
Spectral stability and singular perturbation

Louis Garénaux
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Reaction-difusion equation

∂tu = Du + R(u)

Examples: Gray-Scott equations:{
∂tu = ∆u − uv 2 + a(1− u),
∂tv = d∆v + uv 2 + bv ,

https://www.karlsims.com/rd.html

Fitzhugh-Nagumo, Allen-Cahn, bistable equations
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A simple equation, and a perturbation

The scalar, one dimensional FKPP equation writes:

∂tu = ∂xxu + u(1− u), (FKPP)

where u(t, x) ∈ R, t > 0 and x ∈ R. First studied in 1937, it models the
spreading of a population (bacteria, muskrat, chemical reaction).

The extended FKPP equation writes:

∂tu = −δ2∂xxxxu + ∂xxu + u(1− u). (eFKPP)

It can be obtained as an amplitude equation for the solutions of a
reaction-diffusion system, that undergoes a (co-dimension 2) bifurcation.
In our case, it is a good model to see how properties depend on the equation.

For both problem, there exists front-like solutions that travel at constant speed c,
greater than the critical speed c∗ = 2 + O(δ). See KPP 1937 and
Rottschäfer–Wayne 2001.
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Asymptotic stability of the front

We see the critical front q∗ as an equilibrium, and study it stability with respect to
perturbations p ∈ H4(R).

There exists ε > 0 such that for any p0 ∈ X that satisfy ‖p0‖ ≤ ε, the solution
u(t, x) = q∗(x) + p(t, x) is defined for all time, and the perturbation satisfy

‖p(t, ·)‖ ≤ f (t)‖p0‖,

where f (t) −→ 0 when t → +∞.

1976 Sattinger: the supercritical fronts for FKPP are exponentially stable in
weighted spaces.

1994 Gallay: the critical front for FKPP is algebraically stable in a weighted space:
f (t) = 1

(1+t)3/2 . Furthermore, the decay is optimal.

2018 Faye–Holzer: re-obtain the algebraic decay of Gallay by more robust method.
The weak decay of the front q′∗(x) ∼ xe−x at +∞ is essential.

2001 Rottschäfer–Wayne: The critical front for eFKPP is stable in weighted space.
No rate of convergence.
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A dynamical point of view

Let F : Rn → Rn and ȳ ∈ Rn such that F (ȳ) = 0. The
dynamic near the equilibrium is given by the spectrum of
the matrix A = dF (ȳ). In our case, we want to study

A(δ) = −δ2∂xxxx + ∂xx + c∗(δ)∂x + (1− 2q∗(δ, x)).
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×

×

×
×

×
Σ(A)

C

Theorem (Avery–Scheel 2020)

If the linear dynamic satisfy the spectral hypotheses 1 through 4, then for any
initial condition p0 with ‖ωp0‖H1

r (R) small enough, the solution

u(t, x) = q∗(x) + p(t, x) of the nonlinear problem satisfy

‖ωp(t, ·)‖H1
−r
≤ C

(1 + t)3/2
‖ωp0‖H1

r
.

Furthermore the rate is optimal. There exists ψ that does not depends on p0 such
that ‖ωp(t, ·)− t−3/2ψ‖H1

−r
≤ C

(1+t)2 ‖ωp0‖H1
r
.
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Definitions

We want to study the spectrum of

A(δ) = −δ2∂xxxx + ∂xx + c∗(δ)∂x + (1− 2q∗(δ, x)),

which is defined on the whole real line: A(δ) : H4(R) ⊂ L2(R) −→ L2(R).

Σ(T ) = {λ ∈ C : λ− T is not bounded invertible} .

It is the disjoint union of the point spectrum Σpt(T ):

dim ker(λ− T )− codim im(λ− T ) = 0,

and the essential spectrum Σess(T ):

dim ker(λ− T )− codim im(λ− T ) 6= 0.

Furthermore, we say that λ is:

an eigenvalue if there exists u ∈ H4(R) such that T u = λu,

a resonance if there exists u ∈W 4,∞(R) such that T u = λu.

Louis Garénaux Spectral stability and singular perturbation Séminaire EDP 6 / 13



Examples

Differential operator with constant coefficients:

T = am∂
m
x + · · ·+ a1∂x + a0 = P(∂x)

The essential spectrum is the curve P(iR) = {P(ik) : k ∈ R}. There is no
point spectrum.

Coefficients that converge at exponential speed to distinct limits at ±∞:

T (x) = am(x)∂mx + · · ·+ a1(x)∂x + a0(x),

where both supx>0|ai (x)− a+
i |eα|x| and supx<0|ai (x)− a−i |eα|x| are finite.

Then the essential spectrum is contained in between the two curves Σ(T +)
and Σ(T −). The point spectrum is not (necessarily) empty.

Σ(T )

C

×

×

× ×

Σ(T )

C Sturm–Liouville theory

If m = 2, and if ai (x) are real, then
Σpt(T ) consists of a finite number
of simple eigenvalues λ0 > · · · > λN ,
and the associated eigenfunction ui

vanishes exactly i-times.
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Main Theorem

Theorem (Avery–G. 2020)

There exists δ0 > 0 such that for all 0 < δ < δ0, the linear dynamic of (eFKPP) in
a weighted space L = ωAω−1, satisfies the following spectral hypotheses.

1. Stable point spectrum and stable spectrum for L−.

2. Simple pinched double root at (λ, k) = (0, 0) for L+:

P+(ik) = −αk2 + O(k3).

3. Stable spectrum for L+, away from the origin.

4. No eigenvalue and no resonance at λ = 0.
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×

×
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Essential spectrum for eFKPP

Proposition

There exists a weight ω such that L := ωAω−1 has marginally stable essential
spectrum.

Proof: Choose ω of the form ω(x) =

{
eη∗x x ≥ 1,

1 x ≤ −1.

Then the spectrum at −∞ is unchanged: Σ(L−) = Σ(A−) = P−(iR), while the
spectrum of L+ is the curve P+(−η∗ + iR).

Reλ

Imλ

Σ(A−)

Σ(A+)

Σess(A) ω

Reλ

Imλ
Σess(L(δ))
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Point spectrum for eFKPP – step 1

We decompose the study in three parts. Near the origin, outside of a compact set,
and finally the intermediate domain.

Re λ

Im λ

Proposition

There exists a compact K ⊂ C such that L(δ) has no unstable eigenvalues outside
of K .

Proof: Use the ellipticity of L(δ): assume that L(δ)u = λu and take the scalar
product with u. It leads to estimates on Reλ and Imλ.
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Point spectrum for eFKPP – step 2

In the intermediate domain (green part), we treat L(δ) as a perturbation of L(0).
From Sturm-Liouville theory, the second order operator L(0) has no unstable
point spectrum.

Proposition

There exists δ0 > 0 and r(δ0) > 0 such that if 0 < δ < δ0, then the operator L(δ)
has no eigenvalue inside K\B(0, r).

Proof: Remove the singularity by applying the preconditioner (1− δ2∂xx)−1.
Computations leads to

(1− δ2∂xx)−1(L(δ)− λ)u = (L(0)− λ)u + e(δ, u),

where the error term e(δ, u) goes to 0 in L2(R) as δ → 0.
Since λ is away from the spectrum of L(0), we can invert L(0)− λ.
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Point spectrum for eFKPP – step 3

When perturbing an operator, point spectrum can form near the essential
spectrum. The previous step can not apply at the origin. Instead, we use a
Lyapounov-Schmidt decomposition, as done in Pogan-Scheel 2010.

Proposition

There exists an holomorphic function E : B(0, δ0)× B(0, r0) −→ C, such that the
eigenproblem

L(δ)u = λu

admits a bounded solution u if and only if E (δ,
√
λ) = 0. Furthermore,

E (0, 0) 6= 0. In particular, there is no resonance at the origin.

Proof: Use implicit function theorem on a suitable formulation of the
eigenproblem. Noting v := (1− δ2∂2

x )−1 (L(δ)− λ)u, the problem v = 0 is
equivalent to

PimL(0)v = 0, and 〈v , ϕ〉 = 0,

due to Fredholm property of L(0), and strong localization of u. We can solve the
first equation locally, and use the second equation to define E (δ,

√
λ).
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V. Rottschäfer and C. E. Wayne. Existence and stability of traveling fronts in
the extended Fisher-Kolmogorov equation. Journal of Differential Equations,
2001.

D. Sattinger. On the stability of waves of nonlinear parabolic systems.
Advances in Mathematics, 22(3):312 – 355, 1976.

Louis Garénaux Spectral stability and singular perturbation Séminaire EDP 13 / 13
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