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General framework

Reaction diffusion equations:

∂tu = Du + R(u)

Examples: Monostable (FKPP) equation in one space dimension: t > 0, x ∈ R,
u is scalar and

∂tu = ∂xxu + u(1− u)

Two equilibria. For all speeds c larger than c∗
def
= 2, there exists a front-like

solution u(t, x) = qc(x − ct).
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General framework

Reaction diffusion equations:

∂tu = Du + R(u)

Examples: Swift-Hohenberg equation in one space dimension: t > 0, x ∈ R, v is
scalar and

∂tv = −(1 + ∂xx)2v + µv − v 3

We only focus on the case µ positive and small. One constant equilibrium and a

periodic equilibrium. For all speeds c larger than c̃∗
def
= 4
√
µ, there exists a front

solution v(t, x) = q̃c(x − ct, x), see Eckmann Wayne 91.
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Main system

Now couple the previous two equations:{
∂tu = ∂xxu + u(1− u) + v ,

∂tv = −(1 + ∂xx)2v + µv − v 3 − v(1− u).
(1)

Remark that Q(x − ct)
def
= (q∗(x − ct), 0)T is still a solution. It connects the

unstable state (1, 0) to the unstable state (0, 0). Is Q stable?

Note U = (u, v)T, assume it writes as: U(t, x) = Q(x − ct) + P(t, x − ct).

To correct instabilities ahead and behind the
front, we introduce two weights with expo-
nential behaviors: ωd and ωb, and write the
perturbation as

P(t, y) = ωb(y)Pb(t, y) = ωd(y)Pd(t, y).

x

ωd

ωb

We measure perturbations according to

‖ω−1
b P(t, ·)‖L∞(R), ‖ω−1

d P(t, ·)‖L∞(R).
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Main result

Theorem 1
There exists δ, µ0, C positive constants such that for all 0 < µ < µ0, if
‖Pd(0, ·)‖W 4,∞(R) ≤ δ and ‖Pb(0, ·)‖W 1,∞(R) ≤ δ, then the solution to (1) with
initial condition U0 = Q + ωbPb(0) = Q + ωdPd(0) is defined for all times and
satisfies:

‖Pd(t, ·)‖L∞(R) ≤ C
‖Pd(0)‖W 4,∞(R)

(1 + t)3/2
, ‖Pb(t, ·)‖L∞(R) ≤ C

√
µ.

The front and the Turing pattern coexist, but are not coherent: they travel at
different speeds. The front without oscillations is stable.
A similar result holds true for bistable fronts with the state behind that is Turing
unstable: see Sandstede Scheel 01, Beck Ghazaryan Sandstede 09.

Idea of proof: use simultaneously the two dynamics:

∂tPd = LdPd +Nd(Pd), ∂tPb = LbPb +Nb(Pb).
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Stability of fronts: a dynamical approach

Main idea: adapt the techniques from ODE (finite dimension).

∂tp = Lp +N (p).

First, show that solutions of the linear problem decay in time:

‖etLp0‖ ≤ h(t)‖p0‖.

Second, obtain decay at non-linear level from the Duhamel formula:

p(t, x) = etLp0(x) +

∫ t

0

e(t−τ)LN (p(τ, x))dτ.

Louis Garénaux Convective stability of a biunstable front MAMOVI 2021 – Saclay 6 / 10



Control of Pd : linear dynamic

Idea: study the spectrum of Ld and Lb. If Σ(L) ⊂ {λ ∈ C : Reλ ≤ η}, then

‖etLp0‖ ≤ eηt‖p0‖.

•

Σ(A) Σ(Ld)

To study etLd , use pointwise bounds, c.f. Faye Holzer 18 :

|etLd p0(x)| ≤
∫
R

1 + |x − x ′|
(1 + t)3/2

e−
|x−x′|2

t |p0(x ′)|dx ′.

Which then leads to

‖etLd p0‖L∞(R) ≤
C

(1 + t)3/2
‖x 7→ (1 + |x |)2p0(x)‖L1(R).
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Control of Pd : non-linear dynamic

To stabilize all curves, it is necessary to take ωd unbounded with respect to x .
Problem: then the coefficients of Nd(Pd) are unbounded:

If N (P) = Pk , then Nd(Pd) = ωk−1
d Pk

d .

The non-linear terms are not Lipschitz, there may not be existence of solutions.

Solution: use the weaker weight to define solutions: If N (P) = Pk , then

Nd(Pd) = (ωdPd)k−1Pd ,

= (ωbPb)k−1Pd ,

≤ CPd .
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Control of Pb: amplitude equation

First idea: Pb is driven by the dynamic at −∞:

∂tPb = L−b Pb +N−b (Pb) +H,

with a forcing term that decays fast enough:

‖H(t)‖W 1,∞(R) ≤ ‖Pd(t)‖L∞(R) ≤
C

(1 + t)3/2
.

Second idea: the linear part is unstable, but non-

linear terms stabilize the dynamic. Note ε
def
=
√
µ,

and assume that

Pb(t, x) = Re
(
e ixA(ε2t, εx)

)
.

Then A satisfies a“complex KPP”equation (i.e. a
Ginzburg-Landau equation).
Follows Schneider 94.

Σ(Lb)
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