A non asymptotic penalized criterion for Gaussian mixture model selection

Abstract

Specific Gaussian mixtures are considered to solve simultaneously variable selection and clustering problems. A non asymptotic penalized criterion is proposed to choose the number of mixture components and the relevant variable subset. Because of the non linearity of the associated Kullback-Leibler contrast on Gaussian mixtures, a general model selection theorem for maximum likelihood estimation proposed by [Massart Concentration inequalities and model selection Springer, Berlin (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23 (2003)] is used to obtain the penalty function form. This theorem requires to control the bracketing entropy of Gaussian mixture families. The ordered and non-ordered variable selection cases are both addressed in this paper.

Publication
ESAIM: Probability and Statistics, 15, pp. 41–68
Bertrand MICHEL
Professor