

Lecall Kel Nelat) = E de ville martingales
Recall Kel Nelat) = E de ville and $E[N_{\text{t}}(\omega t)]$ \sim $\frac{e^{-\frac{mL-2}{2}L}}{a\sqrt{2\pi L}}$ for any a 20. Exercise1: A proof without additive martingales. 1. Opper bound along a subsequence. 1 a.J Lel a > JEm. Prove that N/(at). Los D.a.S., where k was along integers. 16. Dedree that lancy Tk = 12m a.s., where k was along integers. 2. Lower bound along a subsequence. (harder!) $2.a.$ let $a\in (0, \sqrt{2m})$. Prove that there exist $s>0$ such that $E[N_s(as)] > 1$. 2.6 let $\mathcal{N}_{0} = \mathcal{N}_{0}$ and b_{γ} induction $\widetilde{\mathcal{N}}_{(k+1)s} = \zeta \circ \in \mathcal{N}_{(k+1)s}$: $X_{\omega}((k+1)s) - X_{\omega}(ks) > \infty \zeta$. Leb $p = P(Mh \in N, N_{ks} \neq \emptyset)$. Prove that $p > 0$. (High: Note that (# Nks) kzo is a Galton-Watson process). $2c$ Prove that $P(\forall k>0, \Pi_{ks}>aks)>p.$ $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$ Z.d. Deduce that, for any EDO, there exists to such that $P(\forall k > k, \sqrt{1}_{ks} > aks - \sqrt{2} k, \sqrt{1 - \sqrt{2}} \sqrt{1 - \sqrt{2}}$. (Hinh: Use the same argument as in lecture 3 for the lower bound on max. X.(L). It was done there with assumption $P(L=0) = 0$ bit work that without this assumption, we have : on the survival event, Nr His as as.) $2e$ Conclude that $\liminf_{h\to\infty} \frac{\tau_{hs}}{hs} > a$ as on the survival event. 3. Filling the gaps $3.a.$ let $s, z>0$. Show that $E[4\{\text{veff}, \text{3refs-k,4}\}, |X(1-X_0(r)|>2L\}] = O(e^{\frac{r}{m}L-\frac{[E1]^2}{2s}}).$ $(4\lambda k)$ You can use that $\sup_{r\in[0,s]} B_r = \inf_{r\in[0,s]} B_r = |B_r|$ 3.6. Bedree that a.s., for k large enough, $\forall v \in N_k$, $\forall r \in [(t-1)s, ks]$, $|X_{v}(ks) - X_{v}(r)| \le 2ks$. 3 c. Conclude. والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمواطن a cando a cand a particular a carta da carta a carra carra da car a carra carra

2) A reference model : the still esse
see the Silvanie of the tree structure on the m
compress of the line case we would consider the
minimum trajectories of teacht the same model consider the
compress (X, (t), we obtain II.2) A reference model : the idd case II.2) A reference model : bhe illel case
To see the influence of the tree structure on the maximal position at time tr, compre le to the case we would consider [e] particles with independent we Brownian trajectories of Laught I. Let $(B_t^1)_{t_{20}}$ for $: 31$ be i.d. Brownian motions. Let $(\mathbb{R}_{1}^{1})_{k_{30}}$. For 31 , be id . Brownian mobiles.
We compare $(X_{\nu}(t)_{\nu},\nu\in \partial P(t))$ with $(\mathbb{R}_{\nu}^{1},\nu\in\{1,...,\lfloor\frac{e^{\pi i}t}{2}\rfloor\})$ $|I|$ for the many-lo
 $\int E[F((B_s)_{s\in[0,1]})]$. ro-ome (up lo the inte
-lo-kwo : here we
E[F((Bs) sefot), (Bs)
-independent Remal : We have the same result for the many-to-one lup to the integer pal) : $E\left[\sum_{i=1}^{K-1} F((R_i)_{s\in[0,k]})\right] = L e^{-L} \cdot E[F((R_s)_{s\in[0,k]})].$ Correlations can only be seen at the level of many-botwo : here we have , (K_s) $\mathsf{s}_{\boldsymbol{\epsilon}\in[\mathsf{o},\mathsf{L}]}\left/\right|$ independent Our goal is to compare the maximal position in the BBT and the i.i.d. cases. ^{Jur}goa
Let $\widetilde{\mathcal{M}}_{\bm{t}}$ = max
 $A \leq \epsilon e^{mt}$ $E_{\text{average 2}}$: Prove that $\frac{\sqrt{7}L}{L}$ a.s. $\lambda_c = \sqrt{2m}$ $\mathcal{O}(2\pi)$. The contribution of the set of the set of the set of the $\mathcal{O}(2\pi)$ The first order is the same ! We prove here the more precise expansion : The first order is the same ! We prove here the more precise
Theorem : $\widetilde{\mathcal{U}}_1 - \lambda_c k + \frac{1}{2\lambda_c} log k \cdot \frac{(d)}{k - \infty}$, Gunbel(- $\frac{1}{\lambda_c} log(\lambda_c \sqrt{2\pi})$, $\frac{1}{\lambda_c}$), where Gumbel (c , b) for CER and by 0 has cumulative distribution $e^{-\frac{(x-c)}{b}}$. f unchion $x \in \mathbb{R}$ may exp(-Remark : When looking at max $(X_1, ..., X_n)$ as a where $(X_i)_{i \ge 1}$ are id random variables , there are three possible families of limiting distributions random variables, there are three possible families of thuibing distributions
(after proper recentring): Gumbel, Fréchet and Weibull distributions. $\frac{1}{5}$
 $\frac{1}{5}$
 $\frac{1}{5}$
 $\frac{1}{5}$
 $\frac{1}{5}$ Remark: Note that the bail of G ~ Gombel (c, b) is asymmetric : we have $P(G > x) \sim e^{-(x-c)/b}$ and $P(X \le -x) \sim e^{-e^{(x+c)/b}}$ as x $\rightarrow \infty$

Remark : Another reference model would be the case of fully correlated particles : at limet , it consists of Len particles following the same Brownian motion of Length ² . In that case the maximum is simply the position of one Brownian motion , which is of order of luch smaller than ^J. 6) - Nealgoal : Get the second order here in the expansion of ith for the BBST Spoiler : Logarithmic correction with ^a different constant Note that we have the following general result helling vs that more correlations implies ^a smaller maximum (if the variances are the same ! Slepian's Lemma : Let 22. ¹ . Let (XeomXm) and (earful be centered Gaussian rectors. If Vi , EX ⁼ Ely?) and Fij · EXiX ;] = ElTitj] , then mad(e .-Yn) is shockashically dominated by mas(X- > Xu). (We say that ^Z is stochastically dominated by ^E if VonEn , P(z ⁼ a) < PLE⁼ z)) Proof:We first prove that if f CRY satisfies Vij, f ⁴⁰ and has boud^a second derivatives , then Elf(X)] -> ElfIT1) where ^X ⁼ NemeX) and ^Y ⁼ Me - Y.) For this Let ECH := FX⁺ FLY where we assume who . g . What ^X andY are independent . The E(0) ⁼ ^Y and El ⁼ ^X so it is enough to prove What ELfIEH] =0 . (This technique is called Gaussian interpolation) Elf(zH] ⁼ E(t(X⁼ my))] = El-(z(4)] =(1)-(= E(XiX;] f) (z(11)] dajdi :;) El EI by Gaussian integration by part (see below

= $\frac{1}{2}$ $\sum_{i,j=1}^{n}$ $\left(\frac{E[X;X_{j}]-E[Y;Y_{j}]}{\sum_{i,j=1}^{n}E[X;Y_{j}]-E[X;Y_{j}]} \right)$ $E\left[\frac{\partial^{2}L}{\partial x_{j}\partial x_{i}}(2|U)\right]$
 ≤ 0 \therefore $\left(\frac{\partial^{2}L}{\partial x_{j}\partial x_{i}}\right)$ ≥ 0 \therefore $\left(\frac{\partial^{2}L}{\partial x_{j}\partial x_{i}}\right)$ This proves the first claim. Nou le prove the lemme, considér x ER. We ain de showing $P(\max(X_1, ..., X_n) \leq x) \leq P(\max(Y_1, ..., Y_n) \leq x)$ $\iff \mathbb{E}\left[\left[\prod_{i=1}^{m} A_{(\log, x]}(X_i)\right]\right] \leq \mathbb{E}\left[\prod_{i=1}^{m} A_{(\log, x]}(Y_i)\right] \tag{\star}$ let $h_k : \mathbb{R} \longrightarrow [0,1]$ be \mathbb{C}^2 non-increasing functions such that $h_k : \mathbb{R} \longrightarrow \mathbb{1}_{\{-\infty, \pi\}}$ Then flere xER is $\tilde{\pi}$ le(xi) satisfies the assumptions of the claim so $E[f_{k}(x)] \in E[f_{k}(y)]$, which gives (k) by letting $l \rightarrow \infty$. Lemma (Gaussian integration by part): let us/ and g E C'(R") such that J. Vy is bounded. Let $X = (X_1 - X_n)$ be a centered Gaussian vector $\boxed{\text{Theorem 1:} \begin{equation} \begin{aligned} \mathcal{F}_{\mathcal{A}}(x) = \int_{\mathcal{A}} \mathcal{F}_{\mathcal{A}}(x) \, dx \end{aligned}} \quad \text{where} \quad \mathcal{F}_{\mathcal{A}}(x) = \sum_{i=1}^{n} \mathbb{E}[X_i X_j] \quad \mathbb{E}\left[\frac{\partial g}{\partial x_i}(x)\right]. \end{aligned}}$ \overline{E} $\overline{$ 1. Prove the result for $n = 1$ vs: y the usual integration by parts. 2. Prove that there exist a Gaussian vector Z = (2,, -, 2,) independent of X such that for all $j \in \{1, ..., 1\}$. $X_j = E[X; X_j]X_i + Z_j$. 3. Conclude. Remark: To use Slepian's lemma to compare two models, we need exactly the same aumber of variables, so it cannot be used directly to say. $\Pi_{\mu} \leq \tilde{\Pi}_{\mu}$ where \leq means stochastically dominated, but we can get $\pi_k \stackrel{\text{(61)}}{\leftarrow} \pi_k$ by applying Slepian's lemma conditionally on the tree (recall $\pi_{\mathfrak{l}}$ is defined in exercise 3).