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AttenuationCorrectionUsingSPECTEmission
DataOnly
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Abstract—A major step toward quantitative single photon emis-
sion computerized tomography (SPECT) imaging may be achieved
if attenuation, scatter, and blurring effects are accounted for in the
reconstruction process. Here we consider an approach which si-
multaneously estimates the unknown attenuation coefficient and
the emission source using the emission data only. This leads to an
inverse mathematical problem which may no longer be solved via
iterative procedures like the well-known EM-algorithm. Instead,
a regularization approach based on nonlinear optimization tech-
niques is used. We present a successful strategy and test it in a sim-
ulated case study and a physical phantom experiment.

Index Terms—Attenuation correction, nonlinear optimization,
radon transforms, regularization, single photon emission comput-
erized tomography (SPECT).

I. INTRODUCTION

I N ITS original understanding,the term scatteror attenua-
tion correctionreferredto methodswhich tried to improve

singlephotonemissioncomputerizedtomography (SPECT)or
positronemissiontomography (PET) reconstructedimagesby
correctingor modifying theemissiondataprior to reconstruc-
tion. This includeduniform attenuationcorrection,or methods
which estimatetheComptonscatteredphotonsfrom secondary
energy peakinformation,andmodify theemissiondataby sub-
tractingthescatteredcontribution.Theideawas to compensate
for thefactthattissueattenuationandscatterwerenot included
in the filtered backprojectionalgorithm,useduntil recentlyto
reconstructSPECTandPETimages.While it is clearthat this
approachis not justified rigorously, someof theseheuristics
havebeenreportedto work with considerablesuccess.Werefer
to this family of methodsasthe approach via modification of
the data. See[1] for anoverview on suchmethods.

The meaningof the term attenuationandscattercorrection
haschangedsignificantly over recentyears,and is now gen-
erally usedto delineatestrategies,wherethe unknown tissue
attenuationmap is estimatedvia transmissionscansper-
formedeithersimultaneouslyor in successionwith theemission
scanning.Wereferto thisasthetransmissionSPECTcorrection
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methods,or simplyasthephysical approach to attenuationand
scattercorrection.See[2] for a discussionandreferenceson at
leastfive differentsourceconfigurations.

Herewewill bemainlyconcernedwith a third classof atten-
uation-or scatter-correctionmethods,which try to estimatethe
unknown attenuationcoefficient using the emission data only.
As comparedto thephysicalmethods,this approachhasto get
by with lessinformation,andthereforeleadsto morecompli-
catedmathematicalinversionprocedures.We will refer to it as
analyticalor mathematical attenuation and scatter correction.
The purposeof this work is to presentanddiscussan analyt-
icalattenuation-correctionmethodusingnonlinearoptimization
techniques.Two programs and , basedonaPoissonand
aGaussianlikelihoodfunctionarecomparedandtheirviability
is substantiatedusingasimulatedcasestudyandaphantomex-
periment.

II. PHYSICAL ATTENUATION CORRECTION

Transmission-basedSPECT attenuationcorrection sets a
benchmarkfor the analytical methodsto be discussedhere.
However, transmissionSPECT has its own limitations and
drawbacks,and one may argue that in the future, physical
andanalyticalattenuationandscattercorrectionwill probably
coexist andcomplementoneanother.

Transmission-basedattenuationcorrectionclearly increases
thepatientdose,andrequiresmaintaininganadditionalradioac-
tive sourcein theclinical environment.In thesamevein, if the
emission/transmissionscanningareto beperformedin parallel,
thechoiceof thetransmissionisotopewill restrictthechoiceof
thecompatibleSPECTisotopes.

Even in successfulapproachesit hasbeenobserved that the
higher energy isotope,usually the SPECTtracer, will down-
scatterinto theenergy window of thetransmissionisotope,gen-
eratingcrosstalkbetweenthe two procedures(see[2]). This
leadsto artifactsin thereconstructedimages.In [2], theauthors
suggestthat if the transmissionsourceusedthe higherenergy
isotopethantheSPECTtracer, theimpactof thecrosstalkcould
besomewhatreduced.But eventhen,someof theindicatedre-
strictionspersist.

Spilling over of thehigherenergy isotopewouldnotmatterif
theemissionandtransmissionscanswereperformedin succes-
sion,usingeitherthesameor a differentcamerasystem.How-
ever, thiswill complicatetheprotocol,andmayleadto thenon-
trivial problemof coregistrationof two imagesacquiredwith
differentgeometries.In addition,if X-raycomputertomography
(CT) imagingis usedfor thetransmissionimaging,theattenu-
ation mapcould not be entirely adaptedto the SPECTtracer
energy dueto beamhardening.
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Theseissues,which we have only toucheduponhere,make
it seeminterestingto havealternativeprocedures,whichwould
allow to estimatetheunknown tissueattenuationmapusingthe
emissiondataonly. We will start investigating this possibility,
by looking at someof the analyticalmethodsproposedin the
past,andshall thenpresentthe optimizationmodels and

on which our presentapproachis based.

III. ANALYTICAL ATTENUATION CORRECTION

Analytical attenuationcorrectionhasalreadya rich history,
andtheexisting methodsmayroughlybegroupedin threecat-
egories.

Thefirst classof methods,pioneeredby Natterer[3], usesthe
Helgasonconsistency formula (see,e.g., [4, TheoremII.6.2])
to estimatethe unknown attenuationmap prior to recon-
structingtheemissionsource . This ideahasrecentlybeen
revived in [5] and[6], seealso[7], leadingto a methodcalled
ConTraSPECT, wheretheauthorsfit an elliptical dummyatten-
uationmapfeaturingsix parameters.This approach,which in
many casesworkssurprisinglywell, is only feasiblefor a 360
camerarotation,sinceHelgason’sformulahasnosubstitutefor
different rotation angles.Notice that the artificial attenuation
mapsobtainedby this type of methodswill partly correctfor
someof thescattereffects.Ontheotherhand,arigorousscatter
correctionwherethe forward andbackward projectionopera-
torsincludeaComptonscattermodelcouldhardlybebasedon
theelliptical attenuatingmedium.

A secondtype of mathematicalmethods,also initiated by
Natterer[8], triesto fit a templateor referenceattenuationmap,
alongwith a prespecified deformationprocedure,to the indi-
vidual case,using either the consistency formula, or by esti-
mating and simultaneouslyvia theattenuatedRadontrans-
form (1) below. This approachcouldobviously beextendedor
refinedbyusingastackof modelattenuationmapsandapplying
automaticlearningprocedureswhenmatchingthereferenceob-
ject.Theattenuationmapsobtainedby thisclassof methodsare
of betterqualitythanin thefirst case,andmayverywell beused
to includescattercorrection.

Ourpresentcontributionbelongstoathird formof mathemat-
ical attenuation-correctionmethods,which usestheattenuated
Radontransform

(1)

to simultaneouslyestimatetheunknown attenuationmap
andemissionsource from theemissiondata . Here

is thedatumacquiredon the line referencedby .
Equation(1) isusedin [9], wherethecompletelydiscretizedver-
sionof theproblemis studiedandaniterativealgorithmsolving
for and simultaneouslyis proposed.It is basedon cyclic
subgradientprojectionsfor convex–concave nonlinearsystems
of equations.A morerecentapproachis presentedby Dicken
[10], [11], who usesa Tychonov type regularizationto invert

(1). This requiressolving an optimizationproblem of the
form

(2)

featuring an appropriateregularization term which
penalizesand thereby avoids highly irregular distributions

that would matchthe datawithin the acceptableerror
tolerance(seeSectionIV-C). In we minimizethenegative
log likelihoodof a Gaussianlaw, andpossiblechoicesof the
norm will be discussedin SectionIV-A. The regularizing
term will then play the role of a Bayesianprior, and
possiblechoicesof theseregularizersare discussedin Sec-
tion IV-D, while steeringthepenaltyparameter is discussed
in SectionIV-C.

An interestingway to solve was recentlyproposedby
Bronnikov [12]–[14]. Exploiting thefactthat is linearin

, theauthorfirst solvestheinner linear leastsquaresproblem
in with respectto the variable , usingthe pseudoinverse

. Theremainingnonlinearleastsquaresproblem

(3)

in theunknown is thenof smallerdimension.This is, in fact,
a specialcaseof an algorithmproposedby Golub andPereira
in [15]. The methodis reportedto work well on a simulated
example. In particular, it is reportedto avoid the undesired
crosstalkbetweenthereconstructionsof and observed,e.g.,
by Dicken. Yet anotherapproach,basedon a direct inversion
of (1), is that of Panin et al. [16], where the authorsuse a
singularvaluedecompositionto partiallylinearizethenonlinear
dependenceof on .

Anothermethodto solve (1) usesa Poissonstatisticfor the
emissiondata.This leadsto anoptimizationproblem of the
form

(4)

which minimizesthe negative Poissonlog-likelihoodfunction
of theindependentPoissondistributedrandomvector
with

augmentedby a regularizingterm asabove.
Whenever required,we will usethe following standardno-

tations:let bethediscretizationof theemission
imageandattenuationmapinto pixelsor voxels, theactivity
of the th pixel, its attenuationcoefficient.Let
be the angularpositionsor stopsof the camera,and let

enumeratecamerabins. Then may be un-
derstoodastheconditionalprobabilitythataphotonoriginating
from voxel is recordedin thecamerabin at thecamerapo-
sition . Accordingly, representstheprojectiondata,
with thenumberof countsdetectedin camerabin
duringstop . Clearly, somemodificationsmaybeadopted.We
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mayswitch to differentbasisfunctions,see,e.g.,[17], andwe
mayevenchoosedifferentbasesfor and in orderto account
for their differentspatialresolutions.

IV. METHODS

In this paper, we solve the problems and directly
usingnonlinearoptimizationmethods.This requiresoptimiza-
tion softwarefor nonlinearoptimizationwith boundconstraints.
In our experiment,we haveusedthecodel-bfgs-bdescribedin
[18]. In this section,we discusssomepracticalaspectsof the
differentoptimizationstrategiesbasedon theschemes and

. This includesin particularthesuitablechoiceof theregu-
larizer , which is crucial for a goodperformanceof the
method.

A. Nonlinear Least Squares

An importantaspectof thenonlinearleastsquaresapproach
is thecorrectchoiceof thenorm of the forwarderror

in dataspace.Thereis evidencethat the Eu-
clideannorm may not be an appropriatecandidate.This point
wasalreadymadein [4], [10], [11], while [13], [14] still usesthe
Euclideannorm.Herewewill givesomesupportfor thechoices
suggestedin [4], [10], [11] by comparingthe approaches
and .

Notice that [4] shows that for fixed , the linear operator
is continuousbetweenthespaces ontheunit

disk and on thecylinder if the
weightedmeasure , with , isused
on . ThisweightedEuclideannormattributeshighcostto mis-
matchin placeswith few counts,typically locatedattheendsof
thecamera.Theprobabilisticmodel usingthePoissonsta-
tisticssupportsthis argument.

Let , so thatthenegativePoissonlog-
likelihoodfunctionin maybewritten as

with

Taylor expansiongives thewell-known estimate

(5)

valid for . This meansthat assoonasthe para-
metric forwardestimate is closeenoughto thedatum ,
in particular, , thenegative log-likelihoodobjective
in will, upto theconstantterm , becloseto
theweightednormexpression

(6)

which is thenthenormwe shoulduseif we prefera Gaussian
model . Thenorm(6) coincideswith thenormon
usedaboveif thesource isaconstantfunctionontheunit disk.

B. Poisson Model

As in the caseof , we solve the Poissonmodel via
nonlinear programmingtechniques.Due to the logarithmic

term, this requiresa hard positivity constraint . This
excludesinfeasibleoptimizerslike somesequentialquadratic
programmingcodes,but doesnot poseany problemwith most
boundconstrainedsolvers.

Noticethatthestandardexpectation–maximization(EM)-al-
gorithm[19], [20] andits modificationssuchasorderedsubset
expectation–maximization(OSEM) or rescaledblock-iterative
(RBI) [22] arebasedon themodel with known attenuation
mapandthereforecannotbeusedtocompute and simultane-
ously. Anextensionof theEM-algorithmto thecaseof unknown

is given in [23]. A drawbackof theseEM-typemethodsis that
regularizingterms aredifficult to includein theiterative
procedure.This leadsto thewell-known observationthattheit-
eratesmaydeteriorateif theprocedureis carriedtoo far. Some
regularizationis obtainedby stoppingthe EM-algorithmafter
a limited numberof iterations.Anotherway in which regular-
izationcould still be includedin an EM-algorithm,at the cost
of a considerableslow down of the algorithm,is presentedin
[24]. In thepresentwork, weshallconcentrateon theoptimiza-
tion-basedapproach.

C. Stopping and Scaling

An importantpracticalaspectof both approaches, and
, concernsappropriatestoppingrules,andsuitablescaling

of thevariables and .
Most optimizationcodeshave built-in stoppingtests,which

dispensewith theiterationassoonaseitherthenecessaryopti-
mality conditionsaresatisfied, or no sizableprogressis made.
However, large-scaleapplicationsmaygreatlybenefit from ad-
ditional user-provided stoppingtests,which will typically in-
tervenebeforethe internal tests.Here we proposeto halt the
optimizationprocedureassoonasthe -normapproachesthe
overall error in thedata

(7)

The rationalehereis that with Poissondata , iterates
below the noiselevel (7) shouldnot be allowed, as they may
exhibit thesamenoiseamplificationphenomenonasobserved,
e.g.,in theEM-algorithm.Thistestwasalreadyreportedtowork
well in adifferentcontext [25].Ourpresentexperimentsconfirm
this guideline.

Notice that thechoiceof the penaltyparameter is closely
relatedto this stoppingtest.If is chosentoo large,we may
beunableto achieve thedesirederrormargin (7). On theother
hand,choosing too small will give many candidates
whichmatch(7). In thatcase,theeffectof our regularizeris too
weak.

Concerningscaling,observethatthehighly nonlineardepen-
denceof on is in strongcontrastwith the linearity in

, andthegradientsof theobjective function in or in
the variables and may be ordersof magnitudeapart.This
maycreatenumericaldifficulties,andit is mandatoryto prop-
erly scalethenonlinearvariable.In our experiments,we found
thatabsolutecountsfor andtheunit m for workedbest.
The standardunit cm , on the contrary, producedtoo strong
gradientsin .
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D. Regularizers

Themostimportantaspectof bothmodels and is the
choiceof theregularizer , as it maygreatlyinfluencethe
performanceof themethod.This is whereour approachdiffers
mostfrom previouswork obtainedwith thesemodels.

In a probabilistic setting, regularizing terms may be in-
terpretedas Bayesianpriors on the parameterspacesof the
Gaussianor Poissonmodel underconsideration,as shown in
[26]. In the presentsection,we discusspossiblechoicesof
regularizers and adaptedto our problem.

Usinga high-passfilter

(8)

seemsnatural,asweexpectnoisecontributionstobeof highfre-
quency, whichweshouldthenpenalizethroughtheregularizing
term.But how to choosethe cutoff frequency ? As proposed
in [27], [28], the Fourier slice theoremcould give us a guide-
line on thechoiceof . Observe thatwithout tissueattenuation,

, which tells usthatthespatialresolutionof
theunknown emissionsourceis no betterthanthespatialreso-
lution of the projections,or put differently, any detail present
in the image shouldbe visible in someof the projections.
Consequently, detailsfiner thanthe known resolution of the
projection shouldbeattributedto noisesourcesandpenalized
through(8).

Clearly, in the presenceof tissueattenuation,we have to
be conservative abouttheproposedchoiceof , as theFourier
slicetheoremwill only beapproximatelytrue.Nonetheless,(8)
worksconsiderablywell in practice(seealso[25]).

An interestingvariationof (8) usesthe fact that the two–di-
mensional(2-D) spectrumof the attenuatedRadontransform

is concentratedon a bowtie-shapedregion in the
frequency plane[4], [29], [30]. This was first observed in the
unattenuatedcase,but [29] shows that it remainsqualitatively
correctin theattenuatedcase.Thissuggestsaregularizerof the
form

(9)

where isanappropriatecutoff operatoradaptedtoabowtie
of width in the direction of the frequency planeaxis be-
longingto thevariable , andthickness attheorigin in direc-
tion of thefrequency planeaxisbelongingto thevariable . For
detailsseetheabovereferences.Noticethatin bothformulas(8)
and(9) weexploit Parseval’s identity, whichallowsusto imple-
menttheregularizerin thefrequency domain.

A somewhatdifferentregularizerwith somepopularityin the
mathematicalcommunityis theso-calledflat zoneregularizer

(10)

which modifies the notorious Tychonov term, known to be
too smoothing,replacingthe Euclideannorm by the -norm.
This is reportedto favor reconstructedimages featuringflat
zoneswith identical gray values. Our experimentsconfirm
this phenomenonin the context of SPECT(seeSectionVII).
The flat-zone regularizer may be justified by the following
argument.

Considerfor simplicity a one–dimensional(1-D) linear in-
verseproblemfor the abstractoperator . Following , we
solve for a fixed penaltyconstant

. Along with considerthe correspondingerror tolerance
optimizationprogram

minimize

subjectto

for a fixed . Observe that aslong asthe inequalityconstraint
in is active, and areequivalent in the following
sense:every local solution of is also a local solution

of with a certainvalue . Conversely, a local
solution of also locally solves for the value

. For short, and .
Now consideradiscretizedversionof , wherewereplace

thederivative by afinite-differenceapproximation.Makinga
changeof variables , say, we recasttheproblem
as

minimize

subjectto

where is thatchangeof variables.This meansthatwe
minimizethe -normof over an elliptic cylinder, and
theminimumis foundby scalingthenormball until it touches
thecylinder from outside.Now recall that the -normball has

extremepoints, beingthedimensionof thediscretized ,
andit is highly likely thatthecontactis in oneof theseextreme
points,anextremeface,etc.As wecansee,any oneof theseex-
tremeelementshasmany differences equalzero,which pro-
ducesthementionedflat zones.Notice,however, thatthisanal-
ysisshowsthatthechoiceof the -normissomewhataccidental
here,andthatothernormballscouldbeusedwith equalrights.

How about regularizing ? In principle, we could use the
sameideasas for , even thoughthe guidelinefor the cutoff
frequency in (8) is no longercorrect.What is observed in our
experimentsandconfirmedin otherapproachesis that theres-
olution of theattenuationmap neednot beasfine asthat
of theemissionsource . In particular, sincethereconstruc-
tion methoditself hassomeimperfections,the work required
to improve saytheultimate10%of resolutionof is prac-
tically wasted,as it barely improves the quality of the recon-
structedimage . Thissuggestsusingacoarserbandwidth for
thesignal .

Notice that we recommendusing the filter (9) for , since
the exponentin (1), known as the divergent beamtransform

, see[4], is close to the Radontransform , ex-
hibiting similar spectralproperties.This meansthat regular-
izing alsohelpsto stabilize . Looking at formula
(1), it is clear that even thoughwe try to estimate through
our procedure,what is requiredto reconstruct is not but

. In particular, shouldhave
its spatialresolution(bandwidth)comparableto thatof , not .

V. EXISTING METHODS

Our new optimizationapproachto inverting (1) has to be
comparedto someexisting techniques.In particular, we imple-
mented(cf. [7]) the ConTraSPECTmethodof [5], [6], which
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correctsfor attenuationusingadummyattenuationmap
of elliptical shapewith constantattenuation.This leaves a total
of six degreesof freedom,theconstantattenuationcoefficient,
andfive geometricparametersfixing theshapeandpositionof
theellipse.UsingHelgason’sconsistency formula,theattenua-
tion mapis adjustedto theemissiondatausingnonlinearleast
squares.As reportedin [5], [6], thesix variablesaresometimes
difficult to optimizesimultaneously, andthebestresultsareob-
tainedby fixing theattenuationcoefficient, andoptimizing the
five shapeparameterssubsequently. As mentionedin Section
III, sinceHelgason’sformula is only valid over 360 , we can
only compareour methodto ConTraSPECTin this case.No-
tice that the often surprisinglygoodresultsof ConTraSPECT
areunderstoodfrom theobservationthatknowledgeof is not
requiredto averyhighprecisionin orderto improvethequality
of thereconstructedimage .

A somewhat older approach,useful, for instance,in brain
imaging,consistsin automaticallydetectingthecontourandas-
sumingaconstantattenuationcoefficient thereon.In ourexper-
imentalbrainstudy, we have estimatedtheheadcontourusing
emissiondataacquiredatasecondaryenergypeak,representing
scatteredphotonsfrom theprimaryphotopeak.

The ConTraSPECTand the contourmethodhave recently
beenusedto provide goodstartingpoints for the variousop-
timizers(seeSectionVII). A detailedcomparisonof thesetwo
methodsasattenuation-correctionstrategiesin their own right
is presentedin [7].

We concludethis sectionby mentioninganotherinverseap-
proachto (1),recentlyproposedbyNovikov [31] (seealso[32]).
Theauthorpresentsa mathematicallyappealinginversionfor-
mulafor theattenuatedRadontransform,(1), a curiosity, since
this formula hasbeensearchedfor like the holy grail sinceat
least1915,andmany a valiant researcherceasedto believe in
its existence.Structurally, it is of the form , if

, that is, it inverts , but not .
It couldthereforebeemployedin aphysicalattenuation-correc-
tion approach,but lessstraightforwardly in the analyticalset-
ting. However, if implementedas proposedin [32], [33], the
formula is unlikely to improve on currentSPECTreconstruc-
tion procedures,asit doesnot allow to take collimatorblurring
into account.

VI. EXPERIMENTS

A. Simulated Data

The simulatedstudy usesa slice of the mathematicalcar-
diac torso(MCAT) phantomat the level of the heart(Fig. 1).
We assumea Tc-basedtracerwith relative concentrations
of 75.0, 3.82, and 1.76 in heart, lungs, and soft tissue.The
attenuationcoefficient in the cortical bones,trabecularbones,
lungs,andmuscleat the nominalenergy of Technetium(140
keV) werechosenas0.210,0.166,0.0427,and0.150cm , re-
spectively. Theemissionsource andattenuationmap were
both discretizedinto 64 64 pixels of size6.25 mm 6.25
mm. Parallel projectionsweresimulatedincluding the effects
of photonattenuation.Scatterandcollimatorblurring werenot
simulated.The datawere Poisson-noisedin order to createa
realistic signal-to-noiseratio. A total of 64 projectionswere

(a) (b)

Fig. 1. A transaxialslice of the MCAT phantom.(a) Activity distribution.
(b) Attenuationcoefficient distribution.

(a) (b)

Fig. 2. X-ray CT images of the RSD phantom. (a) A cortical slice.
(b) A cerebellarslice.

scannedover 180 , and alternatively over 360 . The size of
thecameraprojectionbins was 6.25mm. The total numberof
countsin theselectedslicewas of theorderof 180000.

B. Experimentally Acquired Data

TheexperimentalstudyusesthephysicalRadiologySupport
Device (RSD)striatalphantomshown in Fig. 2. Thephantom,
an artificial skull enclosedwithin material that mimics soft
tissue,ears,nose,and neck,hasone brain reservoir and four
striatal containers.The chamberswere filled with a homo-
geneoussolution of 303 kBq/ml labeled with Tc. The
projectiondatawereacquiredusingan Elscintdual headSPX
gamma-camera,equippedwith parallel low-energy high-reso-
lution collimators.A total of 60 angularviews, equallyspaced
over 360 , werescannedover 15 s perview, andtheprojection
dataweresampledona128 128grid with pixelsof size3.44
mm 3.44mm. Thedatawerecorrectedfor thedecayof the
tracerisotope.This resultedin approximately400000 counts
per projection. A 10% energy window about the primary
photopeakat 140 keV was used.A secondemissiondataset
wasacquiredin a 3%energy window aboutasecondarypeak
at 122keV.

VII. RESULTS

A. Simulated Data

In thesimulatedstudy, wehavereconstructedtheunknown
and usingthefollowing 2-D algorithm:

2-D Algorithm
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TABLE I
COMPARISON OF OPTIMIZATION METHODS

1) Generateaninitial guess , usingoneamongfour
possibleprocedures .

2) Runtheoptimizerl-bfgs-bto solve or usingoneof
the five possibleregularizers until
thestoppingtest(7) applies.

Theresultsof ourexperimentarepresentedin TableI, which
is tobereadasfollows.In eachoptimizationscenario or
we have startedthe reconstructionmethodwith four different
initial points . correspondsto choosing ,

. correspondsto running the Gaussianoptimiza-
tion with a constantattenuationmapon the contour, that
is, with a variableto beoptimized. choosesthe
ConTraSPECTreconstruction asinitial. Noticethat
since hasnonzerovaluesoutsidethecontour, theoptimiza-
tion procedure or , too, will have to allow for nonzero
valuesoutsidethecontour. Finally, chooses astheEM-re-
constructionwith constanton the contour, and
basedon thebestpossiblevalueof .

Basedonprograms and , wehaveusedtheoptimiza-
tion strategies : uses without regularizer,
usestheflat-zoneregularizer(10)for and , usestheTy-
chonov regularizer for both and , while
usesahigh-passfilter (8) for and . Finally, combines
theflat-zoneregularizerfor with a speciallyadaptedpenalty
term(12) to avoid thecrosstalkphenomenonbetween and .
In thecaseof thePoissonprogram,thenotationis analogous.

Thenumbersin TableI representrelative errorterms

(11)

comparingthereconstructions obtainedvia thevariouspro-
grams , with thetruesource . Thefirst line shows
therelative errorsof thefour possibleinitials .

Notice that if we reconstruct usingthe trueattenu-
ation map andan ML-EM algorithm,the relative errors
are18.1%for 180 , and16.0%for a 360 tour. Theseerrors
are due to the randomnatureof the emissiondata.Sincethe
signal-to-noiseratio in is only mildly inferior to the
signal-to-noiseratioof thedata,theseerrorsmaybeconsidered
closeto thelowestpossiblenoiselevel in any reconstruction.

Notice that couldonly betestedon a 360 tour, which is
indicatedby the in the first subcolumnof . Thesymbol
for regularizers indicatesthattheoptimizerwasnot
ableto improve theerrormargin of the reconstructionwithout
regularizer(i.e., ). For regularizer , this symbol

(a) (b)

Fig. 3. Reconstructionof the MCAT phantom with
��� �

, ��� , 360 .
(a) Activity distribution. (b) Attenuationcoefficient distribution.

meansthatthereis noimprovementover theerrormargin of the
reconstructionwith . Thedisplayedresultscorrespondto
thebestchoicesof penaltyconstants involved in thevarious
regularizers.Thosediffer betweentheprograms and ,
andalsobetweentheregularizers .

We observe that and provide alreadyinitial guesses
with a good error margin, but generallyoptimizing improves
over the initial values.Notice,however, a relatively strongde-
pendenceof theoptimizerson thestartingpoints.For instance,
noneof the ’s or ’s wasableto reducetheerrorin to
a competitive value,sostrategy turnsout insufficient.

Concerningregularization, the flat zone regularizer per-
formedbetterthaneitherthehigh-passfilteringor theTychonov
regularizer, probablydueto thefact that the idealsource
is piecewise constant,with edgessharperthan in realistic
situations.Theresultswith this regularizerandinitial points
or cameevencloseto the“minimum” errormargin obtained
with thetrueattenuationmap.

In theheartstudy, it is possibleto usea speciallysuitedreg-
ularizer in order to avoid or at leastreducethe crosstalkphe-
nomenonbetween and reportedin severalapproaches.The
shadow of apparentin the reconstructed appearsin a re-
gion wherethe correctvalue of is basicallyknown. While
correcting by handis, of course,prohibitive, we recommend
a regularizerof the form

(12)

which will penalizevalues too low at places with high ac-
tivity . Noticethatthis is a nonconvex functionin .

Thisapproachworkswell, but barelyimprovesthequalityof
the reconstructed or theerror . This seemsto indicate
thatthedamageof theshadow artifact is negligible anyway, so
its only effect is thatthereconstructed is lessfancy.

The reconstructedattenuationmap in Fig. 3(b) should
be comparedto results obtainedby Dicken [10], [11] and
Bronnikov [12]–[14]. As the difference between the true
[Fig. 1(b)] and reconstructed [Fig. 3(b)] seemssignificant,
someexplanationis in order. We arguethat in the given case,
thereconstructionin Fig. 3(b) is ratherwhatwe shouldexpect.
A reconstruction resemblingto the true could even
be undesirable,since the optimization approach ,
requires , and not , to be accuratelyknown. In
particular, it tries to adjust at positions
wherethesource is sizable.Fig. 4 showsthat
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(a)

(b)

(c)

Fig. 4. (a) Map of the total error �	��

��������� � ��������� �"!$#%�&('*),+�-�. / 0�1�2�3�4 5"6(7 with 8�9 : , ; , 360 . (b) Negative part. (c) Positive
part.

is very closeto at positions wheretheactivity
distributionis high,whichmeansthattheattenuationcorrection
providedby our methodis accuratein theheart.

Since,therefore, is only remotelyreliableat po-
sitions where is weak, we shouldnot expect to
be of good quality, as the passagefrom to is by itself
an ill-posedprocedure.This argumentis the moreapplicable,
the moreconcentratedthe emissionsource,andin the present
casewe seethatmostof theactivity is concentratedaroundthe
heartregion.Theimpossibilityof finding with ahighly local-
ized is, of course,highlightedin thecaseof apointsource

, where is not eventheoreticallyuniquelydetermined
[4]. This contradictioncouldberesolvedif theoperator
includedscattereffectsand the optimizationmodels and

weresolvedin threedimensions.

B. Experimentally Acquired Data

In thephantomstudy, the reconstructionswereobtainedvia
thefollowing three–dimensional(3-D) algorithm:

3-D Algorithm
1) Divide the 3-D region of interest(ROI) into transaxial

slices . In eachslice generatean initial
guessusing or , andrun the 2-D Algorithm
or to obtaina reconstruction .

2) Form a 3-D attenuationmap by stackingthe ,
.

3) Obtain the emissionsource by a 3-D inversionof
via the EM-algorithm,wherethe model in-

cludesattenuationandcollimatorblurring.

(a)

(b)

Fig. 5. Evaluationof phantomstudyin a cortical slice. (a) Attenuationmap
reconstructedby theoptimizerandlocationof the4-pixel-thick profile usedin
(b). (b) Reconstructedactivity profiles; lowercurve: without correction;dotted
curve: initial <�= ; uppercurve: resultof optimizer >@? , A�B C .

(a) (b)

Fig. 6. Reconstructionsof thesamecorticalslice.(a)Withoutany correction.
(b) With collimatorandattenuationcorrection.

In orderto estimatetheheadcontourrequiredin , we have
reconstructedthedataacquiredaboutthesecondaryenergypeak
at122keV. Thisleadsto aslightly enlargedcontour(seeFig.5).

Noticethattheslice-by-sliceestimationof in step1) is nec-
essary, sincea3-D inversionwouldleadto adifficult large-scale
optimizationproblemwith unknown variables.

Sincetheactivities in thedifferentcontainersof thephantom
are the same,the true emissionsourceis known up to a con-
stantfactor. However, theproportionalityconstantis difficult to
estimatein practiceandwehaveevaluatedthequalityof there-
constructionsalong4-pixel-thick profiles in severalslices.The
correctprofile is expectedto beflat. Fig. 5 shows for a cortical
slice that the initial alreadyimproves over a reconstruction
withoutattenuationcorrection,while theoptimizergavefurther
improvementaroundthecontour. Fig. 6 alsoshows thatthere-
constructionwith ouroptimizeris almostuniform,while there-
constructedcentralactivity withoutattenuationcorrectionis se-
riously underestimated.
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VIII. CONCLUSION

We have presentedan optimization-basedattenuation-cor-
rectionapproachwithout transmissionmeasurementsusingthe
emissiondataonly. In thesimulatedstudy, severaloptimization
strategies have beencompared.We observed a strongdepen-
denceof the optimizationon the startingpoint. The flat-zone
regularizer performed slightly better than the Fourier-type
regularizer. No significantdifferencebetweenthe Poissonand
Gaussianobjectives wasobserved.As was to be expected,the
resultson the 360 tour wereslightly betterthanfor the 180
acquisition,but thedifferencewas not significant.Someof the
reconstructions cameclose to the error margin already
presentin therandomdata.In thatsituation,theresultis close
to optimal, as the preponderantfraction in the error comes
from thereconstructionmethoditself.Thephantomexperiment
shows improved relative quantitative attenuationcorrection
over theConTraSPECTandthecontourmethod.
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