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This note aims at correcting the statement and the proof of Theorem 2.2 in [4] concerning the
ergodicity of a piecewise deterministic process Zt defined on N∗ × [0,∞[. The result states the
convergence of the law of (Zt) toward its unique invariant measure defined on N∗×]0,∞[. This
result is however wrong stated as it is and requires an additional assumption in order to prevent
extinction of the second coordinate.
The proof fails when verifying an irreducibility - Lyapunov argument in the proof of Proposition
3.3. The article claims that the process is irreducible on N∗ × (0,∞) (which is true) and verifies
equation (3.2) with a compact setK of the form {1, . . . ,max(n0, n1)}×[0,max(h0, h1]. The problem
is twofold: K is not included in the irreducibility set and this can be not be corrected neither by
reducing K since it would not be compact, nor by augmenting the state space, since irreducibility
does not hold on N∗ × [0,∞)

To circumvent this issue, we shall make use of the theory of Stochastic Persistence as developed
in [1] to prove that the result remains true under the additional assumption that a Lyapunov
exponent is positive. Moreover, when this Lyapunov exponent is non positive, we prove that the
second coordinate vanishes and therefore the process converges to an invariant measure supported
by the boundary N∗ × {0}.

1 Model and statement of the corrected result

1.1 Model

Let us recall the definition of the process Zt introduced in [4]. The article considers a community
of prey individuals and predators in which the predator dynamics is faster than the prey dynamics.
The community is described at any time by a vector Zt = (Nt, Ht) where Nt ∈ N is the number of
living prey individuals at time t and Ht ∈ R+ is the density of predators.

The prey population evolves according to a birth and death process where the individual birth
rate is denoted by b > 0 and the individual death rate by d ≥ 0. The logistic competition among
the prey population is represented by a parameter c > 0. The predation intensity exerted at time
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t on each prey individual is BHt.
The predators density follows a deterministic differential equation whose parameters depend on the
prey population. The individual birth rate at time t is rBNt. It is proportional to the amount of
prey consumed by the predator. The parameter r ∈ (0, 1) represents the conversion efficiency of
prey biomass into predator biomass. The predator individual death rate D+CHt includes logistic
competition among predators (D ≥ 0, C > 0).

The community dynamics is given by the differential equation

d

dt
Ht = Ht(rBNt −D − CHt), (1)

coupled with the jump mechanism

P(Nt+s = j|Nt = n,Ht) = bns+ o(s) if j = n+ 1, n ≥ 1,

= n(d+ cn+BHt)s+ o(s) if j = n− 1, n ≥ 2,

= 1− (b+ d+ cn+BHt)ns+ o(s) if n = j, n ≥ 2,

= 1− bs+ o(s) if n = j = 1,

= 0 otherwise.

The state space of the prey-predator process is denoted by

E = N∗ × [0,∞).

The process Zt = (Nt, Ht)t≥0 is a E-valued Markov process whose infinitesimal generator writes

Lf(n, h) = h(rBn−D − Ch)∂2f(n, h) +
(
f(n+ 1, h)− f(n, h)

)
bn

+
(
f(n− 1, h)− f(n, h)

)
n(d+ cn+Bh)1n≥2. (2)

Its domains contains functions f : E → R bounded measurable, continuously differentiable with
respect to their second variable with bounded derivative.
In Theorem 2.4 ii) in [4] the author proves that the process Zt is a Feller process in the sense that
for any g : E → R continuous and bounded, the function z 7→ Ez(g(Zt)) is continuous and bounded
on E, ∀t ≥ 0.

In [4] Theorem 3.1, it is proved that the process Zt is σ− irreducible on E+ = N∗ × (0,∞)
for σ the product of the counting measure on N∗ and the Lebesgue measure on (h∗1,∞), where
h∗1 = max((rB −D)/C, 0) is the stable equilibrium of (1) when the number of prey is equal to 1.
This means that for all Borel set A ∈ B(E+), one has

σ(A) > 0 ⇒ ∀z ∈ E+,

∫ +∞

0

Pz(Zt ∈ A)dt > 0. (3)

Note that when h∗1 = 0, Zt is irreducible on all E+, while when h∗1 > 0, the set N∗ × (0, h1] is
transient for the dynamics.

1.2 A persistence - extinction result

Let us remark that the state space E can be decomposed into two invariant sets

E = E0 ∪ E+ = N∗ × {0} ∪ N∗ × (0,∞).
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E0 corresponds to the set of extinction of the predators, while E+ corresponds to their persistence.
The main goal here is to find a criterion for extinction or persistence of predators in the dynamics.

Behavior of the process on E0 On E0 there is no predator, the prey population Nt evolves as
a logistic birth and death process with birth, death and competition represented by the parameters
b, d and c. Here the death rate of preys in null when only 1 prey is left avoiding the extinction of
preys. Hence, (Nt)t≥0 admits a unique invariant distribution µ on N∗ satisfying

µn =
bn−1

n
∏n
i=1(d+ ci)

µ1,

∞∑
i=1

µi = 1.

Remark 1. The fact that the death rate is 0 when there is only one prey left prevents from an
extinction in finite time of the population of preys. For a similar model but with extinction of the
slow dynamic, and convergence of conditional law towards quasi-stationary distributions, the reader
is referred to [3].

In the absence of predators, at equilibrium, the mean number of prey is given by

n̂0 =

+∞∑
n=1

nµn.

If a small amount of predator is introduced in a population of prey at equilibrium, its growth rate
will be (neglecting the nonlinear terms)

Λ = rBn̂0 −D. (4)

Intuitively, it should happen that if Λ > 0, the predators are able to invade the prey population
and to have a community equilibrium - that is, an invariant distribution that gives mass no mass to
E0. On the contrary, if Λ ≤ 0, the predators should not be able to invade and thus go to extinction.
This is indeed the case, as stated in the following result.

We let Cexp be the set of continuous functions f : E → R such that for some ε > 0 and α > 0,

f(n, h)e(−(2r)−1+ε)he−αn → 0 as (n, h) → ∞.

Theorem 2. 1. If Λ > 0, then the community process (Zt)t≥0 admits a unique stationary distri-
bution π such that π(E+) = 1. Moreover, it converges exponentially fast towards it stationary
distribution: there exist R, θ > 0 and ρ ∈ (0, 1) such that for all z = (n, h) ∈ E+ and t ≥ 0,

∥Pz(Zt ∈ ·)− π∥TV ≤ Rρt

(
1 +

(
1 + rn+ h

h

)θ)
(5)

where ∥ · ∥TV stands for the total variation norm.

2. If Λ < 0, the predators go to extinction exponentially fast: for all z ∈ E+,

Pz
(
lim sup
t→∞

1

t
log(Ht) ≤ Λ

)
= 1. (6)

In addition, Pz - almost surely, for all functions f ∈ Cexp,

lim
t→∞

1

t

∫ t

0

f(Zs)ds = (µ⊗ δ0)f.
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3. If Λ = 0, then for all z ∈ E+, Pz - almost surely, for all functions f ∈ Cexp,

lim
t→∞

1

t

∫ t

0

f(Zs)ds = (µ⊗ δ0)f.

In particular,

lim
t→∞

1

t

∫ t

0

Hsds = 0, lim
t→∞

1

t

∫ t

0

Nsds = n̂0.

Note that here the condition for persistence of the predator population Λ > 0 does not require
that h∗1 > 0. This implies that for some small number of preys, the predator population could not
survive, but the global survival of predators is due to the stochastic dynamics of the prey population
size.

2 Proof of the corrected result

As announced, in order to prove Theorem 2, we use results from Stochastic Persistence theory as
presented in [1]. We introduce some definitions taken from [1].

Definition 1. Let E be one of the sets E,E+ or E0. We say that a couple of continuous functions
(f, g) defined on E with value in R belongs to the extended domain of the generator, and denote
(f, g) ∈ Dext(E) if for all x ∈ E, the process

Mf
t = f(Zt)− f(z)−

∫ t

0

g(Zs)ds (7)

is a local martingale with respect to the natural filtration of (Zt)t≥0.

The domain of the extended generator (2) has been characterized by Davis (Theorem 26.14 in
[5]) in the case of piecewise deterministic processes. In particular we have that for all functions
f : E → R measurable with respect to their first coordinate and C1 in their second, then (f,Lf)
belongs to Dext(E).

Let us now introduce the operator Γ acting on measurable functions f : E → R as

Γf(n, h) =
(
f(n+ 1, h)− f(n, h)

)2
bn+

(
f(n− 1, h)− f(n, h)

)2
n(d+ cn+Bh)1n≥2.

Note that by Lemma 9.1 in [1], for all function f bounded measurable, C1
b in their second variable,

then Γ coincide with the carré du champ and

(Mf
t )

2 −
∫ t

0

Γf(Zs)ds

is a squared integrable martingale, where Mf
t = f(Zt)− f(Z0)−

∫ t
0
Lf(Zs)ds.

We now extend this definition.
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Definition 2. We define Dext
2 (E) as the subset of Dext(E) of functions f such that the process Mf

t

defined by (7) is a square integrable martingale and for which there exists a continuous function h
such that

(Mf
t )

2 −
∫ t

0

h(Zs)ds (8)

is a martingale.

In the proofs, we will use a localization argument given by Lemma 8.12 in [6] in order to identify
functions in Dext

2 , and we will observe that the function h in (8) equals to Γf .
We say that a mapW : E → R+ is proper if it is continuous and if for all R > 0, the set {W ≤ R}

is compact in E . We denote by Pinv(E) the (possibly empty) set of invariant distributions of (Zt)t≥0

such that ν(E) = 1. We define the empirical occupation measure as

Πt =
1

t

∫ t

0

δZs
ds.

We will make use at several places of the following result, which is a consequence of [1, Theorem
2.2 and Lemma 9.4].

Lemma 3. Assume that there exists a proper map W : E → R+ such that

LW ≤ −λW + C

for some constants λ,C > 0. Then, for all z ∈ E, the sequence (Πt)t>0 is Pz - almost surely
tight. Moreover, all weak-limit points of (Πt)t>0 are in Pinv(E), and if for some sequence tn → ∞,
(Πtn)n≥0 converges to some measure ν, then, for all continuous function f such that W

1+|f | is proper,

we have

lim
n→∞

1

tn

∫ tn

0

f(Zs)ds = νf.

2.1 Proof of extinction when Λ < 0

In order to prove extinction, we will use Theorem 3.5 in [6]. According to this Theorem, we have
the convergence in (6) if Assumptions 1 to 5 in [6] are satisfied and if the set E0 is accessible from
E+ in the following sense: for all z ∈ E+, there exists M such that, for all D > 0, there exists t > 0
such that Pz(Zt ∈ {V > D} ∩ {W < M}) > 0.

Assumptions 1 and 2 in [6] are satisfied since E = E0 ∪E+ where E0 and E+ are invariant, E0

are closed, and the process (Zt)t≥0 is Cb - Feller.
The Assumptions 3 to 5 requires to construct different Lyapunov functions in order to handle

the behaviour of the process both at infinity and near E0.
For some α, β > 0, we define the function

W (n, h) = eαn+βh (9)

Lemma 4. Set U =W 2. Then, if 2βr < 1−e−2α, there exist constants K,λ > 0 and a continuous
positive map U ′ such that

LW ≤ K − λW,
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LU ≤ K − U ′,

ΓW ≤ KU ′.

In addition, (W,LW ) ∈ Dext
2 (E).

Proof. We can easily see that
LW (n, h) =W (n, h)ψ(n, h),

where

ψ(n, h) = βh(rBn− Ch−D) + bn(eα − 1) + n(d+ cn+Bh)1n≥2(e
−α − 1)

= −βh2 − nhB[1− e−α − βr]− n2c(1− e−α)− βhD + bn(eα − 1)

+ (e−α − 1)(nd1n≥2 −Bh1n=1)

Since 2βr ≤ 1− e−2α, we have βr ≤ 1− e−α and thus ψ(n, h) → −∞ as (n, h) → ∞. In particular,
for all λ > 0, there exists a constant K > 0 such that

LW ≤ K − λW.

Similarly, we obtain that
LU(n, h) = U(n, h)ψ2(n, h),

where

ψ2(n, h) = 2βh(rBn− Ch−D) + bn(e2α − 1) + n(d+ cn+Bh)1n≥2(e
−2α − 1),

and since 2βr ≤ 1− e−2α, ψ2(n, h) → −∞ as (n, h) → ∞. In particular, there exist a constant K
large enough such that U ′ = K − LU ≥ 0, and by definition

LU = K − U ′

For the last inequality, let us remark that

ΓW = U2ψ3(n, h)

with
ψ3(n, h) = (eα − 1)2bn+ (e−α − 1)2n(d+ cn+Bh)1n≥2.

Then, in order to have ΓW ≤ KU ′, it is sufficient to choose K such that

Uψ3 ≤ K2 −KLU.

To conclude, let us note that ψ3 is bounded on the compact set {LU ≥ −ε}. Outside this compact
set if suffices to prove that for some constant K,

ψ3

ψ2
≥ −K +

K2

LU
≥ −K,

which is possible since ψ3 is a positive quadratic function, ψ2 is a quadratic function bounded by
above and thus ψ3

ψ2
is bounded by below on {LU ≥ −ε}.
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It remains to prove that W ∈ Dext
2 (E). We use the localization argument of Lemma 8.12 in

[6]. Since any continuous bounded function f , continuously differentiable with respect to its second
coordinate with bounded derivative, f and f2 are in the domain of the infinitesimal generator,
points 1., 2. and 3. of [6, Lemma 8.12] are easily satisfied by setting for all m ∈ N∗ Wm =Wϕm for
a smooth function ϕm such that ϕm(n, h) = 1 if ∥(n, h)∥ ≤ m, ϕ(m,h) = 0 if ∥(n, h)∥ > m+ 1 and
derivatives of ϕ with respect to h are bounded. Point 4. of [6, Lemma 8.12] has just been proved
above by the choice of K and U ′.

Our Lemma 4 above implies Assumption 3 in [6]. To check Assumption 4, we define on E+ the
function

V1(n, h) = − log(h),

and set, for all (n, h) ∈ E,
H1(n, h) = −(rBn−D − Ch).

It is easily seen that H1 coincide with LV1 on E+ and is continuous on all E. Since V1 depends only
on h, it is easily seen thatMV

t , the local martingale defined in (7) is null, so that (V,LV ) ∈ Dext
2 (E+)

and ΓV = 0.
Moreover, by definition of Λ, we have

µH1 = −Λ > 0.

Note that for all sequence zn ∈ E+, V (zn) → ∞ if and only if zn → E0. In addition, limz→∞
H1

W = 0.
This proves that [6, Assumption 4] holds true in our model. Regarding [6, Assumption 5], it is a
direct consequence of Lemma 4 and the fact that ΓV1 = 0.

Recall that the process Z is σ−irreducible on E+. Applying (3) with A = {V > D}∩{W < M},
there exists t > 0 such that Pz(Zt ∈ A) > 0 and the accessibility condition is satisfied. This
concludes the proof of (6) by [6, Theorem 3.5].

2.2 Proof of extinction when Λ = 0

We prove by contradiction that when Λ = 0, Pinv(E+) is empty, which will give the announced
convergence result by Lemma 3 and 4. Note that since the process (Zt)t≥0 is σ - irreducible on
E+, it admits at most one invariant distribution on E+. Therefore, if we assume that Pinv(E+) is
non-empty, we have exactly one invariant, hence ergodic, distribution on E+, that we denote µ∗.
By Birkhoff ergodic Theorem, for all z ∈ E+, we have Pz - almost surely that Πt converges, in the
sense of distribution, towards µ∗. Moreover, by Lemma 3 and 4, for all z ∈ E+, Pz - almost surely,

lim
t→∞

1

t

∫ t

0

f(Zs)ds = µ∗f, (10)

for all f ∈ Cexp Applying this to f(n, h) = n, we find

lim
t→∞

1

t

∫ t

0

Nsds =

∫
E+

nµ∗(dn, dh) := n̂∗.

Let z = (n, h) ∈ E+ and z0 = (n, 0) ∈ E0 (wih the same n). We can couple the processes
Zzt = (Nz

t , H
z
t ) and Z

z0
t = (Nz0

t , 0), with respective initial conditions z and z0 such that Nz
t ≤ Nz0

t

a.s. for all t ≥ 0. This is possible thanks to the fact that Nz
t and Nz0

t are birth and death processes,
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and when Nz
t = Nz0

t , they have the same birth rate, while the death rate of Nz
t is greater than

those of Nz0
t , due to the presence of predators in the first process. This implies that (using once

again Lemma 3)

n̂0 = lim
t→∞

1

t

∫ t

0

Nz0
s ds ≥ lim

t→∞

1

t

∫ t

0

Nz
s ds = n̂∗.

On the other hand, since µ∗(E+) = 1, we have by Lemma 4.6 in [1] that µ∗H1 = 0 (note that the
proof of this fact does not require H- persistence nor positivity of V1). Hence,∫

E+

(rBn−D − Ch)µ∗(dn, dh) = 0,

which gives

n̂∗ =
D

rB
+

C

rB
ĥ∗,

where ĥ∗ =
∫
hdµ∗(n, h) is strictly positive because µ∗(E+) = 1. But

0 = Λ = rBn̂0 −D,

which means that

n̂0 =
D

rB
< n̂∗,

and leads to a contradiction. Therefore, Pinv(E+) is empty, and finally, Pinv(E) = {µ⊗ δ0}.

2.3 Proof of persistence when Λ > 0

We would like to apply [1, Theorem 4.13]. To do so, we need to verify Hypothesis 1 to 5 from the
article.

Hypothesis 1 and 2 only require that E0 is closed and Zt is Cb - Feller which is the case here.
Hypothesis 3 concerns the Lyapunov function W introduced in (9). Using the results of Lemma

4 it remains to prove that the martingaleMW
t associated withW through (7) satisfies a law of large

numbers. From Lemma 4 we can apply [6, Corollary 4.2] and deduce that W has ”linear bounded
quadratic variation”, which allows to apply [6, Lemma 2.12] and conclude.

We now built a Lyapunov function V controlling the behavior of Zt close to E0, that is satisfying
Hypothesis 4 and 5. Let us define

V (n, h) = −ε log(h) + log(1 + rn+ h),

for ε < 1 such that ∀(n, h) ∈ E+,
V (n, h) > 0.

Denote by
H(n, h) = LV (n, h).

Lemma 5. There exists ε > 0 such that (V,H) ∈ Dext(E+), such that

i) V is proper,

ii) There exists a compact C ⊂ E+ such that supE+\C H < 0,
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iii) There exists q > 1, such that |H|q ≤ cst(1 +W ),

iv) The jumps for V (Zt) are almost surely bounded.

v) γ = sup{∥ΓV|C∥, C ⊂ E+, compact} <∞.

where W and U ′ are defined in Lemma 4.
As a consequence, the process (Zt) is H-persistent (strong version’) with respect to E0 and at infinity

Note that the Lyapunov function V1 = − log(h) used for the extinction argument, does not
satisfy Hypothesis 4 in [1] since it is not positive nor proper and H1 does not verify ii).

We therefore modify V using an additional function V2 = log(1 + rn + h) following the ideas
developed by [7].

Proof. Proof of i) By definition i) is satisfied.
Proof of ii) and iii) We have

H(n, h) = −ε(rBn−D − Ch) + log

(
1 +

r

1 + rn+ h

)
bn

+ log

(
1− r

1 + rn+ h

)
n(d+ cn+Bh)1n ≥ 2 +

h(rBn−D − Ch)

1 + rn+ h

We deduce ii) using that log(1 + x) ∼ x as x → 0, and using that ε < 1. Recall now that
W (n, h) = eαn+βh, then iii) is obvious for any q > 1.
Proof of iv) By definition, since the jumps of Zt are of size +1 or −1, we have that for all time
t ≥ 0,

|V (Zt)− V (Zt−)| = log

(
1 +

r(Nt −Nt−)

1 + rNt +Ht

)
≤ sup

(n,h)∈E+

{
log

(
1 +

r

1 + rn+ h

)
, log

(
1− r

1 + rn+ h

)}
<∞.

Proof of v) By definition,

ΓV (n, h) = log

(
1 +

r

1 + rn+ h

)2

bn+ log

(
1− r

1 + rn+ h

)2

n(d+ cn+Bh)1n ≥ 2.

We easily observe that ΓV is a bounded function on E and thus condition v) is satisfied.
Conclusion In order to conclude that (V,H) satisfies Hypothesis 4 et 5 in [1], it remains to
justify that the martingale MV associated through (7) satisfies a strong law. To do so, we use
similar arguments as for Hypothesis 3 above combining Lemma 2.12 and Corollary 4.2 in [6]. As
a consequence, we only need to justify ΓV ≤ KU ′ where U ′ was defined in Lemma 4. Recall that
U ′ = K − Uψ2, and in particular, U ′ → ∞ as (n, h) → ∞. Therefore, v) ensures that for K large
enough, ΓV ≤ KU ′.

In order to apply Theorem 4.13 of [1], we finally need to prove that there exists point z∗ =
(n∗, h∗) ∈ E′ = N∗× (h∗1,∞) such that for a neighbourhood U of z∗ in E′, a time t∗, and a non-zero
measure ξ we have

Pz(Zt∗ ∈ ·) ≥ ξ(·)
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for all z ∈ U . This point is called a Doeblin point and will necessary be accessible since Zt is
irreducible on E′.

Let us fix z∗ ∈ E′, and consider a time t > 0. We will restrict ourselves to trajectories where
the prey population only jumps by +1 on [0, t]. We will denote by t 7→ ϕn(h, t) the solution of
(1) starting from h at t = 0. Let us consider an initial condition of the form (n∗, h) ∈ E′ and
A ⊂ (h∗1,∞), and denote by T1 and T2 the two first jump times of Nt then

P(n∗,h)(Ht ∈ A,Nt = n+ 1) ≥ P(n∗,h)(Ht ∈ A, T1 ≤ t < T2, NT1
= n+ 1)

≥ P(n∗,h) (ϕn+1(t− T1, ϕn(T1, h)) ∈ A, T1 ≤ t < T2, NT1
= n+ 1)

Let us first remark that for small t, the maps s 7→ ϕn+1(t− s, ϕn(s, h)) is a bijection from [0, t] to
its image. Let us remark

lim
s,t→0

∂sϕn+1(t− s, ϕn(s, h)) = −h(rB(n+ 1)−D − Ch) + h(rBn−D − Ch) < 0,

then we obtain the bijection using a continuity argument in t and h.
Furthermore, on the event T1 ≤ t < T2, the jump rates of the prey population are bounded by
above, and as a consequence the joint density of (T1, T2) is uniformly bounded by below by a positive
constant with respect to h and s ∈ [0, t]. Combining these arguments, we can apply a reasoning
similar as in [2] (based on a change of variables) to deduce that for a neighborhood {n∗} × I of z∗

and a small enough t, there exists an interval J ⊂ (h∗1,∞) such that

P(n∗,h)(Ht ∈ A,Nt ∈ B) ≥ cλ(A ∩ J)δn∗+1(B), ∀h ∈ I

where λ is the Lebesgue measure on R.
As a consequence, we have verified all the assumptions of Theorem 4.13 of [1] which conclude

the proof of persistence.
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