
Lecture 6 : The logarithmic correction 10/01/2025

#I
. 3) Preliminaries on Brownian motion

For the proof of the second order of My =mac
Yell

,
we need estial as

for Brownian motion staying below a barrier that we

prove
in this section

.

We first need to state the strong Markov property for Brownian motion

Theorem (strong Markov property) : Lel T be a shopping lime for the canonical

# Itration of a Brownian motion (Brizo ·

Define
,
for K

,
0

,

BT = Bit-B
+

if ToS O otherwise

Assume PCT<0 0
.

Then
,

under P) : /TCO) ,

the
process (B)

is a Brownian motion startedot 0 and independent of FT .

Proof : See Theorem 14
.

15 in he Gall
,
" Measure Theory , Probability ,

and Shockashic

Processes"
.

It relies on a discretization of lime by distinguishing
according to the events (TC 3 for hist

,
in order to

then apply the simple Markov properly. ⑮

Proposition (reflection principle) : For 1
. O

,

alo and
y

30
,

we have

P)maBa , Ba-y) = P(B any
event on

the left
A >

A picke of theproduce ↑Torepodeeli
espect to level a

o the right
Proof : Let Ta = if (k0 : Br = a] .

Note that Smashal = Sta]
So PleB ,

La
, Brgy) = PITaL , B-B-y)

= Bra
= PITaEL

, Bit-y) .

↳ defined as in the theore above



= PP((Tc ,

Bi)(H)
where H = ((s ,w)ER++ 2) : set

, wlt-s)[b-a] is measurable

continuous functions fro1R+-R (exercise !)

But
, by the strong Marhov properly ,

we have

· Bla is independent of Fia so it is independent of To
· Blial has the

same law as
- BITa) (both the Brownian motion and

the O
process

have a
law invarial by a change of sign).

So (Ta
. Bital) (Ta .

- Bita).
Therefore P((Tc .

Bi1) (H) = P((Ta
,

-B=)EH)

= IP(Tat
.

- (Br-) = -y)
= a

= P(Taet , BrCary)
= PCBK, ary) because [TaEL3 <(Brany]

by the intermediate value there

· (Bo = 0 Ea and BLL, any a

+ continuity ofB)

Corollary 1 : For th
,

0
,

mas B, 1B1.
St

In particular ,
for a

<0
, P)maBsa) en

and
,

as I was
,

with
a possibly depending on

h such that a -o,

P)maBa)
Proof : Let a <o

P( B a) = P(Ba , Bra) +Pa , =a)
-

ElBusay/Proposition above

= P(BrC a) + 1P(Bica) = P(BrE - a) + PP(Bi- a) = PP(1Bck- a)
This characterizes the distribution I because the rv. are positive).



The-P)maBs a) = PlBLaleda
Note that 1-e-1 whichgivesd =

2n + 0() - 2a

as 60 because
a = ol ,

and soed F

Conolay 2 : Let as 0
, y1, 0 and K

.
0.

D(mB, a , Bay) = -koka di [aEh
Moreover

,
as-is

,

with
a

y possibly dependent on t with geo() and a = olf),

P)meBa , Bray F12
B

A picture ofthe evet : "ItI
Exercise 1 : Proof of the corollary
1 Exact formulas

1) Prove that PlmcBa , Bray) = P(Bay) - Play
by Before that P(meBa , Bra-y) = PlButly-ay]
1) Using Corollary 1 , prove

the equality in the statement.

# Prove Lat P(B, a
,
Bu , any)= ekylerEh

1) Upper bound

2al Prove that for any mong the ,
Ie-glY2h

- e-sY22/ [12-y) ·

2 Prove the inequality in the statement
.

HEL : Use formula in 1
.

d if yaZe and formula in 1
. C

. if > za

24 Asympholic equivalent
2

./Prove What e-k-y(3) -e-
RY

= yay) +O +yki) uniformly in ne-ayay
22b. /Prove the asymptotic equivalent

Wint : some as in 2 .

b.



We conclude this section by recalling Girsanor's theorem for Brownian motion

and by providing a proof in the following proof
.

The proof presented below is based on an elementary approach ,

whereas

the general Girsanor's theorem uses martingale theory
Exercise 2 : Girsanov's theorem

Let 130 and [110
.
]) denote the set of continuous functions from0

. 17-1R.

We equip [((0 .2) with the norm ll-llm and the associated Boelian -Field
.

1) We prove
here the following simple version (the most used in this class) :

For
any
JER and F : 2(10 .2) - 1 +

measurable
,

we
have

ElesB-EtF((Bs(son)) = ElF((Bs + bs(s(0
.
23)]

1
. a ./ Prove it for F of the form F((Bs(scot) = f(B1) with f : -R

+
measurable·

Wh : Use the density of By to write the expectations as integrals.
1.b) Conclude

#It : The Barelian refield on [10 ,13) is generated by linders so it is

enough to consider # of the form F((Bseon) = Tth(Bra-une)
where 0-ho .. cheet and fe- fu : -Re are measurable

·

2
. 1 Use the

previous question to prove
the more general form : for h : 10

,1] -R

is continuous and
piecewise

2" and Fas before,

# (tp() ."

h)dbs-Chds) F((Bscn)] = (F((Bs + h(s))se(0
.2))]

El : Use that he can be approximated by piecewise aftire functions,
together with the hist of question 1 .

6.



III . 4) The logarithmic correction
Our goal in this section is to

prove
the following theorem :

Theoen (Brason 1978) On the survival event Much Are en -A 26

Reward : This has no be compared with the similar result in the Did case :

-Ich
III

.

4
. 1) The upper

bound

We need to show that
,
for

any
300

, P(TLSt-1-5)lgh)0
We

prove
the following stronger result.

Proposition UB : P)MLL- Sat-Blogh- Bloglog)

Idea of the proof : Let
ref = Jet-Blogh + Bloglog. .

The P(M, xr) = P15Es : Xn(,) Fl Excrn],
bot this cannot work : by the many-to-one this expectation is the same as

in the i'dcase where these are particles above
a
with large probability

(because F = Sch-flogh OH)
So EELE Exc] is laye even if we espectEp Ex, to be small

with high probability: this means hah this expectation is dominated by an

onlikely event on
which Ep Ex, as

is

very large.

iand then
, by breachy , drops many particles

above as ~

large enough Calready seen lash him
,

see the lenna below).

Sowefirstneed toaddtheknowledgthat particles shehela

computing the first mount
.



Such
an argument could not be done in the iid case : at a

time s = bt
,
be10

,
1),

the maximum of the levl particles is for above J
.

s :

Mani
A This is because there are levl particles from the

- beginning whereas in the BBT population growsn progressively !&

Lanne : For
any

260
,

there exists LLO such that PLEcK,
1-2 where

El = [Vs,
0

, Ms< s + L3.

Roof : We have seen in the last Lecture thatlhsuMs-dsO ashe

But su is-bas is continuous as .
So

s Ms ds 0 a.a

so there exists 20 such that Pets-bsL)EE . B

CE?
Proof of Proposition UB : LL E0 and 130 such that PLE) 21-5.

the Ploth) EDPME
By inclusion of events,
↑ (SM, x31EL) = P(SnENr : Xn(H2, and VsE(0 ,] .

Xo(s)= +L

= ElEv Ex -
12, and

Sy(Xvls)-b.
sk2]

many
hooonedent (BKx) ,map(Bs -b) = 2)

·
entP(BL-Jat, x-Jct,manBs-bL

Girsanov 6
=ener

wh

&
BLLch , ne

BsL]
[e

-bc(x- Sch)

_logh Blogle
=



GBL-gt-El,
2 :l

=0()0~ him

#I
.

4
. 2) The lower bound

We
prove

here the following stronger result

Proposition LB : On the survival event
,Mr bat-Blogt + Op() ,

which
meana

that
,

for
any

350
,
there exists

y
> 0 such that for t large enough

P(T ? Jah-logt-y) Survival (1-

Re: Op(1) is a notation for a random herm depending on
t which is

hight for larged when seen as a process
int.

Idea of the proof :

Wh Kn be the number of particles above
my = Jch-Blogh at himet ando

satisfying some trajectory condition to be chosen.

Then
,

use many-boome and many-hookwo to compute EIKr] and EknY
and show that Elkn] = CELK1] (his requires

to choose the

condition in the definition of Ky such that these moments are
not dominated

byunlikely events.

By Paley-Zygmond/Cauchy-Schwarz inequality ,
we

deduce P(EK- 1)2,Ezr]" 31
·

/zr]
To conclude

,

let perhicles branch at the beginning until there is a large number
of particles : each of them has a probability an least I to have a

way
high descendant at a line t in the future

,
so it is

very likely that
at least one

of them does
.


