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Discrete-time Derrida–Retaux model



Definition

. Introduced by Collet–Eckmann–Glaser–Martin (1984), motivated by spin
glass theory.

. Re-introduced by Derrida–Retaux (2014) for studying the depinning
transition.

. Definition: Start with a nonnegative random variable X0 and, for any
n ≥ 0,

Xn+1 =
(
Xn + X̃n − 1

)
+

where X̃n is an independent copy of Xn.
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Definition on a tree

Construction of Xn on a binary tree:

n

0 0 2 0 3 1 4 0 0 0 1 0 0 3 0 0 i.i.d. copies of X0

If X0 ∈ N := {0, 1, 2, . . . }: it can be seen as a parking procedure on the tree.
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Phase transition

Free energy: F∞ := lim
n→∞

E[Xn]
2n

∈ [0,∞].

. F∞ > 0: supercritical phase.

. F∞ = 0: subcritical phase.

Theorem (Collet–Eckmann–Glaser–Martin 1984): Assume that X0 ∈ N a.s.
and that P(X0 = 1) < 1.

. (supercritical) If E
[
X02X0

]
> E

[
2X0

]
or E

[
2X0

]
= ∞, then

F∞ > 0 and Xn
2n

a.s.−−−→
n→∞

F∞.

. (subcritical) If E
[
X02X0

]
≤ E

[
2X0

]
< ∞, then

F∞ = 0 and Xn
probability−−−−−−→
n→∞

0.

Open question: Try to say something about the case where X0 is not
integer-valued.
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Free energy near criticality

. Let ν be a probability measure on (0,∞), in the supercritical phase.

. Consider X0
(d)
= (1− p)δ0 + pν for each p ∈ [0, 1].

. Let F∞(p) denote the free energy and pc := inf{p ∈ [0, 1] : F∞(p) > 0}.

p

F∞(p)

pc 10

1
ν = δ2
pc = 1

5

. If X0 ∈ N a.s., then pc is explicit by CEGM 1984.
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Free energy near criticality

Conjecture (Derrida–Retaux 2014):
If pc > 0, then as p ↓ pc

F∞(p) = exp
(
− K + o(1)
(p− pc)1/2

)
.

p

F∞(p)

pc 10

1
ν = δ2
pc = 1

5

Theorem (Chen–Dagard–Derrida–Hu–Lifshits–Shi 2019+): If ν is supported
by N∗ and

∫∞
0 x32xν(dx) < ∞, then as p ↓ pc

F∞(p) = exp
(
− 1
(p− pc)1/2+o(1)

)
.

. CDDFLS deal also with the case where pc > 0 and
∫∞
0 x32xν(dx) = ∞.

. Hu–Shi 2018: case pc = 0.
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Behavior at criticality

. Critical case for X0 ∈ N: E
[
X02X0

]
= E

[
2X0

]
< ∞.

. Recall that Xn → 0 in probability.

. Theorem (Chen–Derrida–Hu–Lifshits–Shi 2017): If E
[
X302X0

]
< ∞, then

c1
n

≤ E
[
2Xn

]
− 1 ≤ c2

n
.

In particular, P(Xn > 0) ≤ c2
n .

. Conjecture (Chen–Derrida–Hu–Lifshits–Shi 2017): If E
[
X302X0

]
< ∞, then

P(Xn > 0) ∼ 4
n2

.

Moreover, given Xn > 0, Xn converges in law to a geometric distribution
with parameter 1

2 .
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The red tree at criticality

Given that Xn > 0, we color in red the paths from a leaf to the root, where
the operation “positive part” was not needed.

0 0 2 0 3 1 4 0 0 0 1 0 0 3 0 0

0 1 3 3 0 0 2 0

0 5 0 1

4 0

3 Xn > 0

The red vertices form a subtree, called the red tree.
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Questions concerning the red tree

Question: Given Xn > 0, what does the red tree look like for large n?

. Scaling limit?

. Number of red leaves?

n = 200

X0
(d)
= 4

5δ0 +
1
5δ2

order n

8/17



Questions concerning the red tree

Question: Given Xn > 0, what does the red tree look like for large n?

. Scaling limit?

. Number of red leaves?

n = 200

X0
(d)
= 4

5δ0 +
1
5δ2

order n

8/17



Questions concerning the red tree

Question: Given Xn > 0, what does the red tree look like for large n?

. Scaling limit?

. Number of red leaves?

n = 200

X0
(d)
= 4

5δ0 +
1
5δ2

order n

8/17



Continuous-time Derrida–Retaux model



Definition

Initial condition: a nonnegative random variable X0.

For t > 0, Xt is defined using a painting procedure:

. Consider a Yule tree of height t (bi-
nary tree with i.i.d. exponentially dis-
tributed lifetimes).

. Initially: painters start on the leaves
with i.i.d. amount of paint chosen ac-
cording to the law of X0.

. Then, painters climb down the tree,
painting the branches with a quantity 1
of paint per unit of branch length.

. When two paintersmeet, they put their
remaining paint in common.

. Xt is the remaining paint at the root.
Xt

t
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General properties

. Free energy: F∞ := lim
t→∞

e−tE[Xt].

. Theorem: If F∞ > 0, then e−tXt
law−−−→
t→∞

Exp
(
F−1∞

)
.

. Open question: If F∞ = 0, then prove that Xt
probability−−−−−−→
t→∞

0.

. Proposition: Let µt denote the distribution of Xt for each t ≥ 0. Then,
(µt)t≥0 is the unique family of positive measures on R solution (in the
weak sense) of the PDE

∂tµt = ∂x(1{x>0}µt) + µt ∗ µt − µt,

with initial condition µ0.
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An exactly solvable family of solutions

∂tµt = ∂x(1{x>0}µt) + µt ∗ µt − µt

. From now on, consider µ0 = p0δ0(dx) + (1− p0)λ0e−λ0x dx.

. Proposition: For any t ≥ 0, µt = p(t)δ0(dx) + (1− p(t))λ(t)e−λ(t)x dx,
where p : R+ → [0, 1] and λ : R+ → R+ are the unique solutions of the
ODE {

p′ = (1− p)(λ− p)
λ′ = −λ(1− p)

with
{
p(0) = p0
λ(0) = λ0.

. H :=
p(t)
λ(t)

+ logλ(t) is an invariant of the dynamics.
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The phase transition

Xt
(d)
= µt = p(t)δ0(dx) + (1− p(t))λ(t)e−λ(t)x dx

We have p(t) = Hλ(t)− λ(t) logλ(t) with H = p0
λ0

+ logλ0.

λ0

p
1

1 e

H = 1 F∞ = 0 and Xt → 0

One can make explicit computations:

. Infinite order transition for the free energy with exponent 1
2 .

. Precise asymptotic behavior of p(t) and λ(t) in each phase.
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Behavior at criticality

Theorem: With a critical initial condition (λ0 > 1 and p0 = λ0 − λ0 logλ0),

P(Xt > 0) = 1− p(t) = 2
t2

+
16 log t
3t3

+ o
(
log t
t3

)
.

Moreover, given Xt > 0, Xt converges in law to Exp(1).

Our goal: Given Xt > 0, what does the subtree bringing paint to the root
look like?

Xt > 0

t

the red tree
+ amount of paint
along the branches
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Description of the red tree

0

t

Given that Xt = x, the red tree of height t is a time-inhomogeneous
branching Markov process defined on [0, t] such that:

. It starts at time 0 with a single particle with mass x.

. The mass of each particle grows linearly at speed 1.

. A particle of mass m at time s splits at rate p(t − s)(1− λ(t − s))m into
two children, the mass m being split uniformly.

. Particles behave independently after their splitting time.
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The scaling limit of the red tree

Let (xt)t≥0 be positive numbers such that
xt
t
→ x ≥ 0.

Theorem: Given that Xt = xt, the red tree of height t, with time and masses
rescaled by t, converges locally in distribution to a time-inhomogeneous
branching Markov process defined on [0, 1) such that:

. It starts at time 0 with a single particle with mass x.

. The mass of each particle grows linearly at speed 1.

. A particle of mass m at time s splits at rate 2m/(1− s)2 into two
children, the mass m being split uniformly.

. Particles behave independently after their splitting time.

Simulations: the limit should be the same for the discrete-time model.

Wide open question: universality among other hierarchical
renormalization models?
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Number and total mass of red leaves

. Let Nt be the number of leaves in the red tree of height t.

. Let Mt be their total mass.

Theorem: There exist γ1, γ2 > 0 such that, for any positive numbers (xt)t≥0
such that xt/t → x ≥ 0, we have(

Nt
t2
,
Mt

t2

)
given Xt = xt

(d)−−−→
t→∞

(γ1ηx, γ2ηx),

with ηx :=
∫ 1
0 r

2(s)ds and r a 4-dimensional Bessel bridge from 0 to 2
√
x.

Idea of proof: The Laplace transform of (Nt,Mt) given Xt = x is solution of
the following PDE, as a function of t and x:

∂tϕ = ∂xϕ+ p(t)(1− λ(t))(ϕ ∗ ϕ− xϕ).

It takes the particular form ϕ(t, x) = e−(θ1(t)+xθ2(t)), with

θ′1 = θ2 and θ′2 = p(1− λ)(1− e−θ1).

Last open question: What is the law of the mass of a typical red leaf?

16/17



Number and total mass of red leaves

. Let Nt be the number of leaves in the red tree of height t.

. Let Mt be their total mass.

Theorem: There exist γ1, γ2 > 0 such that, for any positive numbers (xt)t≥0
such that xt/t → x ≥ 0, we have(

Nt
t2
,
Mt

t2

)
given Xt = xt

(d)−−−→
t→∞

(γ1ηx, γ2ηx),

with ηx :=
∫ 1
0 r

2(s)ds and r a 4-dimensional Bessel bridge from 0 to 2
√
x.

Idea of proof: The Laplace transform of (Nt,Mt) given Xt = x is solution of
the following PDE, as a function of t and x:

∂tϕ = ∂xϕ+ p(t)(1− λ(t))(ϕ ∗ ϕ− xϕ).

It takes the particular form ϕ(t, x) = e−(θ1(t)+xθ2(t)), with

θ′1 = θ2 and θ′2 = p(1− λ)(1− e−θ1).

Last open question: What is the law of the mass of a typical red leaf?

16/17



Number and total mass of red leaves

. Let Nt be the number of leaves in the red tree of height t.

. Let Mt be their total mass.

Theorem: There exist γ1, γ2 > 0 such that, for any positive numbers (xt)t≥0
such that xt/t → x ≥ 0, we have(

Nt
t2
,
Mt

t2

)
given Xt = xt

(d)−−−→
t→∞

(γ1ηx, γ2ηx),

with ηx :=
∫ 1
0 r

2(s)ds and r a 4-dimensional Bessel bridge from 0 to 2
√
x.

Idea of proof: The Laplace transform of (Nt,Mt) given Xt = x is solution of
the following PDE, as a function of t and x:

∂tϕ = ∂xϕ+ p(t)(1− λ(t))(ϕ ∗ ϕ− xϕ).

It takes the particular form ϕ(t, x) = e−(θ1(t)+xθ2(t)), with

θ′1 = θ2 and θ′2 = p(1− λ)(1− e−θ1).

Last open question: What is the law of the mass of a typical red leaf?

16/17



Number and total mass of red leaves

. Let Nt be the number of leaves in the red tree of height t.

. Let Mt be their total mass.

Theorem: There exist γ1, γ2 > 0 such that, for any positive numbers (xt)t≥0
such that xt/t → x ≥ 0, we have(

Nt
t2
,
Mt

t2

)
given Xt = xt

(d)−−−→
t→∞

(γ1ηx, γ2ηx),

with ηx :=
∫ 1
0 r

2(s)ds and r a 4-dimensional Bessel bridge from 0 to 2
√
x.

Idea of proof: The Laplace transform of (Nt,Mt) given Xt = x is solution of
the following PDE, as a function of t and x:

∂tϕ = ∂xϕ+ p(t)(1− λ(t))(ϕ ∗ ϕ− xϕ).

It takes the particular form ϕ(t, x) = e−(θ1(t)+xθ2(t)), with

θ′1 = θ2 and θ′2 = p(1− λ)(1− e−θ1).

Last open question: What is the law of the mass of a typical red leaf?

16/17



Number and total mass of red leaves

. Let Nt be the number of leaves in the red tree of height t.

. Let Mt be their total mass.

Theorem: There exist γ1, γ2 > 0 such that, for any positive numbers (xt)t≥0
such that xt/t → x ≥ 0, we have(

Nt
t2
,
Mt

t2

)
given Xt = xt

(d)−−−→
t→∞

(γ1ηx, γ2ηx),

with ηx :=
∫ 1
0 r

2(s)ds and r a 4-dimensional Bessel bridge from 0 to 2
√
x.

Idea of proof: The Laplace transform of (Nt,Mt) given Xt = x is solution of
the following PDE, as a function of t and x:

∂tϕ = ∂xϕ+ p(t)(1− λ(t))(ϕ ∗ ϕ− xϕ).

It takes the particular form ϕ(t, x) = e−(θ1(t)+xθ2(t)), with

θ′1 = θ2 and θ′2 = p(1− λ)(1− e−θ1).

Last open question: What is the law of the mass of a typical red leaf?
16/17



Thanks for your attention!
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