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Discrete-time Derrida—Retaux model



> Introduced by Collet-Eckmann-Glaser—Martin (1984), motivated by spin
glass theory.
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> Introduced by Collet-Eckmann-Glaser—Martin (1984), motivated by spin
glass theory.

> Re-introduced by Derrida—Retaux (2014) for studying the depinning
transition.

> Definition: Start with a nonnegative random variable X, and, for any
n >0,

Xn-M - (Xn “v‘)?n - 1)
+

where X, is an independent copy of Xj.
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Definition on a tree

Construction of X, on a binary tree:

i.i.d. copies of Xy
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i.i.d. copies of Xy
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IfXo € N:={0,1,2,...}: it can be seen as a parking procedure on the tree.
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Phase transition
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Phase transition

E[Xn]

Free energy: F,, := lim o

n—oo

> Fo > 0: supercritical phase.
> Fo = 0: subcritical phase.

€ [0, 0]

Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that X, € N a.s.
and that P(Xo = 1) < 1.

> (supercritical) If E[Xo2%] > E[2%] or E[2%] = oo, then

as.
= [Feae

n
2N n—oo

Feo >0 and
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Phase transition

E[Xn]

Free energy: F,, := lim o

n—oo

> Fo > 0: supercritical phase.
> Fo = 0: subcritical phase.

€ [0, 0]

Theorem (Collet-Eckmann-Glaser-Martin 1984): Assume that X, € N a.s.
and that P(Xo = 1) < 1.

> (supercritical) If E[Xo2%] > E[2%] or E[2%] = oo, then

X
Fo >0 and = -2 F.

2N n—oo
> (subcritical) If E[Xo2%] < E[2%] < oo, then

probability
—

Fo=0 and X, 0.

— 00

Open question: Try to say something about the case where X; is not
integer-valued.
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Free energy near criticality

> Let v be a probability measure on (0, c0), in the supercritical phase.
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Free energy near criticality

> Let v be a probability measure on (0, c0), in the supercritical phase.
> Consider Xy Ll (1= p)do + pv for each p € [0,1].

> Let Fo(p) denote the free energy and p. := inf{p € [0,1] : F(p) > 0}.
Foo (P)

> If Xo € N as, then p¢ is explicit by CEGM 1984.
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Free energy near criticality

Conjecture (Derrida—Retaux 2014):
If pc >0, then as p | p¢

K+ o(1) )

=0 =00~
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Free energy near criticality

Foo(P)
Conjecture (Derrida-Retaux 2014): 1
If pc >0, then as p | p¢
K+ o(1) )
Foo(p) = exp ——— 7 )
() p( (P — pc)'/?
0 Pc 1 P

Theorem (Chen-Dagard-Derrida—Hu-Lifshits—Shi 2019+): If v is supported
by N* and [;* x*2*v(dx) < oo, then as p | pc

1
Folp) = 28 (e )

> CDDFLS deal also with the case where p. > 0 and [, x*2*v(dx) = co.
> Hu-Shi 2018: case p. = 0.
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Behavior at criticality

> Critical case for Xo € N: E[X,2%] = E[2%] < 0.
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Behavior at criticality

> Critical case for Xo € N: E[X,2%] = E[2%] < 0.
> Recall that X, — 0 in probability.
> Theorem (Chen-Derrida-Hu-Lifshits-Shi 2017): If E [X32%] < oo, then
2 <ER]-1< 2,
In particular, P(X, > 0) < .
> Conjecture (Chen-Derrida-Hu-Lifshits-Shi 2017): If E[X32*| < oo, then

4

Moreover, given X, > 0, X, converges in law to a geometric distribution
with parameter 3.
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The red tree at criticality

Given that X, > 0, we color in red the paths from a leaf to the root, where
the operation “positive part” was not needed.
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The red tree at criticality

Given that X, > 0, we color in red the paths from a leaf to the root, where
the operation “positive part” was not needed.

The red vertices form a subtree, called the red tree.

7/17



Questions concerning the red tree

Question: Given X, > 0, what does the red tree look like for large n?
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Questions concerning the red tree

Question: Given X, > 0, what does the red tree look like for large n?

> Scaling limit?
> Number of red leaves?

M&"“ﬁiﬁi}f

order n
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Continuous-time Derrida—Retaux model




Initial condition: a nonnegative random variable Xp.

Fort > 0, X; is defined using a painting procedure:
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Initial condition: a nonnegative random variable Xp.

Fort > 0, X; is defined using a painting procedure:

> Consider a Yule tree of height t (bi-
nary tree with i.i.d. exponentially dis-
tributed lifetimes).

> Initially: painters start on the leaves I I t
with i.i.d. amount of paint chosen ac- - 1 I
cording to the law of Xg. T

> Then, painters climb down the tree,
painting the branches with a quantity 1 o
of paint per unit of branch length. I

> When two painters meet, they put their
remaining paint in common. I

> X; is the remaining paint at the root.
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General properties

> Free energy: Fo, = lim e 'E[X].

t—o0

10/17



General properties

> Free energy: Fo, = lim e 'E[X].

t—o0

> Theorem: If F., > 0, then e~ tx, 2%, Exp(F)-
t—o0

10/17



General properties

> Free energy: Fo, = lim e 'E[X].

t—oo0
> Theorem: If Fy, > 0, then e—tx, % Exp (F).
t—o0o

> Open question: If F,, = 0, then prove that X; probability

t—o0

10/17



General properties

> Free energy: Fo, = lim e 'E[X].

t—oo
> Theorem: If F., > 0, then e~ tx, 2%, Exp(F).
t—oo

probability
e

> Open question: If F,, = 0, then prove that X; 0.

t—o0

> Proposition: Let u; denote the distribution of X; for each t > 0. Then,
()0 is the unique family of positive measures on R solution (in the
weak sense) of the PDE

Orpr = Ox(L x>0y i) =+ e * far — fit,

with initial condition p.
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An exactly solvable family of solutions

]&ut = Ox(Lxsoypue) + pe * pe — fir ‘

> From now on, consider po = podo(dx) + (1 — po)roe ™2 dx.

> Proposition: For any t > 0, e = p(t)do(dx) + (1 — p(t))A(t)e =MD dx,
where p: Ry — [0,1] and X\: Ry — R, are the unique solutions of the

ODE
{p’ =(1-p)A=P) {p(O) = Po
N =-A(1-p) A( :

> Hi= i\)g + log A(t) is an invariant of the dynamics.
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The phase transition

Xe D e = p(t)do(dx) + (1 — p(t))A(t)e= 0% dx

We have p(t) = HA(t) — A(t) log A(t) with H = §2 + log Xo.
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The phase transition

X D e = p(t)do(dx) + (1 — p(t))A(t)e D% dx

We have p(t) = HA(t) — A(t) log A(t) with H = i—z + log Ao.
Py Feo>0 H=1 Feo=0and X; — 0

0 1 e A

One can make explicit computations:

> Infinite order transition for the free energy with exponent 1.
> Precise asymptotic behavior of p(t) and A(t) in each phase.
12/17



Behavior at criticality

Theorem: With a critical initial condition (Mg > 1 and pg = Ao — Ag log \g),

P(t > 0) = 1-p(t) = 5 + 16108t +O<logt>~

2T 3
Moreover, given X; > 0, X; converges in law to Exp(1).
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Behavior at criticality

Theorem: With a critical initial condition (Ao > 1 and pg = Ao — Ao lOg Ao,
2 16logt logt
PR>0)=1-p)=p+ 3t3g +O< t§ )

Moreover, given X; > 0, X; converges in law to Exp(1).

Our goal: Given X; > 0, what does the subtree bringing paint to the root

1]

,,,,,,,,,,, 1

—

Xe > O the red tree
+ amount of paint
along the branches S
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Description of the red tree

A
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Given that X; = x, the red tree of height t is a time-inhomogeneous
branching Markov process defined on [0, t] such that:

> It starts at time 0 with a single particle with mass x.

> The mass of each particle grows linearly at speed 1.

> A particle of mass m at time s splits at rate p(t — s)(1— A(t — s))m into
two children, the mass m being split uniformly.

> Particles behave independently after their splitting time. 14/17
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The scaling limit of the red tree

- 54
Let (X¢)r>0 be positive numbers such that % —x>0.

Theorem: Given that X; = x;, the red tree of height t, with time and masses
rescaled by t, converges locally in distribution to a time-inhomogeneous
branching Markov process defined on [0, 1) such that:

> It starts at time 0 with a single particle with mass x.

> The mass of each particle grows linearly at speed 1.

> A particle of mass m at time s splits at rate 2m/(1 — s)? into two
children, the mass m being split uniformly.

> Particles behave independently after their splitting time.

Simulations: the limit should be the same for the discrete-time model.

Wide open question: universality among other hierarchical
renormalization models?
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Number and total mass of red leaves

> Let N; be the number of leaves in the red tree of height t.
> Let M; be their total mass.

Theorem: There exist y1,~v, > 0 such that, for any positive numbers (Xt)r>o
such that x;/t — x > 0, we have

Ne M _@
(tzt) tz ) glven Xt — Xl' (’7177><>’Y277x)

with ny = fo r’(s)ds and r a 4-dimensional Bessel bridge from 0 to 2+/x.

Idea of proof: The Laplace transform of (N¢, M;) given X; = x is solution of
the following PDE, as a function of t and x:

Orp = O + p()(1 = A()) (0 *  — Xp).
It takes the particular form o(t, x) = e~ (@:(O+0:(0) with
0;=6, and @ =p(1-N)(1-e"").

Last open question: What is the law of the mass of a typical red leaf? -



Thanks for your attention!
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