Cathy Maugis-Rabusseau
Cathy Maugis-Rabusseau
Home
Projects
Softwares
Publications
Teaching
Advising
Others
Contact
Light
Dark
Automatic
Publications
Type
Uncategorized
Journal article
Book section
Thesis
Date
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2009
2008
William MARGERIT
,
Antoine CHARPENTIER
,
Cathy MAUGIS-RABUSSEAU
,
Johann Christian SCHON
,
Nathalie TARRAT
,
Juan CORTES
(2023).
IGLOO: An Iterative Global Exploration and Local Optimization Algorithm to Find Diverse Low-Energy Conformations of Flexible Molecules
. Algorithms, 16, 476.
Preprint
PDF
François BACHOC
,
Cathy MAUGIS-RABUSSEAU
,
Pierre NEUVIAL
(2023).
Selective inference after convex clustering with l1 penalization
.
Preprint
Cathy MAUGIS-RABUSSEAU
(2022).
Quelques contributions autour des modèles de mélanges et pour l'analyse de données transcriptomiques
. HDR, Université Paul Sabatier Toulouse 3.
PDF
Elodie BERNARD
,
Thomas PEYRET
,
Mathilde PLINET
,
Yohan CONTIE
,
Thomas CAZAUDARRE
,
Yannick ROUQUET
,
Matthieu BERNIER
,
Stéphanie PESANT
,
Richard FABRE
,
Aurore ANTON
,
Cathy MAUGIS-RABUSSEAU
,
Jean-Marie FRANCOIS
(2022).
The DendrisCHIP® Technology as a New, Rapid and Reliable Molecular Method for the Diagnosis of Osteoarticular Infections
. Special Issue of Diagnostic Infectious Disease and Microbiology, 12(6), 1353.
PDF
Yohann De CASTRO
,
Sébastien GADAT
,
Clément MARTEAU
,
Cathy MAUGIS-RABUSSEAU
(2021).
Supermix : sparse regularization for mixtures.
. Annals of Statistics, 49(3): 1779-1809.
Preprint
PDF
Sevan ARABACIYAN
,
Michael SAINT-ANTOINE
,
Cathy MAUGIS-RABUSSEAU
,
Jean-Marie FRANCOIS
,
Abhyudai SINGH
,
Jean-Luc PARROU
,
Jean-Pascal CAPP
(2021).
Insights on the control of yeast single-cell growth variability by members of the Trehalose Phosphate Synthase (TPS) complex
. Frontiers in cell and developmental biology, (9).
Preprint
PDF
Antoine GODICHON-BAGGIONI
,
Cathy MAUGIS-RABUSSEAU
,
Andréa RAU
(2020).
Multiview cluster aggregation and splitting, with an application to multiomic breast cancer data
. The Annals of Applied Statistics, (14), 2,
pp. 752 – 767
.
Preprint
PDF
Code
Sébastien GADAT
,
Jonas KAHN
,
Clément MARTEAU
,
Cathy MAUGIS-RABUSSEAU
(2020).
Parameter recovery in two-component contamination mixtures: The $L^2$ strategy
. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(2),
pp. 1391–1418
.
Preprint
PDF
Gilles CELEUX
,
Cathy MAUGIS-RABUSSEAU
,
Mohammed SEDKI
(2019).
Variable selection in model-based clustering and discriminant analysis with a regularization approach
. Advances in Data Analysis and Classification, (13), 1,
pp. 259–278
.
Preprint
PDF
Code
Antoine GODICHON-BAGGIONI
,
Cathy MAUGIS-RABUSSEAU
,
Andréa RAU
(2019).
Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data
. Journal of Applied Statistics, 46,
pp. 47–65
.
Preprint
PDF
Code
Andréa RAU
,
Cathy MAUGIS-RABUSSEAU
(2018).
Transformation and model choice for RNA-seq co-expression analysis
. Briefings in Bioinformatics, 19(3),
pp. 425–436
.
Preprint
PDF
Code
Guillem RIGAILL
,
Sandrine BALZERGUE
,
Veronique BRUNAUD
,
Eddy BLONDET
,
Andréa RAU
,
Odile ROGIER
,
Jose CAIUS
,
Cathy MAUGIS-RABUSSEAU
,
Ludivine SOUBIGOU-TACONNAT
,
Sebastien AUBOURG
(2018).
Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis
. Briefings in Bioinformatics, 19(1),
pp. 65–76
.
PDF
Béatrice LAURENT-BONNEAU
,
Clément MARTEAU
,
Cathy MAUGIS-RABUSSEAU
(2018).
Multidimensional two-component Gaussian mixtures detection
. Annales de l’Institut Henri Poincar'e, Probabilit'es et Statistiques (Série B), 54(2),
pp. 842–865
.
Preprint
PDF
Christophe BIERNACKI
,
Cathy MAUGIS-RABUSSEAU
(2017).
Chapter 9: High-dimensional clustering.
. Model choice and model aggregation, under the direction of F.BERTRAND, J-J. DROESBEKE, G. SAPORTA, C. THOMAS-AGNAN Edition Technip, 2017.
Marie-Laure MARTIN-MAGNIETTE
,
Cathy MAUGIS-RABUSSEAU
,
Andréa RAU
(2017).
Chapter 10 : Clustering of co-expressed genes.
. Model choice and model aggregation, under the direction of F.BERTRAND, J-J. DROESBEKE, G. SAPORTA, C. THOMAS-AGNAN Edition Technip, 2017.
Panagiotis PAPASTAMOULIS
,
Marie-Laure MARTIN-MAGNIETTE
,
Cathy MAUGIS-RABUSSEAU
(2016).
On the estimation of mixtures of Poisson regression models with large number of components
. Computational Statistics & Data Analysis, (93),
pp. 97–106
.
PDF
Code
Béatrice LAURENT-BONNEAU
,
Clément MARTEAU
,
Cathy MAUGIS-RABUSSEAU
(2016).
Non-asymptotic detection of two-component mixtures with unknown means
. Bernoulli, 22(1),
pp. 242–274
.
Preprint
PDF
Andréa RAU
,
Cathy MAUGIS-RABUSSEAU
,
Marie-Laure MARTIN-MAGNIETTE
,
Gilles CELEUX
(2015).
Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models
. In: Bioinformatics, 31(9),
pp. 1420–1427
.
Preprint
PDF
Code
Gilles CELEUX
,
Marie-Laure MARTIN-MAGNIETTE
,
Cathy MAUGIS-RABUSSEAU
,
Adrian E RAFTERY
(2014).
Comparing model selection and regularization approaches to variable selection in model-based clustering
. Journal de la Societe Francaise de Statistique, 155(2),
pp. 57–71
.
Preprint
PDF
Cathy MAUGIS-RABUSSEAU
,
Bertrand MICHEL
(2013).
Adaptive density estimation for clustering with Gaussian mixtures
. ESAIM: Probability and Statistics, 17,
pp. 698–724
.
Preprint
PDF
Jean-Patrick BAUDRY
,
Cathy MAUGIS
,
Bertrand MICHEL
(2012).
Slope heuristics: overview and implementation
. Statistics and Computing, 22(2),
pp. 455–470
.
Preprint
PDF
Code
Cathy MAUGIS-RABUSSEAU
,
Marie-Laure MARTIN-MAGNIETTE
,
Sandra PELLETIER
(2012).
SelvarClustMV: Variable selection approach in model-based clustering allowing for missing values
. Journal de la Société Française de Statistique, (153), 2,
pp. 21–36
.
PDF
Caroline MEYNET
,
Cathy MAUGIS-RABUSSEAU
(2012).
A sparse variable selection procedure in model-based clustering
.
Preprint
Cathy MAUGIS
,
Gilles CELEUX
,
Marie-Laure MARTIN-MAGNIETTE
(2011).
Variable selection in model-based discriminant analysis
. Journal of Multivariate Analysis, 102(10),
pp. 1374–1387
.
Preprint
PDF
Cathy MAUGIS
,
Bertrand MICHEL
(2011).
Data-driven penalty calibration: a case study for Gaussian mixture model selection
. ESAIM: Probability and Statistics, 15,
pp. 320–339
.
Preprint
PDF
Cathy MAUGIS
,
Bertrand MICHEL
(2011).
A non asymptotic penalized criterion for Gaussian mixture model selection
. ESAIM: Probability and Statistics, 15,
pp. 41–68
.
Preprint
PDF
Cathy MAUGIS
,
Gilles CELEUX
,
Marie-Laure MARTIN-MAGNIETTE
(2009).
Variable selection in model-based clustering: A general variable role modeling
. Computational Statistics & Data Analysis, 53 (11),
pp. 3872–3882
.
Preprint
PDF
Cathy MAUGIS
,
Gilles CELEUX
,
Marie-Laure MARTIN-MAGNIETTE
(2009).
Variable selection for clustering with Gaussian mixture models
. Biometrics, (65 (3),
pp. 701–709
.
Preprint
PDF
Cathy MAUGIS
,
Marie-Laure MARTIN-MAGNIETTE
,
Jean-Philippe TAMBY
,
Jean-Pierre RENOU
,
Alain LECHARNY
,
Sebastien AUBOURG
,
Gilles CELEUX
(2009).
Sélection de variables pour la classification par mélanges gaussiens pour prédire la fonction des gènes orphelins
. La revue MODULAD, 40,
pp. 69–80
.
PDF
Cathy MAUGIS
(2008).
Variable selection for model-based clustering. Application for transcriptome data analysis
. PhD Thesis, University Paris-Sud 11.
PDF
Cite
×