Derrida-Retaux model: from discrete to continuous time

Michel Pain (ENS Paris / Sorbonne Université) joint work with Yueyun Hu and Bastien Mallein (Paris 13)

The 5th Workshop on Branching Processes and Related Topics 25 June 2019

Discrete-time Derrida-Retaux model

Definition

- Introduced by Collet-Eckmann-Glaser-Martin (1984), motivated by spin glass theory.

Definition

\triangleright Introduced by Collet-Eckmann-Glaser-Martin (1984), motivated by spin glass theory.
\triangleright Re-introduced by Derrida-Retaux (2014) for studying the depinning transition.

Definition

\triangleright Introduced by Collet-Eckmann-Glaser-Martin (1984), motivated by spin glass theory.
\triangleright Re-introduced by Derrida-Retaux (2014) for studying the depinning transition.
\triangleright Definition: Start with a nonnegative random variable X_{0} and, for any $n \geq 0$,

$$
x_{n+1}=\left(x_{n}+\widetilde{x}_{n}-1\right)_{+}
$$

where \widetilde{X}_{n} is an independent copy of X_{n}.

Definition on a tree

Construction of X_{n} on a binary tree:

Definition on a tree

Construction of X_{n} on a binary tree:

Definition on a tree

Construction of X_{n} on a binary tree:

Definition on a tree

Construction of X_{n} on a binary tree:

Definition on a tree

Construction of X_{n} on a binary tree:

Definition on a tree

Construction of X_{n} on a binary tree:

If $X_{0} \in \mathbb{N}:=\{0,1,2, \ldots\}$: it can be seen as a parking procedure on the tree.

Definition on a tree

Construction of X_{n} on a binary tree:

i.i.d. copies of X_{0}

If $X_{0} \in \mathbb{N}:=\{0,1,2, \ldots\}$: it can be seen as a parking procedure on the tree.

Definition on a tree

Construction of X_{n} on a binary tree:

i.i.d. copies of X_{0}

If $X_{0} \in \mathbb{N}:=\{0,1,2, \ldots\}$: it can be seen as a parking procedure on the tree.

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.
$\triangleright F_{\infty}>0$: supercritical phase.
$\triangleright F_{\infty}=0$: subcritical phase.

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.
$\triangleright F_{\infty}>0$: supercritical phase.
$\triangleright F_{\infty}=0$: subcritical phase.
Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that $X_{0} \in \mathbb{N}$ a.s. and that $\mathbb{P}\left(X_{0}=1\right)<1$.

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.
$\triangleright F_{\infty}>0$: supercritical phase.
$\triangleright F_{\infty}=0$: subcritical phase.
Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that $X_{0} \in \mathbb{N}$ a.s. and that $\mathbb{P}\left(X_{0}=1\right)<1$.

$$
\begin{aligned}
& \triangleright\left(\text { supercritical) If } \mathbb{E}\left[X_{0} 2^{X_{0}}\right]>\mathbb{E}\left[2^{X_{0}}\right] \text { or } \mathbb{E}\left[2^{X_{0}}\right]=\infty\right. \text {, then } \\
& \qquad F_{\infty}>0 \text { and } \frac{X_{n}}{2^{n}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} F_{\infty} .
\end{aligned}
$$

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.
$\triangleright F_{\infty}>0$: supercritical phase.
$\triangleright F_{\infty}=0$: subcritical phase.
Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that $X_{0} \in \mathbb{N}$ a.s. and that $\mathbb{P}\left(X_{0}=1\right)<1$.
\triangleright (supercritical) If $\mathbb{E}\left[X_{0} 2^{X_{0}}\right]>\mathbb{E}\left[2^{X_{0}}\right]$ or $\mathbb{E}\left[2^{X_{0}}\right]=\infty$, then

$$
F_{\infty}>0 \quad \text { and } \quad \frac{X_{n}}{2^{n}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} F_{\infty} .
$$

\triangleright (subcritical) If $\mathbb{E}\left[X_{0} 2^{X_{0}}\right] \leq \mathbb{E}\left[2^{X_{0}}\right]<\infty$, then

$$
F_{\infty}=0 \quad \text { and } \quad X_{n} \xrightarrow[n \rightarrow \infty]{\text { probability }} 0 \text {. }
$$

Phase transition

Free energy: $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[X_{n}\right]}{2^{n}} \in[0, \infty]$.
$\triangleright F_{\infty}>0$: supercritical phase.
$\triangleright F_{\infty}=0$: subcritical phase.
Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that $X_{0} \in \mathbb{N}$ a.s. and that $\mathbb{P}\left(X_{0}=1\right)<1$.

$$
\begin{aligned}
& \triangleright\left(\text { supercritical) If } \mathbb{E}\left[X_{0} 2^{X_{0}}\right]>\mathbb{E}\left[2^{X_{0}}\right] \text { or } \mathbb{E}\left[2^{X_{0}}\right]=\infty\right. \text {, then } \\
& \qquad F_{\infty}>0 \text { and } \frac{X_{n}}{2^{n}} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} F_{\infty} .
\end{aligned}
$$

\triangleright (subcritical) If $\mathbb{E}\left[X_{0} 2^{X_{0}}\right] \leq \mathbb{E}\left[2^{X_{0}}\right]<\infty$, then

$$
F_{\infty}=0 \quad \text { and } \quad X_{n} \xrightarrow[n \rightarrow \infty]{\text { probability }} 0 \text {. }
$$

Open question: Try to say something about the case where X_{0} is not integer-valued.

Free energy near criticality

\triangleright Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.

Free energy near criticality

\triangleright Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.
\triangleright Consider $X_{0} \stackrel{(\mathrm{~d})}{=}(1-p) \delta_{0}+p \nu$ for each $p \in[0,1]$.

Free energy near criticality

\triangleright Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.
\triangleright Consider $X_{0} \stackrel{(\mathrm{~d})}{=}(1-p) \delta_{0}+p \nu$ for each $p \in[0,1]$.
\triangleright Let $F_{\infty}(p)$ denote the free energy and $p_{c}:=\inf \left\{p \in[0,1]: F_{\infty}(p)>0\right\}$.

Free energy near criticality

\triangleright Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.
\triangleright Consider $X_{0} \stackrel{(d)}{=}(1-p) \delta_{0}+p \nu$ for each $p \in[0,1]$.
\triangleright Let $F_{\infty}(p)$ denote the free energy and $p_{c}:=\inf \left\{p \in[0,1]: F_{\infty}(p)>0\right\}$.

\triangleright If $X_{0} \in \mathbb{N}$ a.s., then p_{c} is explicit by CEGM 1984.

Free energy near criticality

Conjecture (Derrida-Retaux 2014): If $p_{c}>0$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{K+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right) .
$$

Free energy near criticality

Conjecture (Derrida-Retaux 2014): If $p_{c}>0$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{k+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right) .
$$

Theorem (Chen-Dagard-Derrida-Hu-Lifshits-Shi 2019+): If ν is supported by \mathbb{N}^{*} and $\int_{0}^{\infty} x^{3} 2^{x} \nu(d x)<\infty$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{1}{\left(p-p_{c}\right)^{1 / 2+o(1)}}\right) .
$$

Free energy near criticality

Conjecture (Derrida-Retaux 2014): If $p_{c}>0$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{K+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right) .
$$

Theorem (Chen-Dagard-Derrida-Hu-Lifshits-Shi 2019+): If ν is supported by \mathbb{N}^{*} and $\int_{0}^{\infty} x^{3} 2^{x} \nu(d x)<\infty$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{1}{\left(p-p_{c}\right)^{1 / 2+o(1)}}\right) .
$$

\triangleright CDDFLS deal also with the case where $p_{c}>0$ and $\int_{0}^{\infty} x^{3} 2^{x} \nu(\mathrm{~d} x)=\infty$.

Free energy near criticality

Conjecture (Derrida-Retaux 2014): If $p_{c}>0$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{K+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right) .
$$

Theorem (Chen-Dagard-Derrida-Hu-Lifshits-Shi 2019+): If ν is supported by \mathbb{N}^{*} and $\int_{0}^{\infty} x^{3} 2^{x} \nu(d x)<\infty$, then as $p \downarrow p_{c}$

$$
F_{\infty}(p)=\exp \left(-\frac{1}{\left(p-p_{c}\right)^{1 / 2+o(1)}}\right) .
$$

\triangleright CDDFLS deal also with the case where $p_{c}>0$ and $\int_{0}^{\infty} x^{3} 2^{x} \nu(\mathrm{~d} x)=\infty$.
\triangleright Hu-Shi 2018: case $p_{c}=0$.

Behavior at criticality

\triangleright Critical case for $X_{0} \in \mathbb{N}: \mathbb{E}\left[X_{0} 2^{X_{0}}\right]=\mathbb{E}\left[2^{X_{0}}\right]<\infty$.

Behavior at criticality

\triangleright Critical case for $X_{0} \in \mathbb{N}: \mathbb{E}\left[X_{0} 2^{X_{0}}\right]=\mathbb{E}\left[2^{X_{0}}\right]<\infty$.
\triangleright Recall that $X_{n} \rightarrow 0$ in probability.

Behavior at criticality

\triangleright Critical case for $X_{0} \in \mathbb{N}: \mathbb{E}\left[X_{0} 2^{X_{0}}\right]=\mathbb{E}\left[2^{X_{0}}\right]<\infty$.
\triangleright Recall that $X_{n} \rightarrow 0$ in probability.
\triangleright Theorem (Chen-Derrida-Hu-Lifshits-Shi 2017): If $\mathbb{E}\left[X_{0}^{3} 2^{X_{0}}\right]<\infty$, then

$$
\frac{c_{1}}{n} \leq \mathbb{E}\left[2^{x_{n}}\right]-1 \leq \frac{c_{2}}{n} .
$$

In particular, $\mathbb{P}\left(X_{n}>0\right) \leq \frac{c_{2}}{n}$.

Behavior at criticality

\triangleright Critical case for $X_{0} \in \mathbb{N}: \mathbb{E}\left[X_{0} 2^{X_{0}}\right]=\mathbb{E}\left[2^{X_{0}}\right]<\infty$.
\triangleright Recall that $X_{n} \rightarrow 0$ in probability.
\triangleright Theorem (Chen-Derrida-Hu-Lifshits-Shi 2017): If $\mathbb{E}\left[X_{0}^{3} 2^{X_{0}}\right]<\infty$, then

$$
\frac{c_{1}}{n} \leq \mathbb{E}\left[2^{x_{n}}\right]-1 \leq \frac{c_{2}}{n} .
$$

In particular, $\mathbb{P}\left(X_{n}>0\right) \leq \frac{c_{2}}{n}$.
\triangleright Conjecture (Chen-Derrida-Hu-Lifshits-Shi 2017): If $\mathbb{E}\left[X_{0}^{3} 2^{X_{0}}\right]<\infty$, then

$$
\mathbb{P}\left(X_{n}>0\right) \sim \frac{4}{n^{2}} .
$$

Moreover, given $X_{n}>0, X_{n}$ converges in law to a geometric distribution with parameter $\frac{1}{2}$.

The red tree at criticality

Given that $X_{n}>0$, we color in red the paths from a leaf to the root, where the operation "positive part" was not needed.

The red tree at criticality

Given that $X_{n}>0$, we color in red the paths from a leaf to the root, where the operation "positive part" was not needed.

The red vertices form a subtree, called the red tree.

Questions concerning the red tree

Question: Given $X_{n}>0$, what does the red tree look like for large n ?

Questions concerning the red tree

Question: Given $X_{n}>0$, what does the red tree look like for large n ?
\triangleright Scaling limit?

Questions concerning the red tree

Question: Given $X_{n}>0$, what does the red tree look like for large n ?
\triangleright Scaling limit?
\triangleright Number of red leaves?

Continuous-time Derrida-Retaux model

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:
\triangleright Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:
\triangleright Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).
\triangleright Initially: painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_{0}.

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:
\triangleright Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).

- Initially: painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_{0}.
- Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:
\triangleright Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).
\triangleright Initially: painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_{0}.
\triangleright Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
\triangleright When two painters meet, they put their remaining paint in common.

Definition

Initial condition: a nonnegative random variable X_{0}.
For $t>0, X_{t}$ is defined using a painting procedure:
\triangleright Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).
\triangleright Initially: painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_{0}.

- Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
\triangleright When two painters meet, they put their remaining paint in common.
$\triangleright X_{t}$ is the remaining paint at the root.

General properties

\triangleright Free energy: $F_{\infty}:=\lim _{t \rightarrow \infty} e^{-t} \mathbb{E}\left[X_{t}\right]$.

General properties

\triangleright Free energy: $F_{\infty}:=\lim _{t \rightarrow \infty} e^{-t} \mathbb{E}\left[X_{t}\right]$.
\triangleright Theorem: If $F_{\infty}>0$, then $\mathrm{e}^{-t} X_{t} \xrightarrow[t \rightarrow \infty]{\text { law }} \operatorname{Exp}\left(F_{\infty}^{-1}\right)$.

General properties

\triangleright Free energy: $F_{\infty}:=\lim _{t \rightarrow \infty} e^{-t} \mathbb{E}\left[X_{t}\right]$.
\triangleright Theorem: If $F_{\infty}>0$, then $\mathrm{e}^{-t} X_{t} \xrightarrow[t \rightarrow \infty]{\text { law }} \operatorname{Exp}\left(F_{\infty}^{-1}\right)$.
\triangleright Open question: If $F_{\infty}=0$, then prove that $X_{t} \xrightarrow[t \rightarrow \infty]{\text { probability }} 0$.

General properties

\triangleright Free energy: $F_{\infty}:=\lim _{t \rightarrow \infty} \mathrm{e}^{-t} \mathbb{E}\left[X_{t}\right]$.
\triangleright Theorem: If $F_{\infty}>0$, then $\mathrm{e}^{-t} X_{t} \xrightarrow[t \rightarrow \infty]{\text { law }} \operatorname{Exp}\left(F_{\infty}^{-1}\right)$.
\triangleright Open question: If $F_{\infty}=0$, then prove that $X_{t} \xrightarrow[t \rightarrow \infty]{\text { probability }} 0$.
\triangleright Proposition: Let μ_{t} denote the distribution of X_{t} for each $t \geq 0$. Then, $\left(\mu_{t}\right)_{t \geq 0}$ is the unique family of positive measures on \mathbb{R} solution (in the weak sense) of the PDE

$$
\partial_{t} \mu_{t}=\partial_{x}\left(\mathbb{1}_{\{x>0\}} \mu_{t}\right)+\mu_{t} * \mu_{t}-\mu_{t},
$$

with initial condition μ_{0}.

An exactly solvable family of solutions

$$
\partial_{t} \mu_{t}=\partial_{x}\left(\mathbb{1}_{\{x>0\}} \mu_{t}\right)+\mu_{t} * \mu_{t}-\mu_{t}
$$

\triangleright From now on, consider $\mu_{0}=p_{0} \delta_{0}(d x)+\left(1-p_{0}\right) \lambda_{0} \mathrm{e}^{-\lambda_{0} x} \mathrm{dx}$.

An exactly solvable family of solutions

$$
\partial_{t} \mu_{t}=\partial_{x}\left(\mathbb{1}_{\{x>0\}} \mu_{t}\right)+\mu_{t} * \mu_{t}-\mu_{t}
$$

\triangleright From now on, consider $\mu_{0}=p_{0} \delta_{0}(d x)+\left(1-p_{0}\right) \lambda_{0} \mathrm{e}^{-\lambda_{0} x} \mathrm{dx}$.
\triangleright Proposition: For any $t \geq 0, \mu_{t}=p(t) \delta_{0}(d x)+(1-p(t)) \lambda(t) e^{-\lambda(t) x} d x$, where $p: \mathbb{R}_{+} \rightarrow[0,1]$ and $\lambda: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are the unique solutions of the ODE

$$
\left\{\begin{array} { l }
{ p ^ { \prime } = (1 - p) (\lambda - p) } \\
{ \lambda ^ { \prime } = - \lambda (1 - p) }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
p(0)=p_{0} \\
\lambda(0)=\lambda_{0}
\end{array}\right.\right.
$$

An exactly solvable family of solutions

$$
\partial_{t} \mu_{t}=\partial_{x}\left(\mathbb{1}_{\{x>0\}} \mu_{t}\right)+\mu_{t} * \mu_{t}-\mu_{t}
$$

\triangleright From now on, consider $\mu_{0}=p_{0} \delta_{0}(d x)+\left(1-p_{0}\right) \lambda_{0} \mathrm{e}^{-\lambda_{0} x} \mathrm{dx}$.
\triangleright Proposition: For any $t \geq 0, \mu_{t}=p(t) \delta_{0}(d x)+(1-p(t)) \lambda(t) e^{-\lambda(t) x} d x$, where $p: \mathbb{R}_{+} \rightarrow[0,1]$ and $\lambda: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are the unique solutions of the ODE

$$
\left\{\begin{array} { l }
{ p ^ { \prime } = (1 - p) (\lambda - p) } \\
{ \lambda ^ { \prime } = - \lambda (1 - p) }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
p(0)=p_{0} \\
\lambda(0)=\lambda_{0}
\end{array}\right.\right.
$$

$\triangleright H:=\frac{p(t)}{\lambda(t)}+\log \lambda(t)$ is an invariant of the dynamics.

The phase transition

$$
x_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

The phase transition

$$
X_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

The phase transition

$$
X_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

The phase transition

$$
x_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

The phase transition

$$
X_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

The phase transition

$$
X_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

One can make explicit computations:

The phase transition

$$
x_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

One can make explicit computations:
\triangleright Infinite order transition for the free energy with exponent $\frac{1}{2}$.

The phase transition

$$
x_{t} \stackrel{(d)}{=} \mu_{t}=p(t) \delta_{0}(\mathrm{~d} x)+(1-p(t)) \lambda(t) \mathrm{e}^{-\lambda(t) x} \mathrm{~d} x
$$

We have $p(t)=H \lambda(t)-\lambda(t) \log \lambda(t)$ with $H=\frac{p_{0}}{\lambda_{0}}+\log \lambda_{0}$.

One can make explicit computations:
\triangleright Infinite order transition for the free energy with exponent $\frac{1}{2}$.
\triangleright Precise asymptotic behavior of $p(t)$ and $\lambda(t)$ in each phase.

Behavior at criticality

Theorem: With a critical initial condition ($\lambda_{0}>1$ and $p_{0}=\lambda_{0}-\lambda_{0} \log \lambda_{0}$),

$$
\mathbb{P}\left(X_{t}>0\right)=1-p(t)=\frac{2}{t^{2}}+\frac{16 \log t}{3 t^{3}}+o\left(\frac{\log t}{t^{3}}\right) .
$$

Moreover, given $X_{t}>0, X_{t}$ converges in law to $\operatorname{Exp}(1)$.

Behavior at criticality

Theorem: With a critical initial condition $\left(\lambda_{0}>1\right.$ and $\left.p_{0}=\lambda_{0}-\lambda_{0} \log \lambda_{0}\right)$,

$$
\mathbb{P}\left(X_{t}>0\right)=1-p(t)=\frac{2}{t^{2}}+\frac{16 \log t}{3 t^{3}}+o\left(\frac{\log t}{t^{3}}\right)
$$

Moreover, given $X_{t}>0, X_{t}$ converges in law to $\operatorname{Exp}(1)$.
Our goal: Given $X_{t}>0$, what does the subtree bringing paint to the root look like?

Description of the red tree

Description of the red tree

Given that $X_{t}=x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

Description of the red tree

Given that $X_{t}=x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:
\triangleright It starts at time 0 with a single particle with mass x.

Description of the red tree

Given that $X_{t}=x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1.

Description of the red tree

Given that $X_{t}=x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1.
\triangleright A particle of mass m at time s splits at rate $p(t-s)(1-\lambda(t-s)) m$ into two children, the mass m being split uniformly.

Description of the red tree

Given that $X_{t}=x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1 .
\triangleright A particle of mass m at time s splits at rate $p(t-s)(1-\lambda(t-s)) m$ into two children, the mass m being split uniformly.
\triangleright Particles behave independently after their splitting time.

The scaling limit of the red tree

Let $\left(x_{t}\right)_{t \geq 0}$ be positive numbers such that $\frac{x_{t}}{t} \rightarrow x \geq 0$.

The scaling limit of the red tree

Let $\left(x_{t}\right)_{t \geq 0}$ be positive numbers such that $\frac{x_{t}}{t} \rightarrow x \geq 0$.

Theorem: Given that $X_{t}=x_{t}$, the red tree of height t, with time and masses rescaled by t, converges locally in distribution to a time-inhomogeneous branching Markov process defined on $[0,1)$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1 .
\triangleright A particle of mass m at time s splits at rate $2 m /(1-s)^{2}$ into two children, the mass m being split uniformly.
\triangleright Particles behave independently after their splitting time.

The scaling limit of the red tree

Let $\left(x_{t}\right)_{t \geq 0}$ be positive numbers such that $\frac{x_{t}}{t} \rightarrow x \geq 0$.

Theorem: Given that $X_{t}=x_{t}$, the red tree of height t, with time and masses rescaled by t, converges locally in distribution to a time-inhomogeneous branching Markov process defined on $[0,1)$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1.
\triangleright A particle of mass m at time s splits at rate $2 m /(1-s)^{2}$ into two children, the mass m being split uniformly.
\triangleright Particles behave independently after their splitting time.
Simulations: the limit should be the same for the discrete-time model.

The scaling limit of the red tree

Let $\left(x_{t}\right)_{t \geq 0}$ be positive numbers such that $\frac{x_{t}}{t} \rightarrow x \geq 0$.

Theorem: Given that $X_{t}=x_{t}$, the red tree of height t, with time and masses rescaled by t, converges locally in distribution to a time-inhomogeneous branching Markov process defined on $[0,1)$ such that:
\triangleright It starts at time 0 with a single particle with mass x.
\triangleright The mass of each particle grows linearly at speed 1.
\triangleright A particle of mass m at time s splits at rate $2 m /(1-s)^{2}$ into two children, the mass m being split uniformly.
\triangleright Particles behave independently after their splitting time.
Simulations: the limit should be the same for the discrete-time model.
Wide open question: universality among other hierarchical renormalization models?

Number and total mass of red leaves

\triangleright Let N_{t} be the number of leaves in the red tree of height t.
\triangleright Let M_{t} be their total mass.

Number and total mass of red leaves

\triangleright Let N_{t} be the number of leaves in the red tree of height t.
\triangleright Let M_{t} be their total mass.
Theorem: There exist $\gamma_{1}, \gamma_{2}>0$ such that, for any positive numbers $\left(x_{t}\right)_{t \geq 0}$ such that $x_{t} / t \rightarrow x \geq 0$, we have

$$
\left(\frac{N_{t}}{t^{2}}, \frac{M_{t}}{t^{2}}\right) \text { given } X_{t}=x_{t} \xrightarrow[t \rightarrow \infty]{(d)}\left(\gamma_{1} \eta_{x}, \gamma_{2} \eta_{x}\right)
$$

with $\eta_{x}:=\int_{0}^{1} r^{2}(s) d s$ and r a 4-dimensional Bessel bridge from 0 to $2 \sqrt{x}$.

Number and total mass of red leaves

\triangleright Let N_{t} be the number of leaves in the red tree of height t.
\triangleright Let M_{t} be their total mass.
Theorem: There exist $\gamma_{1}, \gamma_{2}>0$ such that, for any positive numbers $\left(x_{t}\right)_{t \geq 0}$ such that $x_{t} / t \rightarrow x \geq 0$, we have

$$
\left(\frac{N_{t}}{t^{2}}, \frac{M_{t}}{t^{2}}\right) \text { given } X_{t}=x_{t} \xrightarrow[t \rightarrow \infty]{(d)}\left(\gamma_{1} \eta_{x}, \gamma_{2} \eta_{x}\right)
$$

with $\eta_{x}:=\int_{0}^{1} r^{2}(s) d s$ and r a 4-dimensional Bessel bridge from 0 to $2 \sqrt{x}$.
Idea of proof: The Laplace transform of $\left(N_{t}, M_{t}\right)$ given $X_{t}=x$ is solution of the following PDE, as a function of t and x :

$$
\partial_{t} \varphi=\partial_{x} \varphi+p(t)(1-\lambda(t))(\varphi * \varphi-x \varphi) .
$$

Number and total mass of red leaves

\triangleright Let N_{t} be the number of leaves in the red tree of height t.
\triangleright Let M_{t} be their total mass.
Theorem: There exist $\gamma_{1}, \gamma_{2}>0$ such that, for any positive numbers $\left(x_{t}\right)_{t \geq 0}$ such that $x_{t} / t \rightarrow x \geq 0$, we have

$$
\left(\frac{N_{t}}{t^{2}}, \frac{M_{t}}{t^{2}}\right) \text { given } X_{t}=x_{t} \xrightarrow[t \rightarrow \infty]{(d)}\left(\gamma_{1} \eta_{x}, \gamma_{2} \eta_{x}\right)
$$

with $\eta_{x}:=\int_{0}^{1} r^{2}(s) d s$ and r a 4-dimensional Bessel bridge from 0 to $2 \sqrt{x}$.
Idea of proof: The Laplace transform of $\left(N_{t}, M_{t}\right)$ given $X_{t}=x$ is solution of the following PDE, as a function of t and x :

$$
\partial_{t} \varphi=\partial_{x} \varphi+p(t)(1-\lambda(t))(\varphi * \varphi-x \varphi) .
$$

It takes the particular form $\varphi(t, x)=\mathrm{e}^{-\left(\theta_{1}(t)+x \theta_{2}(t)\right)}$, with

$$
\theta_{1}^{\prime}=\theta_{2} \quad \text { and } \quad \theta_{2}^{\prime}=p(1-\lambda)\left(1-\mathrm{e}^{-\theta_{1}}\right) .
$$

Number and total mass of red leaves

\triangleright Let N_{t} be the number of leaves in the red tree of height t.
\triangleright Let M_{t} be their total mass.
Theorem: There exist $\gamma_{1}, \gamma_{2}>0$ such that, for any positive numbers $\left(x_{t}\right)_{t \geq 0}$ such that $x_{t} / t \rightarrow x \geq 0$, we have

$$
\left(\frac{N_{t}}{t^{2}}, \frac{M_{t}}{t^{2}}\right) \text { given } X_{t}=x_{t} \xrightarrow[t \rightarrow \infty]{(d)}\left(\gamma_{1} \eta_{x}, \gamma_{2} \eta_{x}\right)
$$

with $\eta_{x}:=\int_{0}^{1} r^{2}(s) d s$ and r a 4-dimensional Bessel bridge from 0 to $2 \sqrt{x}$.
Idea of proof: The Laplace transform of $\left(N_{t}, M_{t}\right)$ given $X_{t}=x$ is solution of the following PDE, as a function of t and x :

$$
\partial_{t} \varphi=\partial_{x} \varphi+p(t)(1-\lambda(t))(\varphi * \varphi-x \varphi) .
$$

It takes the particular form $\varphi(t, x)=\mathrm{e}^{-\left(\theta_{1}(t)+x \theta_{2}(t)\right)}$, with

$$
\theta_{1}^{\prime}=\theta_{2} \quad \text { and } \quad \theta_{2}^{\prime}=p(1-\lambda)\left(1-\mathrm{e}^{-\theta_{1}}\right) .
$$

Last open question: What is the law of the mass of a typical red leaf?

Thanks for your attention!

