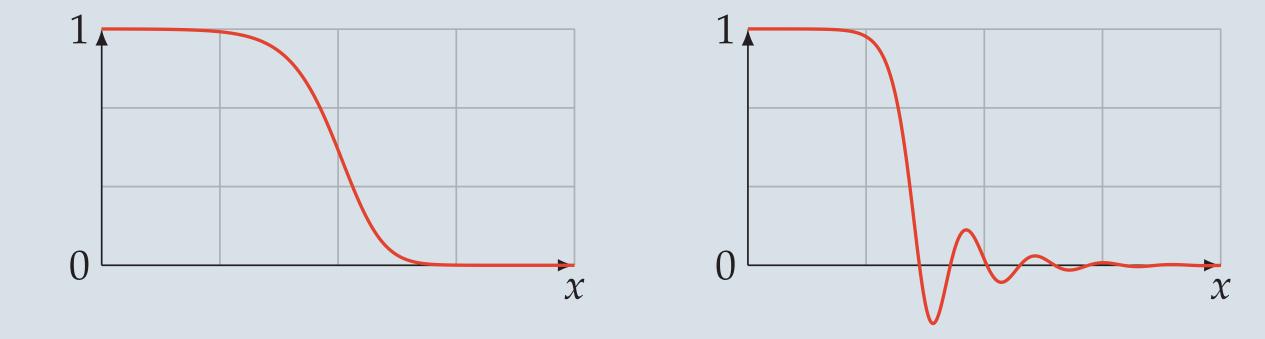


Figure 1: Fronts $\bar{u}_c(x)$ for $c \ge c_*$ at left and $c < c_*$ at right.

3 – Asymptotic stability

For the dynamic given by (1), \bar{u} is an equilibrium. We want to study its asymptotic stability. With $u(t, x) = \overline{u}(x) + p(t, x)$, the perturbation *p* satisfies

essential spectrum of L_{ω} lies at the left of the imaginary axis.

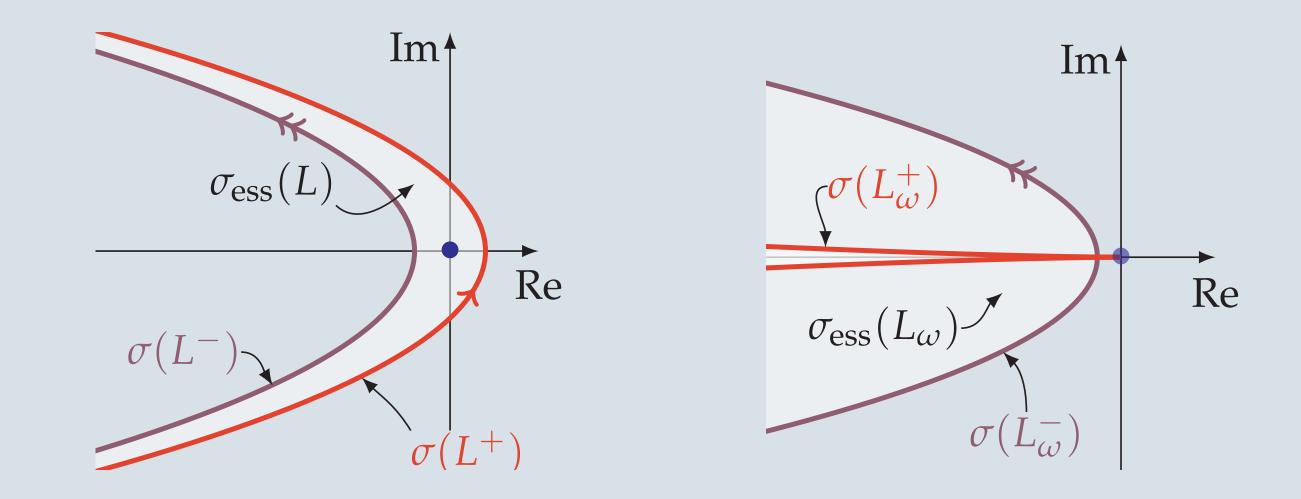


Figure 3: Essential spectrum of the linear operators. It is unstable for *L* (at left) and stable for L_{ω} (at right).

5 - KNOWN RESULTS

In the general case, [3] showed an asymptotic stability result thanks to energy estimates.

Theorem – Asymptotic stability, $\varepsilon > 0$

Take $0 < \varepsilon < \varepsilon_0$. There exists $\delta > 0$ such that for all $q_0 \in H^5(\mathbb{R})$ with $\|q_0\|_{H^3} \leq \delta$, equation (3) with initial condition q_0 admits a unique solution q(t, x) that vanishes as $t \to +\infty$:

$$\partial_t p = Lp + \mathcal{N}(p), \tag{2}$$

where $L : L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ is a linear operator with domain $H^4(\mathbb{R})$, and $\mathcal{N}(p) = O(\|p\|^2).$

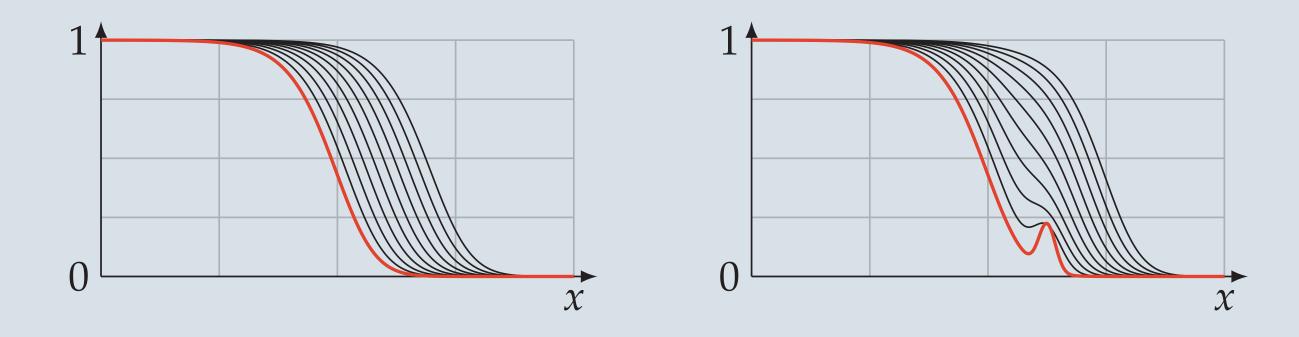


Figure 2: Numerical solutions of equation (1): $\bar{u}(x)$ at left, and u(t, x) = 0 $\bar{u}(x) + p(t, x)$ at right. The initial condition u_0 is plotted in red.

7 – Slow-fast dynamic

Writting the ODE satisfied by the front as both the slow and the fast system:

$$\begin{cases} u_0' = u_1, \\ u_1' = u_2, \\ \sqrt{\varepsilon}u_2' = u_3, \\ \sqrt{\varepsilon}u_3' = u_2 + cu_1 + u_0(1 - u_0), \end{cases} \qquad \begin{cases} \dot{u}_0 = \sqrt{\varepsilon}u_1, \\ \dot{u}_1 = \sqrt{\varepsilon}u_2, \\ \dot{u}_2 = u_3, \\ \dot{u}_3 = u_2 + cu_1 + u_0(1 - u_0), \end{cases}$$

 $\|\omega q(t,\cdot)\|_{L^{\infty}} \longrightarrow 0.$

In the case $\varepsilon = 0$, Faye and Holzer [1] showed a more precise result.

Theorem – Explicit algebraic decay, $\varepsilon = 0$

Take $\varepsilon = 0$. There exists $\delta > 0$ such that for all $q_0 \in H^2(\mathbb{R})$ with

 $\|q_0\|_{L^{\infty}} + \|(1+|x|) q_0(x)\|_{L^1} \le \delta,$

equation (3) with initial condition q_0 admits a unique solution $q(t, \cdot)$ that decays algebraically with time:

$$\left\|\frac{1}{1+|x|}q(t,x)\right\|_{L^{\infty}} \leq \frac{C\delta}{(1+t)^{3/2}}.$$

This algebraic decay was already obtained by Gallay. I aim to adapt the proof of this latter theorem in the case $\varepsilon > 0$.

6 – LAPLACE TRANSFORM

We note G(t, x, y) the Green kernel of the linear dynamic and $G_{\lambda}(x, y)$ its Laplace transform. Then for a suitable integration contour $\Gamma \subset \mathbb{C}$,

$$G(t, x, y) = \frac{1}{2i\pi} \int_{\Gamma} e^{\lambda t} G_{\lambda}(x, y) d\lambda.$$
(4)

[3] showed that \bar{u} is smooth in ε .

8 – References

- [1] G. FAYE and M. HOLZER. Asymptotic stability of the critical fisher–kpp front using pointwise estimates. Zeitschrift für angewandte Mathematik und *Physik*, 2018.
- [2] P. HOWARD and C. HU. Pointwise Green's function estimates toward stability for multidimensional fourth-order viscous shock fronts. *Journal* of Differential Equations, 2005.
- V. ROTTSCHÄFER and C. E. WAYNE. Existence and stability of traveling [3] fronts in the extended Fisher-Kolmogorov equation. *Journal of Differential* Equations, 2001.

Proposition – Control of spectral Green function

For $|\lambda| \ll 1$ and $\lambda \notin \sigma(L_{\omega})$ we have:

 $|G_{\lambda}(x,y)| \leq C(\varepsilon)e^{-\operatorname{Re}\sqrt{\lambda}|x-y|}.$

Using a contour Γ that depends on *t*, I obtained a short time control of the linear dynamic, similarly to what is done in [2].

Proposition – Control of temporal Green function

There exists $K, \eta > 0$ such that if t < 1, or if $|x - y| \ge K t \varepsilon^{1/4}$, we have

$$G(t, x, y)| \leq \frac{C}{(\varepsilon t)^{1/4}} e^{-\eta \frac{|x-y|^{4/3}}{(\varepsilon t)^{1/3}}}.$$

The next goal is to control G(t, x, y) for large time.