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1.1. A reaction-diffusion system

We consider a system that couples a Kolmogorov-Petrovski-Piskounov equation
(KPP) together with a Swift-Hohenberg equation (SH).{

∂tu = ∂xxu + u(1− u) + βv ,

∂tv = −(1 + ∂xx)2v + µv − σv 3 − γv(1− u),
(1)

with t > 0, x ∈ R, and u(t, x), v(t, x) ∈ R. It models the evolution of a species u,
that invade space while undergoing a Turing instability – modeled by v – at his
back.
The KPP equation

∂tu = ∂xxu + u(1− u)

is a typical model for front propagation. Important solutions are the two steady
states 1 and 0, together with a (two parameter) family of propagating fronts.

x x x

q∗
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1.1. A reaction-diffusion system

The SH equation
∂tv = −(1 + ∂xx)2v + µv − v 3

is often used to describe the creation of oscillating profile through a Turing
bifurcation. It admits the steady state 0, stable or unstable depending on the sign
of µ.

µ < 0 µ > 0v(0, ·)

v(1, ·)

x

x x

For our system (1), we consider the propagating front

Q∗(x − ct) := (q∗(x − ct), 0)T,

and investigate its stability when µ > 0. In this setting, remark that both steady
states (1, 0)T and (0, 0)T are unstable for the dynamic (1) c.f. [NPT11].
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1.2. Main result

We note U = (u, v)T, and decompose it as:

U(t, x) = Q∗(x − ct) + P(t, x − ct).

We introduce two weights with exponential
behaviors: ωd and ωb, and write the pertur-
bation as

P(t, x) = ωb(x)Pb(t, x) = ωd(x)Pd(t, x).

x

ωd

ωb

Theorem 1
There exists δ, µ0, C positive constants such that for all 0 < µ < µ0, if
‖Pd(0, ·)‖X ≤ δ and ‖Pb(0, ·)‖Y ≤ δ, then the solution to (1) with initial
condition U0 = Q∗+ωbPb(0) = Q∗+ωdPd(0) is defined for all times and satisfies:

‖Pd(t, ·)‖L∞(R) ≤ C
‖Pd(0)‖X
(1 + t)3/2

, ‖Pb(t, ·)‖L∞(R) ≤ C
√
µ.

The front and the Turing pattern coexist, but are not coherent. It seems that
there is no ’modulated front‘ to study.

Louis Garénaux Turing bifurcation behind a monostable front DDE 2021 – Nice 5 / 11



2.1. Choice of weights

The perturbation P satisfies

∂tP = AP + N(P),

where the linear operator A : H2(R)× H4(R)→ L2(R)× L2(R) has unstable
spectrum: we can not hope for a stability result in this setting. However, writing
P = ωiPi leads to

∂tPi = (ω−1
i Aωi )Pi +

1

ωi
N(ωiPi ).

•

Σ(A) Σ(Ld) Σ(Lb)

When x ≥ 1, the only possible choice is ωd(x) = ωb(x) = q′∗(x). It erases the
eigenmode associated to λ = 0. The Turing pattern is seen as a combination of
the unstable ’eigenmodes‘ close to x 7→ e±ix .
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2.2. Related problems

Decoupled system: The slowest front q∗ is stable for KPP dynamic with same
algebraic decay rate t−3/2 [FH18].

Bistable system:
Much works have been done for bistable fronts, i.e. replace f (u) = u(1− u)
by g(u) = u(1− u)(u − θ) with θ ∈ (0, 1/2), and consider a front connecting
1 to 0.

When Turing bifurcation occurs behind the front, a similar result is obtained:
the non-modulated front is stable. [SS01], [BGS09]. Furthermore, there does
not exists a coherent structure that links the Turing pattern and the front.

When Turing bifurcation occurs above the front, there is existence and
non-linear stability of a modulated front [SS01], [GSU04], [GS07].

In this setting, the spectral situation is nicer, which allows to obtain stability
result up to a phase.
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3.1. Decay of Pd

Claim: If Pb is bounded, then Pd decays.
Remind that

∂tPd = LdPd + ω−1
d N(ωdPd).

At linear level, the claimed algebraic decay

‖etLd Pd(0)‖L∞(R) ≤ C
‖Pd(0)‖X
(1 + t)3/2

,

is obtained using point-wise estimate of Green’s kernel for the resolvent [FH18].
A major issue is that ωd is unbounded with respect to space. We use that

ω−1
d (ωdPd)n = (ωdPd)n−1Pd = (ωbPb)n−1Pd ≤ Pn−1

b Pd ,

and recover the decay at non-linear level.
Furthermore, the constant of decay is independent on the bound of Pb.

Louis Garénaux Turing bifurcation behind a monostable front DDE 2021 – Nice 8 / 11



3.2. Pb is bounded

Claim: If Pd decays, then Pb is bounded.
We write

∂tPb = LbPb +Nb(Pb),

= L−b Pb +N−b (Pb) + S(t, x).

Using that ‖S(t)‖L∞(R) ≤ ‖ωdPb‖L∞(R) ≤ ‖Pd‖L∞(R), we recover decay of S,
which we consider as a vanishing source term.

Since L−b is a constant coefficient operator, it acts as multiplication in Fourier
space, we can separate critical and stable frequencies. Set ε2 = µ and insert the
ansatz

Pb(t, x) = εe ixA(εt, ε2x) + εe−ix Ā(εt, ε2x) +O(ε2),

then the amplitude A satifies a Ginzburg-Landau equation:

∂TA = 4∂XXA + A + bA|A|2.

When σ is large enough, the coefficient b is negative – bifurcation is said to be
super-critical – and GL admits a global attractor that can be shadowed to obtain
that Pb is bounded in time.
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3.3. Proof of main result

Claim: for all times, Pb is bounded and Pd decays.

Since Pb is defined locally in time, so is Pd using section 3.1. Hence solution exists
for small bounded times.

Fix Cd the universal constant of decay in section 3.1, and note t0 > 0 the first
time where the constant may be overpass:

t0 = inf
{

t > 0 : ‖Pd‖L∞(R) > Cd‖Pd(0)‖(1 + t)−3/2
}
.

Then from section 3.2, ‖Pb‖L∞(R) ≤ C when t < t0.

However, using small time existence there exist t1 > 0 such that ‖Pb‖L∞(R) ≤ 2C ,
and applying section 3.1 again, we recover the decay of Pd with universal constant
for times t < t1. This contradicts the definition of t0.

We conclude that for all times, both Pd decays and Pb is bounded.
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