
Set-Valued Var. Anal manuscript No.
(will be inserted by the editor)

Nonsmooth bundle trust-region algorithm with
applications to robust stability

Pierre Apkarian · Dominikus Noll · Laleh
Ravanbod

Dedicated to L. Thibault
Received: date / Accepted: date

Abstract We propose a bundle trust-region algorithm to minimize locally Lips-
chitz functions which are potentially nonsmooth and nonconvex. We prove global
convergence of our method and show by way of an example that the classical
convergence argument in trust-region methods based on the Cauchy point fails in
the nonsmooth setting. Our method is tested experimentally on three problems in
automatic control.
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1 Introduction

We consider optimization problems of the form

minimize f(x)
subject to x ∈ C (1)

where f : Rn → R is locally Lipschitz, but possibly nonsmooth and nonconvex,
and where C is a simply structured closed convex constraint set, such as a polyhe-
dron or a semidefinite defined set. We develop a bundle trust-region algorithm for
(1), which uses nonconvex cutting planes in tandem with a suitable trust-region
management to assure global convergence. The trust-region management is to be
considered as an alternative to proximity control, which is the usual policy in
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bundle methods. Trust-regions allow a tighter control on the step-size. Our exper-
imental part demonstrates how these features may be exploited algorithmically.

Algorithms where bundle and trust-region elements are combined are rather
sparse in the literature. For convex objectives Ruszcyński [42] presents a bundle
trust-region method, which can be extended to composite convex functions. An
early contribution where bundling and trust-regions are combined is [45,46], and
this is also used in versions of the BT-code [51]. Fuduli et al. [21] use DC-functions
to form a non-standard trust-region, which they also use in tandem with cutting
planes. These nonsmooth trust-region methods approximate the objective by a
polyhedral working model, which is updated by adding cutting planes at unsuc-
cessful trial steps. This feature is of course well-known in bundle methods like
Sagastizábal and Hare [22,43] or [38]. Our main Theorem 1 analyses the inter-
action of this mechanism with the trust-region management, and assures global
convergence under realistic hypotheses.

The trust-region strategy is well-understood in smooth optimization, where
global convergence is proved by exploiting properties of the Cauchy point, as pio-
neered in Powell [40]. For the present work it is therefore of the essence to realize
that the Cauchy point fails in the nonsmooth setting. This happens even for poly-
hedral convex functions, the simplest possible case, as we demonstrate by way of
a counterexample. This explains why the convergence proof has to be organized
along different lines.

The question is then whether there are more restricted classes of nonsmooth
functions, where the Cauchy point argument can be salvaged. In response we show
that the classical trust-region strategy with Cauchy point is still valid for upper-
C1 functions, and at least partially, for functions having a strict standard model.
It turns out that several problems in control and in contact mechanics are in this
class, which justifies the disquisition. Nonetheless, the class of functions where
the Cauchy point works remains exceptional in the nonsmooth framework, as is
corroborated by the fact that convex functions with a genuine nonsmoothness do
not have a strict standard model.

A strong incentive for the present work comes indeed from applications in
automatic control. In the experimental part we apply our novel bundle trust-
region method to compute locally optimal solutions to three NP-hard problems
in the theory of systems with uncertain parameters. This includes (i) computing
the worst-case H∞-norm of a system over a given uncertain parameter range, (ii)
checking robust stability of an uncertain system over a given parameter range,
and (iii) computing the distance to instability of a nominally stable system with
uncertain parameters. In these applications the versatility of the bundle trust-
region approach with regard to the choice of the norm is exploited.

Nonsmooth trust-region methods which do not include the possibility of
bundling are more common, see for instance Yuan [48] for composite convex func-
tions, Dennis et al. [18], where the authors present an axiomatic approach, and
[14, Chap. 11], where that idea is further expanded. A recent trust-region method
for DC-functions is [32]. For information concerning convex and non-convex
bundle methods see e.g. [9, Chap. 10], [28,42], [29,22,21,38,36,37].

The structure of the paper is as follows. The algorithm is developed in ection 2,
and its global convergence is proved in Section 3. Section 4 gives practical stopping
criteria. Applications of the model approach are discussed in Section 5, where we
also discuss failure of the Cauchy point, using an example from [28]. Applications
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to automatic control are discussed in Sections 6 and numerical experiments are
given in Section 7. Conclusions are stated in Section 8.

Notation

For nonsmooth optimization we follow [13]. The Clarke directional derivative of f
is f◦(x, d), its Clarke subdifferential ∂f(x). For a function φ of two variables ∂1φ
denotes the Clarke subdifferential with respect to the first variable. The normal
cone to a closed convex set C ⊂ Rn at x ∈ C is NC(x) = {v ∈ Rn : vT (x− x′) ≥
0 for all x′ ∈ C}. We let PC(x) denote the orthogonal projection of x ∈ Rn onto
C. Given x ∈ Rn, the point y ∈ C is the projection PC(x) of x onto C if and only
if it satisfies the following normal cone criterion

(x′ − y)T (x− y) ≤ 0 for every x′ ∈ C,

which we use frequently. For symmetric matrices Q � 0 means negative semidefi-
nite, co(M) is the convex hull of a set M . For linear system theory see [50].

2 Presentation of the algorithm

In this section we derive our trust-region algorithm to solve program (1) and
discuss its building blocks.

2.1 Working model

We start by explaining how a local approximation of f in the neighborhood of the
current serious iterate x, called the working model of f , is generated iteratively.
We recall the notion of a first-order model of f introduced in [38].

Definition 1 A function φ : Rn × Rn → R is called a first-order model of f on a
set Ω if φ(·, x) is convex for every x ∈ Ω, and the following properties are satisfied:

(M1) φ(x, x) = f(x), and ∂1φ(x, x) ⊂ ∂f(x).
(M2) If yk → x, then there exist εk → 0+ such that f(yk) ≤ φ(yk, x) + εk‖yk − x‖.
(M3) If xk → x, yk → y, then lim supk→∞ φ(yk, xk) ≤ φ(y, x). �

We may consider φ(·, x) a non-smooth version of the first-order Taylor expansion
of f at x. Every locally Lipschitz function has indeed a first-order model φ], which
we call the standard model, defined as

φ](y, x) = f(x) + f◦(x, y − x).

Following [38], a first-order model φ(·, x) is called strict at x ∈ Ω if the following
strict version of (M2) is satisfied:

(M̂2) Whenever yk → x, xk → x, there exist εk → 0+ such that f(yk) ≤ φ(yk, xk) +
εk‖yk − xk‖.
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Remark 1 Axiom (M2) corresponds to the one-sided Taylor type estimate f(y) ≤
φ(y, x)+o(‖y−x‖) as y → x. In contrast, axiom (M̂2) means f(y) ≤ φ(y, x)+o(‖y−
x‖) as ‖y−x‖ → 0 uniformly on bounded sets. This is analogous to the difference
between differentiability and strict differentiability, hence the nomenclature of a
strict model.

Remark 2 Note that the standard model φ] of f is not always strict [36]. A strict
first-order model φ is for instance obtained for composite functions f = h◦F with
h convex and F of class C1, if one defines

φ(y, x) = h
(
F (x) + F ′(x)(y − x)

)
,

where F ′(x) is the differential of the mapping F at x. The use of a natural model of
this form covers for instance approaches like Powell [40], Yuan [48], or Ruszczyński
[42], where composite functions are discussed.

Observe that every convex f is its own strict model φ(y, x) = f(y) in the sense
of definition 1. As a consequence, our algorithmic framework contains the convex
cutting plane trust-region method [42] as a special case.

Remark 3 It follows from the previous remark that a function f may have several
first-order models. Every model φ leads to a different algorithm for (1).

During the following we consider x as the current iterate of our algorithm to
be designed, and z as a trial point near x, which is a candidate to become the next
serious iterate x+. The way trial points are generated will be explained in Section
2.2.

Definition 2 Let x be the current serious iterate and z a trial step. Let g be
a subgradient of φ(·, x) at z, for short, g ∈ ∂1φ(z, x). Then the affine function
m(·, x) = φ(z, x) + gT (· − z) is called a cutting plane of f at serious iterate x and
trial point z. �

We may always represent a cutting plane at serious iterate x in the form

m(·, x) = a+ gT (· − x),

where a = m(x, x) = φ(z, x) + gT (x − z) ≤ f(x) and g ∈ ∂1φ(z, x). We say that
the pair (a, g) represents the cutting plane m(·, x). In the terminology of [9, Chap.
10], a is called the linearization error of the cutting plane (a, g).

We also allow cutting planes m0(·, x) at serious iterate x with trial step z = x.
We refer to these as exactness planes of f at serious iterate x, because m0(x, x) =
f(x). Every (a, g) representing an exactness plane is of the form (f(x), g0) with
g0 ∈ ∂f(x).

Remark 4 When f is convex, it may be chosen as its own model φ(·, x) = f . In that
case the cutting plane according to Definition 2 coincides with the classical convex
cutting plane. The plane m(·, x) of Definition 2 might be termed the model-based
cutting plane, but since there is no risk of confusion, and since this is consistent
with the convex case, we continue to call m(·, x) a cutting plane.
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Remark 5 For the standard model φ] a cutting plane for trial step z at serious
iterate x has the very specific form m](·, x) = f(x) + gTz (· − x), where gz ∈ ∂f(x)
attains the maximum f◦(x, z − x) = gTz (z − x). Here every cutting plane m](·, x)
is also an exactness plane, a fact which will no longer be true for other models φ.
If f is strictly differentiable at x, then there is only one cutting plane m](·, x) =
f(x) +∇f(x)T (· − x), the first-order Taylor polynomial.

Definition 3 Let Gk be a set of pairs (a, g) all representing cutting planes of f at
trial steps around the serious iterate x. Suppose Gk contains at least one exactness
plane at x. Then φk(·, x) = sup(a,g)∈Gk a+ gT (· − x) is called a working model of
f at x. �

Remark 6 We index working models φk by the inner loop counter k to highlight
that they are updated in the inner loop by adding tangent planes of the ideal
model φ at the null steps yk.

Usually the φk are rough polyhedral approximation of φ, but we do not exclude
cases where the φk are generated by infinite sets Gk. This is for instance the case
in the spectral bundle method [23,24,25], see also [6], which we discuss in 5.3.

Remark 7 Note that even the choice φk = φ is allowed in definition 3 and in
Algorithm 1. This corresponds to G = {(a, g) : g ∈ ∂f(z), a = φ(z, x)+gT (x−z)},
which is the largest possible set of cuts, or the set of all cuts obtained from φ.
We discuss this case in section 5.1. If φ] is used, then the corresponding working
models are denoted φ]k. Their case is analyzed in section 5.4.

The properties of a working model may be summarized as follows

Proposition 1 Let φk(·, x) be a working model of f at x built from Gk and based
on the ideal model φ. Then

(i) φk(·, x) ≤ φ(·, x).
(ii) φk(x, x) = φ(x, x) = f(x).

(iii) ∂1φk(x, x) ⊂ ∂1φ(x, x) ⊂ ∂f(x).
(iv) If (a, g) ∈ Gk contributes to φk and stems from the trial step z at serious iterate

x, then φk(z, x) = φ(z, x).

Proof By construction φk is a supremum of affine minorants of φ, which proves
(i). Since at least one plane in Gk is of the form m0(·, x) = φ(x, x) +gT (·−x) with
g ∈ ∂1φ(x, x), we have φ1(x, x) ≥ m0(x, x) = φ(x, x) = f(x), which proves (ii). To
prove (iii), observe that since φk(·, x) is convex, every g ∈ ∂1φk(x, x) gives an affine
minorant m(·, x) = φk(x, x) + gT (· − x) of φk(·, x). Then m(·, x) ≤ φ(·, x) with
equality at x. By convexity g ∈ ∂1φ(x, x), and by axiom (M1) we have g ∈ ∂f(x).
As for (iv), observe that every cutting plane m(·, x) at z satisfies m(z, x) = φ(z, x),
hence also φk(z, x) = φ(z, x). �

2.2 Tangent program

In this section we discuss how trial steps zk are generated. Given the current
working model φk(·, x) = sup{a + gT (· − x) : (a, g) ∈ Gk}, and the current trust-
region radius Rk, the tangent program is the convex optimization problem

minimize φk(y, x)
subject to y ∈ C

‖y − x‖ ≤ Rk
(2)
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where ‖ · ‖ could be any norm on Rn. Let yk be an optimal solution of
(2). By the necessary optimality condition there exists a subgradient g∗k ∈
∂ (φk(·, x) + iC) (yk) and a vector vk in the normal cone to B(x,Rk) at
yk ∈ B(x,Rk) such that 0 = g∗k + vk, where iC is the indicator function of
C [13]. We call g∗k the aggregate subgradient at yk. The aggregate plane is defined
as the affine function m∗k(·, x) = a∗k+g∗Tk (·−x), where a∗k = φk(yk, x)+g∗Tk (x−yk).
The aggregate plane satisfies m∗k(yk, x) = φk(yk, x). This terminology stems from
the classical bundle method, when a polyhedral working model is used, see
Ruszczyński [42], Kiwiel [29].

Remark 8 Consider the case of a polyhedral φk(·, x) = maxi=1,...,k ak + gTk (· − x)
with C = Rn and ‖ · ‖ = | · | the Euclidean norm. Here (2) may be written as

minimize t

subject to ai + gTi (y − x)− t ≤ 0, i = 1, . . . , k,
1
2 |y − x|

2 − 1
2R

2
k ≤ 0,

with decision variable (t, y). The necessary optimality conditions are

k∑
i=1

λi = 1,
k∑
i=1

λigi + µ(y − x) = 0, λi ≥ 0, µ ≥ 0

along with complementarity and satisfaction of the constraints. We derive the
formula yk = x − µ−1∑k

i=1 λigi. In this case the aggregate subgradient g∗k in-

troduced in more abstract terms above takes the concrete form g∗k =
∑k
i=1 λigi

of a convex combination of older subgradients arising from cuts, a∗k =
∑k
i=1 λiai,

and vk = µ(yk − x) is the normal to the Euclidean ball B(x,Rk) at yk. This is
analogue to the update formula for the bundle method [29,9,38], and explains in
which way g∗k aggregates information from previous cuts. This justifies the use of
the term aggregate subgradient in the more general situation of (2).

Solutions yk of (2) are candidates to become the next serious iterate x+. For
practical reasons we now enlarge the set of possible candidates. Fix 0 < θ � 1
and M ≥ 1 once and for all, then every zk ∈ C ∩B(x,M‖x− yk‖) satisfying

f(x)− φk(zk, x) ≥ θ
(
f(x)− φk(yk, x)

)
(3)

is called a trial step. Note that yk itself is of course a trial step, because f(x) ≥
φk(yk, x) by the definition of the tangent program. But due to θ ∈ (0, 1), there
exists an entire neighborhood U of yk such that every zk ∈ U ∩ C is a trial step.

Remark 9 The role of yk here is not unlike that of the Cauchy point in classi-
cal trust-region methods. Suppose we use a standard working model φ]k and f

is strictly differentiable at x. Then φ]k(·, x) = φ](·, x) = f(x) + ∇f(x)T (· − x).

In the unconstrained case C = Rn the solution yk has then the explicit form
yk = x − Rk ∇f(x)‖∇f(x)‖ , which is indeed the Cauchy point as considered in [44], see

also [42, (5.108)]. Condition (3) then takes the familiar form f(x) − φ]k(zk, x) ≥
σ‖∇f(x)‖Rk, see [42, (5.110)].
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2.3 Acceptance test

In order to decide whether a trial step zk will become the next serious iterate x+,
we compute the test quotient

ρk =
f(x)− f(zk)

f(x)− φk(zk, x)
, (4)

which compares as usual actual progress and model predicted progress. For a fixed
parameter 0 < γ < 1, the decision is as follows. If ρk ≥ γ, then the trial step zk

is accepted as the new iterate x+ = zk, and we call this a serious step. On the
other hand, if ρk < γ, then zk is rejected and referred to as a null step. In that
case we compute a cutting plane mk(·, x) at zk, and add it to the new set Gk+1

in order to improve our working model. In other words, a pair (ak, gk) is added,
where gk ∈ ∂1φ(zk, x) and ak = φ(zk, x) + gTk (x− zk).

Remark 10 Adding one cutting plane at the null step zk is mandatory, but we
may at leisure add several other tangent planes of φ(·, x) to further improve the
working model φk, for instance, the one at yk if yk 6= zk. A case of practical
importance, where the φk are generated by infinite sets Gk of cuts, is presented in
section 5.3.

Remark 11 In most applications φk is a polyhedral convex function. If C is also
polyhedral, then it is attractive to choose a polyhedral trust-region norm ‖ · ‖,
because this makes (2) a linear program. For related ideas in bundle methods see
[20,9,42].

Remark 12 In the situation of remark 8 it is instructive to compare the bundle
and trust-region method when both operate with the Euclidean norm. Namely,
if the trust-region constraint is active at the trial step yk, then the multiplier µk
of the trust-region constraint plays the role of the proximity control parameter
τk in e.g. [38,9,22]. Increasing τk corresponds to decreasing Rk, and decreasing
τk corresponds to increasing Rk. A new case arises when the solution yk of the
trust region tangent program is in the interior of the trust-region, because here
µk = 0, and this case has no analogue in the bundle method. However, from a
practical point of view the most significant difference between the two method is
that trust-regions allow a more direct control of the stepsize.

2.4 Management of the trust-region radius

Let x be the current serious iterate and suppose zk is a trial step that is rejected,
the corresponding solution of the tangent program (2) being yk. Then a cutting
plane mk(·, x) cutting away the unsuccessful trial zk is added to the working model
φk with the goal to have a better model φk+1 at the next sweep. However, it is
also necessary to decide whether at the next iteration k+1 the trust-region radius
should be decreased.

This is where a major difference between the classical trust-region manage-
ment and the bundle trust-region management occurs. In classical trust-regions
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the radius Rk is always reduced in the case of a null step. Here we need a different
strategy, which has the following rationale. We compute the test quotient

ρ̃k =
f(x)− φ(zk, x)

f(x)− φk(zk, x)

which compares the model predicted progress f(x)−φk(zk, x) at zk to the progress
f(x)−φ(zk, x) = f(x)−φk+1(zk, x) we could have achieved at zk had we already
known the cutting plane mk(·, x). When ρ̃k ≈ 1, then adding the cutting plane
has little to no effect, and we should reduce the trust-region radius. On the other
hand, for ρ̃k � 1 we can still rely on the effect of adding a cutting plane and keep
the trust-region radius invariant. Fixing a constant γ̃ with 0 < γ < γ̃ < 1, this
management is put to work as follows.

Rk+1 =

{
Rk if ρ̃k < γ̃, ρk < γ
1
2Rk if ρ̃k ≥ γ̃, ρk < γ

. (5)

The corresponding rule is applied in step 7 of the algorithm.

Remark 13 Recall that the full-model case φk = φ is covered by theory. Here the
test quotient ρ̃k equals 1, as no bundling is applied. The test (5) becomes redundant
(because of γ̃ < 1), and the trust-region radius is always reduced in case of a null
step. This means that our novel management encompasses the classical situation
without bundling as a special case.

2.5 Nonsmooth solver

We are now ready to present our nonsmooth trust-region algorithm for program
(1), given on the next page.

3 Convergence

In this section we analyze the convergence properties of the nonsmooth trust-region
algorithm.

3.1 Convergence of the inner loop

We start by proving finiteness of the inner loop with counter k. Since the outer
loop counter j is fixed, we simplify notation and write x = xj for the current
serious iterate, and x+ = xj+1 for the next serious iterate, which is the result of
the inner loop.

Lemma 1 There exists a constant σ > 0 depending only on θ ∈ (0, 1), M > 0,
and the norm ‖ · ‖, such that for every trial point zk at inner loop instant k,
associated with the solution yk of the tangent program, and for the corresponding
aggregate subgradient g∗k, we have

f(x)− φk(zk, x) ≥ σ‖g∗k‖‖x− zk‖. (6)
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Algorithm 1 Nonsmooth trust-region method

Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ ≤ 1, 0 < θ � 1, M ≥ 1.

. Step 1 (Initialize outer loop). Choose initial iterate x1 ∈ C. Initialize memory trust-

region radius as R]1 > 0. Put j = 1.

� Step 2 (Stopping test). At outer loop counter j, stop if xj is a critical point of (1).
Otherwise, goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize trust-

region radius as R1 = R]j . Build initial working model φ1(·, xj) based on G1, where at

least (f(xj), g0j) ∈ G1 for some where g0j ∈ ∂f(xj). Possibly enrich G1 by recycling some
of the planes from the previous serious step.

. Step 4 (Trial step generation). At inner loop counter k find solution yk of the tangent
program

minimize φk(y, xj)
subject to y ∈ C

‖y − xj‖ ≤ Rk
Then compute any trial step zk ∈ C ∩B(xj ,M‖xj − yk‖) satisfying f(xj)−φk(zk, xj) ≥
θ
(
f(xj)− φk(yk, xj)

)
.

� Step 5 (Acceptance test). If

ρk =
f(xj)− f(zk)

f(xj)− φk(zk, xj)
> γ,

put xj+1 = zk (serious step), quit inner loop and goto step 8. Otherwise (null step),
continue inner loop with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·, xj) = ak+gTk (·−xj) of

f at the null step zk at counter k belonging to the current serious step xj . Add (ak, gk)
to Gk+1. Possibly taper out Gk+1 by removing some of the older inactive planes in Gk.
Build φk+1 based on Gk+1.

� Step 7 (Update trust-region radius). Compute secondary control parameter

ρ̃k =
f(xj)− φ(zk, xj)

f(xj)− φk(zk, xj)

and put

Rk+1 =

{
Rk if ρ̃k < γ̃,
1
2
Rk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.

� Step 8 (Update memory radius). Store new memory radius

R]j+1 =

{
Rk if ρk < Γ,

2Rk if ρk > Γ.

Increase outer loop counter j and loop back to step 2.

Proof 1) Let ‖ · ‖ be the norm used in the trust-region tangent program, | · | the
standard Euclidean norm. There exists ε > 0 such that |u| ≤ ε implies ‖u‖ ≤ 1.
Now if ‖u‖ = 1 and if v is in the normal cone to the ‖ · ‖-unit ball at u, we
have vT (u − u′) ≥ 0 for every ‖u′‖ ≤ 1 by the normal cone criterion. Hence
vT (u− u′) ≥ 0 for every |u′| ≤ ε by the above, and using u′ = εv/|v| that implies
vTu ≥ ε|v|.
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2) Since yk is an optimal solution of (2), we have 0 = g∗k + vk, where g∗k ∈
∂ (φk(·, x) + iC) (yk) and vk a normal vector to the ‖ · ‖-norm ball B(x,Rk) at yk.
By the subgradient inequality,

g∗Tk (x− yk) ≤ φk(x, x)− φk(yk, x) = f(x)− φk(yk, x).

Now by part 1), on putting uk = (yk − x)/‖yk − x‖, we have vTk uk ≥ ε|vk|
independently of k, because vk, being normal to the ‖ · ‖-ball of radius ‖yk − x‖
and center 0 at yk − x, is also normal to the ‖ · ‖-unit ball at uk. But then
g∗Tk (x − yk) = vTk (yk − x) ≥ ε|vk|‖yk − x‖ ≥ ε2‖vk‖‖yk − x‖ = ε2‖g∗k‖‖yk − x‖.
Invoking (3) for the trial point zk, and using ‖x − zk‖ ≤ M‖x − yk‖, we get (6)
with σ = ε2θM−1. �

Lemma 2 Suppose the inner loop at x with trial point zk at inner loop counter
k and solution yk of the tangent program (2) turns infinitely, and the trust-region
radius Rk stays bounded away from 0. Then x is a critical point of (1).

Proof We have ρk < γ for all k. Since lim infk→∞Rk > 0, and since according to
(5) the trust-region radius is reduced when ρ̃k ≥ γ̃, and is never increased during
the inner loop, we conclude that there exists k0 such that ρ̃k < γ̃ for all k ≥ k0,
and Rk = Rk0

> 0 for all k ≥ k0.
As zk, yk ∈ B(x,Rk0

), we can extract an infinite subsequence k ∈ K such that
zk → z, yk → y, k ∈ K. Now consider k ∈ K and its predecessor k′ ∈ K, k′ < k.
Since the cutting plane drawn at zk

′
contributes to φk, we have φk(zk

′
, x) =

φ(zk
′
, x) → φ(z, x). Since the working models are minorants of the ideal model

φ, they have a common Lipschitz constant L > 0 on the compact set B(x,Rk0
),

i.e., |φk(zk, x) − φk(zk
′
, x)| ≤ L‖zk − zk

′
‖ for all k′, k ∈ K. Since zk − zk

′
→ 0

and φk(zk
′
, x) → φ(z, x) by what was observed above, we deduce φk(zk, x) →

φ(z, x). Therefore the numerator and denominator in the quotient ρ̃k both converge
to φ(x, x) − φ(z, x), k ∈ K. Since ρ̃k < γ̃ < 1 for all k, this could only mean
φ(x, x)− φ(z, x) = 0.

Now by condition (3) we have

φ(x, x)− φk(yk, x) ≤ θ−1
(
φ(x, x)− φk(zk, x)

)
→ 0,

hence lim supk∈K φ(x, x) − φk(yk, x) ≤ 0. On the other hand, φk(yk, x) ≤ φ(x, x)

since yk solves the tangent program, hence φk(yk, x)→ φ(x, x), too.
By the necessary optimality condition for the tangent program (2) there exist

pk ∈ ∂1φk(yk, x) and a normal vector qk to C∩B(x,Rk0
) at yk such that 0 = pk+

qk. By boundedness of the yk and local boundedness of the subdifferential, see e.g.
[13, Prop. 2.1.2] or [41], the sequence pk is bounded, and hence so is the sequence
qk. Passing to yet another subsequence k ∈ K′ ⊂ K, we may assume pk → p,
qk → q, and by upper semi-continuity of the subdifferential, p ∈ ∂1φ(y, x), while q
is in the normal cone to C ∩B(x,Rk0

) at y. Since 0 = p+ q, we deduce that y is a
critical point of the optimization program min{φ(y, x) : y ∈ C ∩ B(x,Rk0

)}, and
since this is a convex program, y is a minimum. But from the previous argument
we have seen that φ(y, x) = φ(x, x), and since x is admissible for that program, it
is also a minimum. A simple convexity argument now shows that x is a minimum
of (2), and by axiom (M1) x is then a critical point of (1). �
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Remark 14 Note that the argument in Lemma 2 remains valid if we take the
cutting plane at yk instead of zk. That gives our method additional flexibility.

Lemma 3 Suppose the inner loop at x with trial point zk and solution yk of the
tangent program at inner loop counter k turns forever, and lim infk→∞Rk = 0.
Then x is a critical point of (1).

Proof This proof uses (6) obtained in Lemma 1. We are in the case where ρ̃k ≥ γ̃
for infinitely many k ∈ N . Since Rk is never increased in the inner loop, we have
Rk → 0 by rule (5). Hence yk, zk → x as k →∞.

We claim that φk(zk, x)→ f(x). Indeed, we clearly have lim supk→∞ φk(zk, x) ≤
lim supk→∞ φ(zk, x) = limk→∞ φ(zk, x) = f(x). On the other hand, the exactness
plane m0(·, x) = f(x) + gT0 (· − x) is an affine minorant of φk(·, x) at all times
k, hence f(x) = limk→∞m0(zk, x) ≤ lim infk→∞ φk(zk, x), and the two together
show φk(zk, x)→ f(x).

By condition (6) we have f(x) − φk(zk, x) ≥ σ‖g∗k‖‖x − zk‖, where g∗k ∈
∂ (φk(·, x) + iC) (yk) is the aggregate subgradient, and where σ is independent of
k. Now assume that ‖g∗k‖ ≥ η > 0 for all k. Then f(x)− φk(zk, x) ≥ ση‖x− zk‖.

Since zk → x, using axiom (M2) there exist εk → 0+ such that f(zk) −
φ(zk, x) ≤ εk‖x− zk‖. But then

ρ̃k = ρk +
f(zk)− φ(zk, x)

f(x)− φk(zk, x)
≤ ρk +

εk‖x− zk‖
ση‖x− zk‖ = ρk + εk/(ση).

Since εk → 0, ρk < γ, we have lim supk→∞ ρ̃k ≤ γ < γ̃, contradicting the fact that
ρ̃k > γ̃ for infinitely many k. Hence ‖g∗k‖ ≥ η > 0 was impossible.

Select k ∈ K such that g∗k → 0. Write g∗k = pk + qk with pk ∈ ∂1φk(yk, x) and
qk ∈ NC(yk). Using boundedness of the yk, and hence boundedness of the pk, we
extract another subsequence k ∈ K′ such that pk → p, qk → q. Since yk → x,
we have q ∈ NC(x). We argue that p ∈ ∂f(x). Indeed, for any test vector h the
subgradient inequality gives

pTk h ≤ φk(yk + h, x)− φk(yk, x) ≤ φ(yk + h, x)− φk(yk, x).

Since φk(yk, x)→ f(x) = φ(x, x), passing to the limit gives

pTh ≤ φ(x+ h, x)− φ(x, x),

proving p ∈ ∂1φ(x, x) ⊂ ∂f(x) by axiom (M1). Since p + q = 0, this proves that
x is a critical point of (1). �

Remark 15 For polyhedral φk one can limit the size of the sets Gk to |Gk| ≤ n+ 2.
Namely, if (ak, gk) represents the cutting plane at null step zk and (a∗k, g

∗
k) the

aggregate plane at the corresponding solution yk of the tangent program, then
by Carathéodory’s theorem we can find Gk+1 of size at most n + 2 such that the
convex hull of Gk+1 coincides with the convex hull of Gk ∪ {(ak, gk), (a∗k, g

∗
k)}. As

Lemma 4 below shows, finiteness of the inner loop can then still be guaranteed.
This estimate n + 2 is pessimistic, an efficient heuristic method is to remove

from Gk inactive cuts as well as a certain number of active cuts and represent those
by the aggregate plane, which is added to Gk+1.
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Remark 16 In the bundle method with proximity control, Kiwiel’s aggregate sub-
gradient [29] allows a rigorous theoretical limit |Gk| ≤ 3, even though in practice
one keeps more cuts in Gk. It is not known whether Kiwiel’s argument can be
extended to the trust-region case, see also [42, Ch. 7.5] for a discussion.

Lemma 4 Suppose |Gk| ≤ n + 2, and let zk be a null step with associated so-
lution yk of the tangent program. Let (ak, gk) represent the cutting plane at zk

and (a∗k, g
∗
k) the aggregate plane at yk. Then we can build a set of cuts Gk+1 such

that co(Gk+1) = co (Gk ∪ {(ak, gk), (a∗k, g
∗
k)}), |Gk+1| ≤ n + 2, and such that the

conclusions of Lemmas 2 and 3 remain valid for the working model based on Gk+1.

Proof From Carathéodory’s theorem we get Gk+1 of size at most n+ 2 such that
the convex hull of Gk+1 coincides with that of Gk ∪ {(a∗k, g∗k), (ak, gk)}. Since the
planes in Gk are affine minorants of φ, the same remains true in Gk+1, because
(ak, gk), (a∗k, g

∗
k) are also affine minorant of φ(·, x). Now build φk+1 from Gk+1,

then what is needed in the proofs of Lemmas 2, 3 is that φk+1(yk, x) ≥ φk(yk, x)
and φk+1(zk, x) = φ(zk, x), which we now check.

Since the aggregate plane belongs to the set Gk ∪ {(ak, gk), (a∗k, g
∗
k)}, there

exists a convex combination (a∗k, g
∗
k) =

∑n+2
i=1 λi(ai, gi) with (ai, gi) ∈ Gk+1.

Then φk(yk, x) = m∗k(yk, x) = a∗k + g∗Tk (yk − x) =
∑n+2
i=1 λi

(
ai + gTi (yk − x)

)
≤∑n+2

i=1 λiφk+1(yk, x) = φk+1(yk, x) proving the first inequality. A similar argument

showing φk+1(zk, x) = φ(zk, x) applies to the cutting plane. �

3.2 Convergence of the outer loop

In this section we prove convergence of the outer loop. This is where axiom (M̂2)
will be required.

Theorem 1 Suppose that f has a strict first-order model φ. Let x1 ∈ C be such
that {x ∈ C : f(x) ≤ f(x1)} is bounded. Let xj ∈ C be the sequence of iterates
generated by Algorithm 1 based on φ. Then every accumulation point x∗ of the xj

is a critical point of (1).

Proof 1) Without loss we consider the case where the algorithm generates an
infinite sequence xj ∈ C of serious iterates. Suppose that at outer loop counter j
the inner loop finds a successful trial step at inner loop counter kj , that is, zkj =
xj+1, where the corresponding solution of the tangent program is x̃j+1 = ykj .
Then ρkj

≥ γ, which means

f(xj)− f(xj+1) ≥ γ
(
f(xj)− φkj

(xj+1, xj)
)
. (7)

Moreover, by condition (3) we have ‖x̃j+1 − xj‖ ≤M‖xj+1 − xj‖ and

f(xj)− φkj
(xj+1, xj) ≥ θ

(
f(xj)− φkj

(x̃j+1, xj)
)
, (8)

and combining (7) and (8) gives

f(xj)− f(xj+1) ≥ γθ
(
f(xj)− φkj

(x̃j+1, xj)
)
. (9)
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Since ykj = x̃j+1 is a solution of the kjth tangent program (2) of the jth inner
loop, there exist g∗j ∈ ∂

(
φkj

(·, xj) + iC
)

(x̃j+1) and a unit normal vector vj to the

ball B(xj , Rkj
) at x̃j+1 such that

g∗j + ‖g∗j ‖vj = 0. (10)

Consider an accumulation point x∗ of the sequence of serious iterates xj , and a
subsequence j ∈ J such that xj → x∗. We have to show that x∗ is critical. We
shall now analyze two types of infinite subsequences j ∈ J , those where the trust-
region constraint is active at x̃j+1 and the Lagrange multiplier of the trust-region
constraint is nonzero, i.e. g∗j 6= 0 in (10), and those where the Lagrange multiplier
of the trust-region constraint vanishes, i.e., g∗j = 0 in (10).

2) Let us start with the simpler case of an infinite subsequence xj , j ∈ J , where
the Lagrange multiplier of the trust-region constraint vanishes, i.e., g∗j = 0 in (10).

That occurs either when ‖xj− x̃j+1‖ < Rkj
, i.e., where the trust-region constraint

is inactive, or when it is active but with vanishing multiplier. Now there exist
pj ∈ ∂1φkj

(x̃j+1, xj) and qj ∈ NC(x̃j+1) such that

0 = g∗j = pj + qj .

By the subgradient inequality, applied to pj ∈ ∂φkj
(·, xj)(x̃j+1), we have

−qTj (xj − x̃j+1) = pTj (xj − x̃j+1) ≤ φkj
(xj , xj)− φkj

(x̃j+1, xj)

= f(xj)− φkj
(x̃j+1, xj)

≤ γ−1θ−1
(
f(xj)− f(xj+1)

)
,

using (9). Since pTj (xj − x̃j+1) = qTj (x̃j+1 − xj) ≥ 0 by the normal cone criterion,

we deduce summability
∑
j∈J p

T
j (xj−x̃j+1) <∞ from telescoping of the last term

above, hence pTj (xj − x̃j+1)→ 0, j ∈ J , and then also qTj (xj − x̃j+1)→ 0. Passing

to a subsequence, we may assume pj → p, qj → q, and x̃j+1 → x̃.
Let h be any test vector, then from the subgradient inequality,

pTj h ≤ φkj
(x̃j+1 + h, xj)− φkj

(x̃j+1, xj)

≤ φ(x̃j+1 + h, xj)− f(xj) + f(xj)− φkj
(x̃j+1, xj)

≤ φ(x̃j+1 + h, xj)− f(xj) + γ−1θ−1
(
f(xj)− f(xj+1)

)
.

Now let h′ be another test vector and put h = xj − x̃j+1 + h′. On substituting
this expression we obtain

pTj (xj − x̃j+1) + pTj h
′ ≤ φ(xj + h′, xj)− f(xj) + γ−1θ−1

(
f(xj)− f(xj+1)

)
.

Passing to the limit in suitable convergent subsequences, we have pTj (xj− x̃j+1)→
0 by the above, and f(xj)−f(xj+1)→ 0 by the construction of the descent method.
Moreover, lim supj∈J φ(xj +h′, xj) ≤ φ(x∗+h′, x∗) by xj → x∗, axiom (M3), and
pj → p. That shows

pTh′ ≤ φ(x∗ + h′, x∗)− f(x∗) = φ(x∗ + h′, x∗)− φ(x∗, x∗).
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Since h′ was arbitrary and φ(·, x∗) is convex, we deduce p ∈ ∂1φ(x∗, x∗), hence
p ∈ ∂f(x∗) by axiom (M1).

Now we have to show that q ∈ NC(x∗). Since qTj (xj − x̃j+1) → 0, we have

qT (x∗ − x̃) = 0. Now for any element x ∈ C we have qT (x̃− x) ≥ 0 by the normal
cone criterion. Hence qT (x∗ − x) = qT (x̃ − x) + qT (x∗ − x̃) = qT (x̃ − x) ≥ 0, so
the normal cone criterion holds also at x∗, proving q ∈ NC(x∗). We have shown
that 0 = p+ q ∈ ∂ (φ(·, x∗) + iC) (x∗), hence x∗ is a critical point of (1).

3) Let us now consider the more complicated case of an infinite subsequence,
where ‖xj−x̃j+1‖ = Rkj

with g∗j 6= 0, corresponding to the case of a non-vanishing

multilplier in (10). Recall that xj → x∗, j ∈ J , and that we have to show that x∗

is critical.
As a consequence of Lemma 1 we have

f(xj)− φkj
(x̃j+1, xj) ≥ σ‖g∗j ‖‖xj − x̃j+1‖ (11)

for a constant σ > 0 depending only on the norm ‖ · ‖, and therefore independent
of j. Combining this with (9) gives

‖g∗j ‖‖xj − x̃j+1‖ ≤ σ−1γ−1θ−1
(
f(xj)− f(xj+1)

)
.

Summing both sides from j = 1 to j = J gives

J∑
j=1

‖g∗j ‖‖xj − x̃j+1‖ ≤ σ−1γ−1θ−1
(
f(x1)− f(xJ+1)

)
.

Since the values f(xj) are decreasing and {x ∈ C : f(x) ≤ f(x1)} is bounded, the
sequence xj must be bounded. We deduce that the right hand side is bounded,
hence the series on the left converges:

∞∑
j=1

‖g∗j ‖‖xj − x̃j+1‖ <∞. (12)

In particular, this implies ‖g∗j ‖‖xj−x̃j+1‖ → 0. Using ‖xj−xj+1‖ ≤M‖xj−x̃j+1‖,
we also have ‖g∗j ‖‖xj − xj+1‖ → 0.

We shall now have to distinguish two subcases. Either Rkj
≥ R0 > 0 for some

R0 > 0 and all j ∈ J , or there exists a subsequence J ′ ⊂ J such that Rkj
→ 0 as

j ∈ J ′. The first case is discussed in 4), the second case will be handled in 5) - 6).
4) Let us consider the sub-case of an infinite subsequence j ∈ J where ‖xj −

x̃j+1‖ = Rkj
≥ R0 > 0 for every j ∈ J . Going back to (12), we see that we

now must have g∗j → 0, as xj − x̃j+1 6→ 0. Let us write g∗j = pj + qj , where

pj ∈ ∂1φkj
(x̃j+1, xj) and qj ∈ NC(x̃j+1). Then by the subgradient inequality and

(9) we have

pTj (xj − x̃j+1) ≤ φkj
(xj , xj)− φkj

(x̃j+1, xj) ≤ γ−1θ−1
(
f(xj)− f(xj+1)

)
.

Now g∗Tj (xj−x̃j+1) = pTj (xj−x̃j+1)+qTj (xj−x̃j+1) ≤ pTj (xj−x̃j+1), because the

normal cone criterion for x̃j+1 ∈ C and qj ∈ NC(x̃j+1) gives qTj (x̃j+1 − xj) ≥ 0.
Hence we have

g∗Tj (xj − x̃j+1) ≤ pTj (xj − x̃j+1) ≤ γ−1θ−1
(
f(xj)− f(xj+1)

)
,
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so pTj (xj − x̃j+1) → 0, because the lefthand term and the righthand term both

converge to 0. As a consequence, we also have qTj (xj − x̃j+1)→ 0.

Now observe that the sequence xj ∈ C is bounded, because {x ∈ C : f(x) ≤
f(x1)} is bounded and the xj form a descent sequence for f . Let us say ‖x1−xj‖ ≤
K for all j. We argue that the sequence pj is then also bounded. This can be shown
as follows. Let h be a test vector with ‖h‖ = 1. Then

pTj h ≤ φkj
(x̃j+1 + h, xj)− φkj

(x̃j+1, xj)

≤ φ(x̃j+1 + h, xj)−m0j(x̃
j+1, xj)

= φ(x̃j+1 + h, xj)− f(xj)− gT0j(x̃j+1 − xj)

≤ C1 + C2 + ‖g0j‖‖xj − x̃j+1‖,

where C1 := max{φ(u, v) : ‖u − x1‖ ≤ MK + 1, ‖v − x1‖ ≤ K} < ∞ and
C2 = max{|f(xj)| : j ∈ N}, and where g0j ∈ ∂f(xj) by the definition of the
exactness plane at xj . But observe that ∂f is locally bounded by [13, Prop. 2.1.2],
[41], so ‖g0j‖ ≤ K′ <∞. We deduce ‖pj‖ ≤ C1 +C2 +K′(2K +M) <∞. Hence
the sequence pj is bounded, and since g∗j = pj+qj → 0 by the above, the sequence
qj is also bounded.

Therefore, on passing to a subsequence j ∈ J ′, we may along with the standing
xj → x∗ also assume that x̃j+1 → x̃, pj → p, qj → q. Then q ∈ NC(x̃). Now from
the subgradient inequality

pTj h ≤ φkj
(x̃j+1 + h, xj)− φkj

(x̃j+1, xj)

≤ φ(x̃j+1 + h, xj)− f(xj) + f(xj)− φkj
(x̃j+1, xj)

≤ φ(x̃j+1 + h, xj)− φ(xj , xj) + γ−1θ−1
(
f(xj)− f(xj+1)

)
,

where we use (9), φkj
≤ φ, and acceptance ρkj

≥ γ, and where the test vector h

is arbitrary. Let h′ another test vector and put h = xj − x̃j+1 + h′. Substituting
this gives

pTj (xj − x̃j+1) + pTj h
′ ≤ φ(xj + h′, xj)− φ(xj , xj) + γ−1θ−1

(
f(xj)− f(xj+1)

)
.

(13)
Now pTj (xj−x̃j+1) = (pj+qj)

T (xj−x̃j+1)+qTj (x̃j+1−xj) ≥ (pj+qj)
T (xj−x̃j+1)

using the normal cone criterion for qj ∈ NC(x̃j+1). Therefore, on passing to the
limit in (13), using (pj + qj)

T (xj − x̃j+1)→ 0, f(xj)− f(xj+1)→ 0, pj → p and
lim supj∈J ′ φ(xj+h′, xj) ≤ φ(x∗+h′, x∗), which follows from axiom (M3), we find

pTh′ ≤ φ(x∗ + h′, x∗)− φ(x∗, x∗).

Since h′ was arbitrary and φ(·, x∗) is convex, we deduce p ∈ ∂1φ(x∗, x∗), and by
axiom (M1), p ∈ ∂f(x∗).

It remains to show q ∈ NC(x∗). Now recall that qTj (xj − x̃j+1) → 0 was

shown at the beginning of part 4), so qT (x∗ − x̃) = 0. Given any test element
x ∈ C, the normal cone criterion for q ∈ NC(x̃) gives qT (x̃ − x) ≥ 0. But then
qT (x∗−x) = qT (x̃−x)+qT (x∗− x̃) = qT (x̃−x) ≥ 0, so the normal cone criterion
also holds for q at x∗, proving q ∈ NC(x∗).
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With q ∈ NC(x∗) and p + q = 0, we have shown that x∗ is a critical point
of (1). That settles the case where the trust-region radius is active and bounded
away from 0.

5) It remains to discuss the most complicated sub-case of an infinite subse-
quence j ∈ J , where the trust-region constraint is active with non-vanishing mul-
tiplier, and Rkj

→ 0. This needs two sub-sub-cases. The first of these is a sequence
j ∈ J where in each jth outer loop the trust-region radius was reduced at least
once. The second sub-sub-case are infinite subsequences where the trust-region
radius stayed frozen (R]j = Rkj

) throughout the jth inner loop for every j ∈ J .
This is discussed in 6) below.

Let us first consider the case of an infinite sequence j ∈ J where Rkj
is active

at x̃j+1, and Rkj
→ 0, j ∈ J , and during the jth inner loop the trust-region radius

was reduced at least once. Suppose this happened the last time before acceptance
at inner loop counter kj − νj for some νj ≥ 1. Then for j ∈ J ,

Rkj
= Rkj−1 = · · · = Rkj−νj+1 = 1

2Rkj−νj .

By step 7 of the algorithm, that implies

ρ̃kj−νj ≥ γ̃, ρkj−νj < γ.

Now ‖xj+1 − xj‖ ≤ Rkj
and ‖zkj−νj − xj‖ ≤ MRkj−νj−1 = 2MRkj

, hence

xj+1 − zkj−νj → 0, xj − zkj−νj → 0, j ∈ J ′′. From axiom (M̂2) we deduce that
there exists a sequence εj → 0+ such that

f(zkj−νj ) ≤ φ(zkj−νj , xj) + εj‖zkj−νj − xj‖.

By the definition of the aggregate subgradient g̃j ∈ ∂
(
φkj−νj (·, xj) + iC

)
(ykj−νj )

at ykj−νj and by Lemma 1 we have f(xj) − φkj−νj (zkj−νj , xj) ≥ σ‖g̃j‖‖xj −
zkj−νj‖ for a constant σ independent of j. Now recall that xj → x∗ and that we
have to show that x∗ is critical. It suffices to show that there is a subsequence
j ∈ J ′ with g̃j → 0. This argument uses the fact that zkj−νj − xj → 0.

Assume on the contrary that ‖g̃j‖ ≥ η > 0 for every j ∈ J . Then

f(xj)− φkj−νj (zkj−νj , xj) ≥ ησ‖zkj−νj − xj‖.

Now

ρ̃kj−νj = ρkj−νj +
f(zkj−νj )− φ(zkj−νj , xj)

f(xj)− φkj−νj (zkj−νj , xj)
≤ ρkj−νj +

εj‖zkj−νj − xj‖
ησ‖zkj−νj − xj‖

< γ̃

for j ∈ J sufficiently large, contradicting ρ̃kj−νj ≥ γ̃. This shows that there must
exist a subsequence J ′ such that g̃j → 0, j ∈ J ′. Passing to the limit j ∈ J ′, this
shows 0 ∈ ∂ (φ(·, x∗) + iC) (x∗), hence x∗ is critical for (1).

6) Now consider an infinite subsequence j ∈ J where xj → x∗, the trust-region
radius Rkj

was active at x̃j+1 with non-zero multiplier when xj+1 was accepted,
Rkj
→ 0, but during the jth inner loop the trust-region radius was never reduced.

In the classical case this can only happen when xj+1 at j is immediately accepted,
but with bundling this could also happen when the inner loop adds cutting planes
for a time, while the test in step 7 keeps Rk+1 = Rk in the inner loop. Since
Rkj
→ 0, the work to bring the radius to 0 must be put about somewhere else.
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For every j ∈ J define j′ ∈ N to be the largest index j′ < j such that in the j′th
inner loop, the trust-region radius was reduced at least once. Let J ′ = {j′ : j ∈ J},
where we understand j 7→ j′ as a function. Passing to a subsequence of J, J ′, we
may assume that xj

′
→ x′ and g∗j′ → 0, because the sequence J ′ corresponds to

one of the cases discussed in parts 2) - 5). Passing to yet another subsequence, we
may arrange that the sequences J, J ′ are interlaced. That is, j′ < j < j′+ < j+ <
j′++ < j++ < · · · → ∞. This is because j′ tends to ∞ as a function of j.

Now assume that there exists η > 0 such that ‖g∗j ‖ ≥ η for all j ∈ J . Then

since xj → x∗, we also have xj+1 → x∗ due to (12). Fix ε > 0 with ε < η. For
j ∈ J large enough we have ‖g∗j′‖ < ε, because g∗j′ → 0, j′ ∈ J ′, and as j gets
larger, so does j′. That means in the interval [j′, j) there exists an index j′′ ∈ N
such that

‖g∗j′′‖ < ε, ‖g∗i ‖ ≥ ε for all i = j′′ + 1, . . . , j.

The index j′′ may coincide with j′, it might also be larger, but it precedes j. In
any case, j 7→ j′′ is again a function on J and defines another infinite index set
J ′′ still interlaced with J .

Now recall from part 3), estimate (12), and ‖xj−xj+1‖ ≤M‖xj− x̃j+1‖, that
for some constant c > 0

j∑
i=j′′+1

‖g∗i ‖‖xi−xi+1‖ ≤ c
(
f(xj

′′+1)− f(xj+1)
)
→ 0 (j ∈ J, j →∞, j 7→ j′′).

Since by construction ‖g∗i ‖ ≥ ε for all i ∈ [j′′ + 1, . . . , j], and that for all j ∈ J ,
the sequence

∑j
i=j′′+1 ‖x

i − xi+1‖ → 0 converges as j ∈ J, j → ∞, and by the

triangle inequality, xj
′′+1 − xj+1 → 0. Therefore xj

′′+1 → x∗. Since g∗j′′ ∈ ∂(f +

iC)(xj
′′+1), passing to yet another subsequence and using upper semi-continuity

of the subdifferential, we get g∗j′′ → g∗ ∈ ∂(f + iC)(x∗). Since ‖g∗j′′‖ < ε, we have
‖g∗‖ ≤ ε. It follows that ∂(f+ iC)(x∗) contains an element g∗ of norm less than or
equal ε. As ε < η was arbitrary, we conclude that 0 ∈ ∂(f + iC)(x∗). That settles
the remaining case. �

4 Stopping test

A closer look at the convergence proof indicates stopping criteria for Algorithm 1.
As is standard in bundle methods, step 2 is not executed as such but delegated to
the inner loop. When a serious step xj+1 is accepted, we apply the tests

‖xj − xj+1‖
1 + ‖xj‖ < tol1,

f(xj)− f(xj+1)

1 + |f(xj)| < tol2

in tandem with

min{‖PC(−g∗j )‖, ‖PC(−g∗j′)‖, ‖PC(−g̃j)‖}
1 + |f(xj)| < tol3.

Here g∗j is the aggregate subgradient at acceptance kj . In the case treated in part
6) of the proof we had to consider the largest index j′ < j, where the trust-region
radius was reduced for the last time, and g∗j′ was the aggregate subgradient at
that index j′ < j. This explains the second projected gradient.
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The third projected aggregate concerns the case discussed in part 5) of the
proof. This is a subsequence J such that for every j ∈ J the trust-region radius
was reduced at least once and Rj → 0. Here we have to take the last aggregate
g̃j ∈ ∂1

(
φkj−νj (·, xj) + iC

)
(ykj−νj ) before reduction into account, hence the third

term. If the three criteria are satisfied, then we return xj+1 as our candidate for
the optimal solution.

On the other hand, when the inner loop has difficulties finding a new serious
iterate, and if a maximum number kmax is exceeded, or if for νmax consecutive
steps

‖xj − zk‖
1 + ‖xj‖ < tol1,

f(xj)− f(zk)

1 + |f(xj)| < tol2

in tandem with
‖PC(−g∗k)‖
1 + |f(xj)| < tol3

are satisfied, where g∗k is the aggregate subgradient at yk, then the inner loop is
stopped and xj is returned as optimal. In our tests we use kmax = 50, νmax = 5,
tol1 = tol2 = 10−5, tol3 = 10−6. Typical values in Algorithm 1 are γ = 0.0001,
γ̃ = 0.0002, Γ = 0.1.

5 Applications

In this section we highlight the potential of the model-based trust-region approach
by presenting several applications.

5.1 Full model versus working model

Our convergence theory covers the specific case φk = φ, which we call the full
model case. Here the algorithm simplifies, because cutting planes are redundant,
so that step 6 becomes obsolete. Moreover, in step 7 the quotient ρ̃k always equals
1, so the only action taken is reduction of the trust-region radius. This is now close
to the rationale of the classical trust-region method.

5.2 Natural model

For a composite function f = g ◦ F with g convex and F of class C1 the natural
model is φ(y, x) = g

(
F (x) + F ′(x)(y − x)

)
, because φ is strict and can be used in

Algorithm 1. In the full model case φk = φ, our algorithm reduces to the algorithm
of Ruszczyński [42, Chap. 7.5] for composite nonsmooth functions.

5.3 Spectral model

An important field of applications, where the natural model often comes into
action, is eigenvalue optimization

minimize λ1 (F(x))
subject to x ∈ C (14)
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where F : Rn → Sm is a class C1-mapping into the space of m × m sym-
metric or Hermitian matrices Sm, and λ1(·) the maximum eigenvalue func-
tion on Sm, which is convex but nonsmooth. Here the natural model is
φ(y, x) = λ1

(
F(x) + F ′(x)(y − x)

)
, where F ′ is the differential of F . Every

nonlinear semidefinite program

minimize f(x)
subject to F(x) � 0

x ∈ C
(15)

can be cast as a special cases of (14) if exact penalization is used. We write (15)
in the form

minimize f(x) + cmax {0, λ1 (F(x))}
subject to x ∈ C

with a suitable c > 0. Namely, this new objective may be written as the maximum
eigenvalue of the mapping

F](x) =

[
f(x) 0

0 f(x)Im + cF(x)

]
∈ S1+m.

Let us apply the bundling idea to (14) using the natural model φ. Here we
may build working models φk generated by infinite sets Gk of cuts (a, g) from φ,
and still arrive at a computable tangent program. Indeed, suppose for simplicity
that yk = zk is a null step at serious iterate x. According to step 6 of Algorithm
1 we have to generate one or several cutting planes at yk. This means we have to
compute gk ∈ ∂λ1

(
F(x) + F ′(x)(· − x)

)
(yk). Now by the generalized chain rule

the subdifferential of the composite function y 7→ λ1
(
F(x) + F ′(x)(y − x)

)
at y

is F ′(x)∗∂λ1
(
F(x) + F ′(x)(y − x)

)
, where ∂λ1 is now the convex subdifferential

of λ1 in matrix space Sm, i.e.,

∂λ1(X) = {G ∈ Sm : G � 0, tr(G) = 1, G •X = λ1(X)}

with X • Y = tr(XY ) the scalar product in Sm. Here F ′(x)∗ : Sm → Rn is the
adjoint of the linear operator F ′(x). It follows that every subgradient g of the
composite function is of the form

g = F ′(x)∗G, G ∈ ∂λ1
(
F(x) + F ′(x)(y − x)

)
. (16)

The corresponding a is a = λ1
(
F(x) + F ′(x)(y − x)

)
+ gT (x − y). As soon as

the maximum eigenvalue λ1(X) has multiplicity strictly larger than one, the set
∂λ1(X) is not singleton. This is where we may include infinitely many subgradients
into the new set Gk+1, as we indicate below.

Let yk be a null step, and let Qr be an m× tk matrix whose tk columns form
an orthogonal basis of the maximum eigenspace of F(x) + F ′(x)(yk − x). Let Yk
be a tk × tk-matrix with Yk = Y Tk , Yk � 0, tr(Yk) = 1, then subgradients (16) are
of the form Gk = QkYkQ

T
k . Therefore all pairs (ar, g(Yr)) ∈ Gk are of the form

ar = λ1
(
F(x) + F ′(x)(yr − x)

)
+ g(Yr)

T (x− yr),

g(Yr) = F ′(x)∗Gr, Gr = QrYrQ
T
r ,
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indexed by Yr � 0, tr(Yr) = 1, Yr ∈ Str stemming from older null steps r =
1, . . . , k. The trust-region tangent program is then

minimize max
r=1,...,k

ar + λ1
(
QrF ′(x)(y − x)QTr

)
subject to y ∈ C, ‖y − x‖ ≤ Rk.

(17)

This is a linear semidefinite program if a polyhedral or a conical norm is used,
and if C is a convex semidefinite constraint set. For large scale problems Helmberg
and Rendl [24] and Helmberg and Oustry [25] show how the tangent program (17)
can be limited to a practical size. See Helmberg and Kiwiel [23] for additional
information on spectral bundle methods.

We can go one step further and consider semi-infinite maximum eigenvalue
problems as in [6], as this has scope for applications in automatic control. It
allows us for instance to optimize the H∞-norm, or more general IQC-constrained
programs, see [5].

5.4 Standard model

The most straightforward choice of a model is the standard model

φ](y, x) = f(x) + f◦(x, y − x),

as it gives a direct substitute for the first-order Taylor expansion of f at x. Here
the full model tangent program (2) has the specific form

minimize f(x) + f◦(x, y − x)
subject to y ∈ C

‖y − x‖ ≤ Rk
(18)

and if a polyhedral working model φ]k is used to approximate φ] via bundling, then
we get an even simpler tangent program of the form

minimize f(x) + max
i=1,...,k

gTi (y − x)

subject to y ∈ C
‖y − x‖ ≤ Rk

(19)

where gi ∈ ∂f(x). If a polyhedral norm is used and C is a polyhedron, then (19)
is just a linear program, which makes this computationally attractive.

Remark 17 Consider the unconstrained case C = Rn with φ]k = φ], then yk = x−
Rkg(x)/‖g(x)‖, where g(x) = argmin

g∈∂f(x)
{‖g‖ : g ∈ ∂f(x)}, and this is the nonsmooth

steepest descent step of length Rk at x. In classical trust-region algorithms the
steepest descent step of length Rk is often chosen as the Cauchy step.

This raises the following question. Can we use the solution of yk of (18), or (19),
as a nonsmooth Cauchy point? In general the answer is in the negative, because
according to Theorem 1 the use of the standard model φ] in Algorithm 1 is only
authorized when φ] is strict. A sufficient condition for strictness of φ] is given in
[37]. To discuss it, we need the following definition.



Bundle trust-region algorithm 21

Definition 4 (Spingarn [47], Rockafellar-Wets [41]) A locally Lipschitz
function f : Rn → R is lower-C1 at x0 ∈ Rn if there exist a compact space K, a
neighborhood U of x0, and a mapping F : Rn ×K→ R such that

f(x) = max
y∈K

F (x, y) (20)

for all x ∈ U , and F and ∂F/∂x are jointly continuous. The function f is said to
be upper-C1 at x0 if −f is lower-C1 at x0. �

Lemma 5 (See [37]). Suppose f is locally Lipschitz and upper-C1. Then the stan-
dard model φ] of f is strict. �

Example 1 The lightning function f : R → R in [30] is an example where φ] is
strict, but f is not upper-C1. It is Lipschitz with constant 1 and has ∂f(x) = [−1, 1]
for every x. The standard model of f is strict, because for all x, y there exists
ρ = ρ(x, y) ∈ [−1, 1] such that

f(y) = f(x) + ρ|y − x| ≤ f(x) + sign(y − x)(y − x)

≤ f(x) + f◦(x, y − x) = φ](x, y − x),

using the fact that sign(y − x) ∈ ∂f(x). At the same time f is certainly not
upper-C1, because it is not semi-smooth in the sense of [34]. �

When using the standard model φ] in Algorithm 1, we expect the trust-region
method to coincide with its classical antecedent, or at least, to be very similar
to it. But we expect more. Let S be the class of nonsmooth locally Lipschitz
functions f which have a strict standard model φ]. Suppose a subclass S ′ of S
leads to simplifications of Algorithm 1 which reduce it to its classical counterpart.
Then we have a theoretical justification to say that functions f ∈ S ′, even though
nonsmooth, can be optimized as if they were smooth.

As we shall see in proposition 2 below, such simplifications occur for functions
which are densely strictly differentiable. Criteria for dense strict differentiability
are known in the literature. Following Borwein and Moors [10], a function f is
called essentially smooth if it is locally Lipschitz and strictly differentiable almost
everywhere. Nonsmooth functions arising in practice are essentially smooth as a
rule, cf. [10]. Sufficient conditions to guarantee this are for instance semi-smooth
functions in the sense of [34], arc-wise essentially smooth functions, or pseudo-
regular functions in the sense of [10].

Nonetheless, there exist locally Lipschitz functions which are nowhere strictly
differentiable. The lightning function of example 1 is a pathological case, which is
differentiable almost everywhere, but nowhere strictly differentiable.

Proposition 2 Let f be essentially smooth and suppose C has nonempty interior.
Let x1 ∈ C be such that {x ∈ C : f(x) ≤ f(x1)} is bounded. Suppose the standard
model φ] is used in Algorithm 1. Then trial points zk ∈ C satisfying (3) in step 4
may be chosen as points of strict differentiability of f . This makes the steps of the
algorithm identical with the steps of the classical first-order trust-region algorithm.
In addition, if φ] is strict, then every accumulation point of the sequence xj is
critical.
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Proof Since there exists a full neighborhood U of yk such that every zk ∈ U ∩C is
a valid trial point, and since the points of strict differentiability of f are dense in
U ∩ C, we can assure that zk is chosen as a point of strict differentiability. That
guarantees that the entire sequence xj consists of points of strict differentiability.
In consequence, the standard model at xj is φ](·, xj) = f(xj) +∇f(xj)T (· − xj).
That means cutting planes are redundant, as is the secondary test in step 7 of
the algorithm. The procedure then reduces to the classical first-order trust-region
method. Naturally, convergence is only guaranteed when φ] is strict. �

Note that we should not expect the yk themselves to be points of differentia-
bility, let alone strict differentiability. In fact the yk will typically lie in a set of
measure 0. For instance, if C is a polyhedron, then yk is typically a vertex of C,
or a vertex of the polyhedron of the linear program (19).

Proposition 2 applies in particular when f is upper-C1, because upper-C1-
functions are essentially smooth. However, for upper-C1 functions we have the
following stronger result. A similar observation in the context of bundle methods
was first made in [16].

Lemma 6 Suppose f is locally Lipschitz and upper-C1 and the standard model φ]

is used in Algorithm 1. Then we can choose the cutting plane mk(·, x) = f(x) +
gTk (·−x) in step 6 with gk ∈ ∂f(x) arbitrarily, because f◦(x, zk−x)−gTk (zk−x) ≤
εk‖zk − x‖ holds automatically for certain εk → 0+ in the inner loop at x, and
f◦(xj , xj+1−xj)− gTj (xj+1−xj) ≤ εj‖xj+1−xj‖ holds automatically for certain
εj → 0+ in the outer loop.

Proof Daniilidis and Georgiev [15, Thm. 2] prove that an upper-C1 function is
super-monotone at x in the following sense. For every ε > 0 there exists δ > 0
such that (g1−g2)T (x1−x2) ≤ ε‖x1−x2‖ for all xi ∈ U and gi ∈ ∂f(xi). Hence for
sequences xj , yj → x we find εj → 0+ such that (g∗j−gj)T (xj−yk) ≤ εj‖yj−xj‖ for

all g∗j ∈ ∂f(yj), gj ∈ ∂f(xj). Choosing g∗j such that f◦(xj , yj−xj) = g∗Tj (yj−xj)
then gives the result. �

For the following result recall from [8] that a locally Lipschitz function f :
Rn → R satisfies a Kurdyka- Lojasiewicz inequality at x0 ∈ Rn if there exist η > 0,
a neighborhood U of x0, and a concave function κ : [0, η] → [0,∞) which is of
class C1 on (0, η) such that the following conditions are satisfied.

(i) κ(0) = 0 and κ′ > 0 on (0, η).
(ii) For every x ∈ U with f(x0) < f(x) < f(x0) + η we have

κ′ (f(x)− f(x0)) dist (0, ∂f(x)) ≥ 1.

This inequality is satisfied as soon as a function f is defined in a natural way, see
[8] for details.

Theorem 2 Suppose f is upper-C1, x1 ∈ C, and {x ∈ C : f(x) ≤ f(x1)} is
bounded. Suppose the classical trust-region algorithm is used in the following sense.
The only plane in step 6 chosen at xj is an arbitrarily fixed exactness plane, and
in step 7 the trust-region radius is reduced whenever a null step occurs. Then every
accumulation point of the sequence of serious iterates xj is a critical point of (1).
Moreover, if f satisfies a Kurdyka- Lojasiewicz inequality, then the xj converge to
a single critical point x∗ of f .
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Proof By Lemma 6 the proof of Theorem 1 applies regardless how we choose
cutting planes from φ]. In particular, the present choice of taking an arbitrary
exactness plane and keeping it all the time, is covered by Lemma 6. This makes
step 6 redundant and reduces step 7 to the usual modification of the trust-region
radius. And this is now just the classical trust-region strategy, for which we then
have subsequence convergence by Theorem 1.

It remains to show that under the Kurdyka- Lojasiewicz inequality the xj con-
verge even to a single limit. This can be based on the technique of [1,7,37]. �

Remark 18 An axiomatic approach to trust-region methods is Dennis et al. [18],
and the idea is adopted in [14, Chap. 11]. The difference with our approach is that
φ in [18,14] has to be jointly continuous, while we use the weaker axiom (M3),
and that their f has to be regular, which precludes the use of the standard model
φ], hence makes it impossible to use the Cauchy point. Bundling is not discussed
in these approaches.

On the other hand, the authors of [18], [14] allow non-convex models, while in
our approach φ(·, x) is convex because we want to assure a computable tangent
program, and be able to draw cutting planes. Convexity of φ(·, x) could be relaxed
to φ(·, x) being lower-C1. For that the downshift idea [34,36] would have to be
used.

5.5 Failure of the Cauchy point

We will show by way of an example that the classical trust-region approach based
on the Cauchy point fails in the nonsmooth case. We operate Algorithm 1 with
the full standard model φ] = φ]k, compute the Cauchy point yk via (18) based on

the Euclidian norm, and use zk = yk as the trial step. This corresponds essentially
to a classical first-order trust-region method.

The following example adapted from [28] can be used to show the difficulties
with this classical scheme. We define a convex piecewise affine function f : R2 → R
as

f(x) = max{f0(x), f±1(x), f±2(x)} (21)

where x = (x1, x2) and

f0(x) = −100, f±1(x) = ±2x1 + 3x2, f±2(x) = ±5x1 + 2x2.

The plot in Figure 1 shows that part of the level curve {x : f(x) = a} for a > 0,
which lies in the upper half plane x2 ≥ 0. It consists of the polygon connecting
the five points (−a5 , 0), (− a

11 ,
3a
11 ), (0, a3 ), ( a11 ,

3a
11 ), (a5 , 0). We are interested in

that part of the lower level set {x : f(x) ≤ a}, which lies within the gray-shaded
diamond-shaped area inside the polygon {x : f(x) = a}, and above the x1-axis.

Consider the exceptional set N = ∪i6=j{x : fi(x) = fj(x) = f(x)}}, whose in-
tersection with the upper half-plane x2 ≥ 0 consists of the three lines x1 = 0,
x2 = ±3x1. Then for x 6∈ N the gradient ∇f(x) is unique. We will generate a se-
quence xj of iterates which never meets N , so that φ](y, x) = f(x)+∇f(x)T (y−x)
with ∇f(x) ∈ {±(2, 3),±(5, 2)} at all iterates xj . It will turn out that serious it-
erates xj never leave the diamond area, only trial points may.
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Fig. 1 Curve of level a > 0 of (21). Cauchy-step based trust-region iterates do not leave the
diamond-shaped area and get stalled at the origin.

Assume that our current iterate x has f(x) = a and is situated on the right
upper part of the a-diamond, shown as the blue x in the figure. That means

x = (x1,−2
3x1 + a

3 ), f(x) = a, 0 < x1 ≤ a
11 .

Then φ](y, x) = f1+(y) = 2y1+3y2. If the current trust-region radius is R =
√

13r,
then the solution of (2) is y = x + r(−2,−3) = (x1 − 2r,−2

3x1 + a
3 − 3r). If we

follow the point y as a function of r along the steepest descent line shown in blue,
we will reach the points A,B in increasing order at 0 < rA < rB . Here A is the
intersection of the steepest descent line with the x2 axis, reached at rA = x1/2.
The point B is when the ray meets the boundary of the a-diamond, which is the
line x2 = −3x1 on the left, reached at

rB = 7
27x1 + a

27 .

We have f(A) = f1+(A) = a − 17
4 x1 and f(B) = f1−(B) = −143

27 x1 + 22
2 a, and

from here on f increases along the ray. The test quotient ρ for trial points y of
this form behaves as follows

ρ =
f(xa)− f(y)

f(xa)− φ](y, xa)
=


1 if 0 < r ≤ rA
4x1+5r

13r if rA ≤ r ≤ rB
a−12r+19x1

39r if rB ≤ r <∞

The quotient is therefore constant = 1 on [0, rA], and decreasing on [rA,∞). If
we trace the quotient at the point B as a function of x1, we see that ρ = 5

13 at
x1 = 0, and ρ = 198

234 at x1 = a
11 . That means if we take the Armijo constant as

γ ∈ (198
234 , 1), then none of the points in [B,∞) is accepted, whatever x1 ∈ (0, a11 ].

Let the value r where the quotient ρ equals γ be called rγ . Then rA < rγ < rB ,
and we have rγ = 4x1

13γ−5 .

Let us for simplicity put Γ = 1. That means good steps where the trust-region
radius is doubled are exactly those in (x,A], that is, 0 < r ≤ rA. Such a step is
immediately accepted, and we stay on the right upper half of the a+-diamond,
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where a+ < a, except for the point A, which we will exclude later. We find for
0 < r < rA = x1/2:

a+ = a− 13r > 0, x+ = (x1 − 2r,−2
3x1 + a

3 − 3r) = (x+1 ,−2
3x

+
1 + a+

3 ).

Note that a = a+ for the limiting case x1 = 0, and a+ = 9
22a for the limiting case

x1 = a
11 . According to step 8 of the algorithm the trust-region radius is doubled

(R+ = 2R) for 0 < r < rA, because ρ = 1 ≥ Γ = 1.
The second case is when from the current x with f(x) = a a step withR =

√
13r

and r ∈ (rA, rγ) is taken. Then we end up on the left hand side of the diamond
with the new situation

x+ = (x1 − 2r,−2
3x1 + a

3 − 3r), f(x+) = f1−(x+) = −4x1 + a− 5r = a+.

By symmetry, this case is analogous to the initial situation, the model at x+ now
being f1−. We are now on the upper left side of the smaller a+-diamond. Since
γ ≤ ρ < Γ , the trust-region radius remains unchanged.

The third case is when r ∈ [rγ ,∞). Here the step is rejected, and the trust-
region radius is halved, until a value r < rγ is reached.

Since φ] is used and f is strictly differentiable at serious iterates, no cutting
planes are taken, and we follow the classical trust-region method. In consequence,
the serious iterates x, x+, x++, . . . stay in the diamonds a, a+, a++, . . . and con-
verge to the origin, which is not a critical point of f . Note that we have to assure
that none of the trial points y lies precisely on the x2-axis. Now it is clear that for
a given starting point x the method has a countable number of possible trial steps
yk, and we can choose the initial x1 ∈ (0, a11 ] such that the x2-axis is avoided, for

instance, by taking an irrational initial value. Alternatively, in the case where yk

hits the x2-axis, we might use rule (3) to change it slightly to a zk, which is not
on the axis. In both cases the method will never leave the diamond area, hence
convergence based on the Cauchy point fails.

6 Parametric robustness

We consider a plant P of the form

P (s) :


ẋ = Ax + Bpp + Bww
q = Cqx + Dqpp + Dqww
z = Czx + Dzpp + Dzww

, (22)

where x ∈ Rnx is the state, w ∈ Rm1 the vector of exogenous inputs, and z ∈ Rp1
the regulated output. As shown schematically in Figure 2 we put P in an upper
feedback loop Fu(P,∆) with the uncertain block ∆ via

p = ∆q, (23)

where the uncertain matrix ∆ has the block-diagonal form

∆ = diag [δ1Ir1 , . . . , δmIrm ] , (24)

with δ1, . . . , δm representing real uncertain parameters, and ri giving the number
of repetitions of these δi. We write δ = (δ1, . . . , δm) and assume without loss that



26 Apkarian, Noll, Ravanbod

∆

P wz

q p

Fig. 2 Robust system interconnection Fu(P,∆), obtained by closing the loop between (22)
and (23), where ∆ has the structure (24).

δ = 0 represents the nominal parameter value. Moreover, we consider δ ∈ Rm
in one-to-one correspondence with the matrix ∆ in (24). Note that every system
featuring real-rational uncertain parameters can be represented via such a Linear
Fractional Transform Fu(P,∆), see [50].

6.1 Worst case H∞-performance over a parameter set

Our first problem concerns analysis of the performance of the system (22)-(24)
in the presence of parametric uncertainty. In order to analyze the robustness of
(22)-(24) we compute the worst-case H∞ performance of the channel w → z over
a given uncertain parameter range normalized to ∆ = [−1, 1]m. In other words,
we compute

h∗ = max{‖Twz(δ)‖∞ : δ ∈∆}, (25)

where Twz(δ) is the transfer function z(s) = Fu(P (s),∆)w(s), or more explicitly,

z(s) =
[
P22(s) + P21(s)∆(I − P11(s)∆)−1P12(s)

]
w(s).

The significance of (25) is that computing a critical parameter value δ∗ ∈ ∆
which degrades the H∞-performance of (22)-(24) may be an important jigsaw
piece in assessing the properties of a controlled system. We refer to [2], where this
is exploited in parametric robust controller synthesis.

Solving (25) leads to a program of the form (1) if we write (25) as minimization
of h−(δ) = −‖Twz(δ)‖∞ over the convex ∆. The specific form of ∆ strongly
suggest the use of the maximum norm |δ|∞ = max{|δ1|, . . . , |δm|} to define trust-
regions. Moreover, we will use the standard model φ] of h−(δ) = −‖Twz(δ)‖∞, as
is justified by the following

Lemma 7 Let D = {δ : Tzw(δ) is internally stable}. Then h− : δ 7→ −‖Tzw(δ)‖∞
is upper-C1 on D.

Proof It suffices to prove that h+ : δ 7→ ‖Twz(δ)‖∞ is lower-C1. To prove this,
recall that the maximum singular value has the variational representation

σ(G) = sup
‖u‖=1

sup
‖v‖=1

∣∣∣uTGv∣∣∣ .
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Now observe that z 7→ |z|, being convex, is lower-C1 as a mapping R2 → R, so we
may write it as

|z| = sup
l∈L

Ψ(z, l)

for Ψ jointly of class C1 and a suitable compact set L. An explicit construction of
Ψ,L could be obtained from Spingarn [47, Thm. 3.9]. Then

h+(δ) = sup
jω∈S1

sup
‖u‖=1

sup
‖v‖=1

sup
l∈L

Ψ
(
uTTzw(δ, jω)v, l

)
, (26)

where S1 = {jω : ω ∈ R ∪ {∞}} is homeomorphic with the 1-sphere. This is a
representation of the form (20) for h+, where the compact space is K := S1 ×{u :
‖u‖ = 1} × {v : ‖v‖ = 1} × L, F is F (δ, jω, u, v, l) := Ψ

(
uTTzw(δ, jω)v, l

)
and

y = (jω, u, v, l). �

The proof also shows that the non-smoothness in h+, h− is due to the maximum
singular value and to the semi-infiniteness in the supremum over S1 in (26).

Theorem 3 (Worst-case H∞ norm on ∆) Let δj ∈∆ be the sequence gener-
ated by the standard trust-region algorithm applied to program (25) based on the
standard model of h−. Then the δj converge to a critical point δ∗ of (25).

Proof By Lemma 6 Algorithm 1 coincides with a classical first-order trust-region
algorithm, with convergence in the sense of subsequences. Convergence to a single
critical point then follows by observing that h− satisfies a  Lojasiewicz inequality.
�

6.2 Robust stability over a parameter set

In our second problem we wish to check whether the uncertain system (22)-(24) is
robustly stable over the uncertain parameter set ∆ = [−1, 1]m. This can be tested
by maximizing the spectral abscissa over ∆:

α∗ = max{α (A(δ)) : δ ∈∆}, (27)

where A(δ) is the closed-loop system matrix

A(δ) = A+Bp∆ (I −Dqp∆)−1 Cq, (28)

and where the spectral abscissa of A ∈ Rn×n is α(A) = max{Re(λ) :
λ eigenvalue of A}. As soon as α∗ ≥ 0, the solution δ∗ of (27) represents a
destabilizing choice of the parameters, and this may be valuable information in
practice, see e.g. [2]. On the other hand, if the global maximum has value α∗ < 0,
then a certificate for robust stability over δ ∈∆ is obtained.

Global maximization of (27) is NP-hard [39,11], so it is interesting to use a
local optimization method to compute good lower bounds. This can be achieved by
Algorithm 1, because (27) is clearly of the form (1) if maximization of α is replaced
by minimization of −α over ∆. In our experiment additional speed is gained by
adapting the trust-region norm |δ|∞ = max{|δ1|, . . . , |δm|} to the special form
∆ = [−1, 1]m of the set C, and the standard model φ] of a−(δ) = −α(A(δ)) is
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used. With these arrangements the method converges fast and reliably to a local
optimum, which in the majority of cases can be certified a posteriori as a global
one.

In order to justify the use of the standard model in Algorithm 1 we have to
show that a− is upper-C1, or at least that its standard model is strict. Here the
situation is more delicate than in section 6.1. We start by observing the following.

Lemma 8 Suppose all active eigenvalues of A(δ) at δ are semi-simple. Then
a−(δ) = −α (A(δ)) is Clarke subdifferentiable in a neighborhood of δ.

Proof This follows from [12]. A very concise proof that semi-simple eigenvalue
functions are locally Lipschitz could also be found in [33]. Recall that an eigenvalue
is semi-simple if its geometric and algebraic multiplicities are equal. �

That a±(δ) = ±α(A(δ)) may fail to be locally Lipschitz was first observed
in [12]. This may lead to difficulties when a+ is minimized. In our numerical
testing a−(δ) = −α (A(δ)) is minimized, and we have observed that a− behaves
consistently like an upper-C1 function. We expect a− to have a strict standard
model if all active eigenvalues of A(δ∗) are semi-simple, and in [2, Chap. V. C] it
is shown that φ] is at least directionally strict. See [35] for more information.

Theorem 4 (Worst-case spectral abscissa on ∆) Let δj ∈∆ be the sequence
generated by Algorithm 1 for program (27), where the standard model φ] of a− is
used. Suppose that at least one accumulation point δ∗ of the sequence δj is such that
every active eigenvalue at A(δ∗) is simple. Then the entire sequence δj converges
to this point δ∗, which is then a critical point of (27).

Proof We apply Theorem 1 to get convergence in the sense of subsequences, and we
use the  Lojasiewicz inequality for a− to prove that the entire sequence converges
to δ∗, see [7,37] for the argument. �

6.3 Distance to instability

Our third problem is related to the above and concerns computation of the struc-
tured distance to instability of (22)-(24). Suppose A in (22) is nominally stable,
i.e., A(δ) is stable at the nominal δ = 0. Then the structured distance to instability
is defined as

d∗ = max{d > 0 : A(δ) stable for all |δ|∞ < d}, (29)

where A(δ) is given by (28), and |δ|∞ = max{|δ1|, . . . , |δm|}. Equivalently, we may
consider the following constrained optimization program

minimize t
subject to −t ≤ δi ≤ t

α (A(δ)) ≥ 0
(30)

with decision variable x = (t, δ) ∈ Rm+1. Introducing the convex set C = {(t, δ) :
−t ≤ δi ≤ t, i = 1, . . . ,m}, this can be transformed to program (1) if we minimize
an exact penalty objective f(x) = t+cmax {0,−α (A(δ))} with a penalty constant
c > 0 over C.
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It is clear that the objective of f has essentially the same properties as a−. It
suffices to argue that ∂max{0,−α(A(δ))} = co ({0} ∪ ∂a−(δ)) at points δ where
a− is locally Lipschitz and a−(δ) = 0, with ’co’ denoting convex hull. Indeed, the
inclusion ⊂ holds in general. For the reverse inclusion it suffices to observe that
0 ∈ ∂max{0,−α(A(δ))} for those δ where a−(δ) = 0. This is clear, because 0 is a
minorant of this max function. We may then use the following

Lemma 9 Suppose f = max{f1, f2} and fi has a strict model φi. Then φ =
max{φ1, φ2} is a strict model of f at those x where ∂f(x) = co (∂f1(x) ∪ ∂f2(x)).

Proof In fact, the only axiom which does not follow immediately is (M1). We
only know ∂1φi(x, x) ⊂ ∂fi(x), so ∂1φ(x, x) = co (∂1φ1(x, x) ∪ ∂1φ2(x, x)) ⊂
co (∂f1(x) ∪ ∂f2(x)). For those x where the maximum rule is exact, this implies
indeed ∂1φ(x, x) ⊂ ∂f(x). �

This means that we can use the model φ(δ′, t′, δ, t) = t′+ cmax{0, φ](δ′, δ)} in
Algorithm 1 to solve (30), naturally with the same proviso as in section 6.2, where
we need the standard model φ] of a− to be strict.

] Benchmark n Structure h h∗ h t∗ h/h∗ twc/t∗

1 Beam1 11 133111 1.70 1.71 1.70 1.02 0.99 13.29
2 Beam2 11 133111 1.29 1.29 1.29 0.36 1 32.68
3 DC motor 1 7 1122 0.72 0.72 0.72 0.51 1.01 14.49
4 DC motor 2 7 1122 0.50 0.50 0.50 0.13 1 45.02
5 DVD driver 1 10 11331131 45.45 45.45 45.46 0.23 1 189.31
6 Four-disk system 1 16 113514 3.50 4.56 3.50 0.44 0.77 343.35
7 Four-disk system 2 16 113514 0.69 0.68 0.69 0.34 1.01 558.03
8 Four-tank system 1 12 14 5.60 5.60 5.60 0.32 1 5.72
9 Four-tank system 2 12 14 5.60 5.57 5.60 0.29 1 7.32
10 Hard disk driver 1 22 132414 243.9 7526.6 Inf 0.96 Inf 73.10
11 Hard disk driver 2 22 132414 0.03 0.03 0.03 0.20 1.12 314.92
12 Hydraulic servo 1 9 19 1.17 1.17 1.17 0.34 1 10.94
13 Hydraulic servo 2 9 19 0.7 0.70 0.7 0.33 1.01 11.69
14 Mass-spring 1 8 12 3.71 6.19 3.71 0.31 0.60 3.54
15 Mass-spring 2 8 12 6.84 6.84 7.16 0.13 1.05 7.05
16 Missile 1 35 1363 5.12 5.15 5.12 0.46 0.99 272.54
17 Missile 2 35 1363 1.83 1.82 1.83 0.22 1 1183.5
18 Filter 1 8 11 4.86 4.86 4.86 0.32 1 3.41
19 Filter 2 3 11 2.63 2.64 2.63 0.27 1 4.06
20 Filter-Kim 1 3 12 2.95 2.96 2.95 0.24 1 3.4
21 Filter-Kim 2 3 12 2.79 2.79 2.79 0.07 1 12.95
22 Satellite 1 11 116111 0.16 0.17 0.16 0.33 1 86.17
23 Satellite 2 11 116111 0.15 0.15 0.15 0.70 1 41.09
24 Mass-spring-damper 1 13 11 7.63 8.85 7.63 0.21 0.86 4.88
25 Mass-spring-damper 2 13 11 1.65 1.65 1.65 0.08 1 13.70
26 Robust Toy 1 3 1121 0.12 0.12 0.12 0.56 1 4.24
27 Robust Toy 2 3 122231 20.85 21.70 20.91 0.24 0.96 29.19

Table 1 Benchmarks for worst-case H∞-norm on ∆
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7 Experiments

In this part experiments with Algorithm 1 applied to programs (25), (27) and (29)
are reported.

7.1 Worst-case H∞-norm

We apply Algorithm 1 to program (25). Table 1 shows the result for 27 bench-
mark systems, where n is the number of states, and column 4 gives the uncertain
structure [r1 . . . rm] according to (24). An expression like 133111 corresponds to
[r1 r2 r3 r4 r5] = [1 1 1 3 1]. The values achieved by Algorithm 1 are h∗ in column
6, obtained in t∗ seconds CPU. To certify h∗ we use the function WCGAIN of [52],
which is a branch-and-bound method tailored to program (25). WCGAIN computes
a lower and an upper bound h, h shown in columns 5,7 within twc seconds. It also
provides δ ∈∆ realizing the lower bound.

The results in Table 1 show that h∗ is certified by WCGAIN in the majority of
cases 1-5,7-9,11-13,16,17. Case 15 leaves a doubt, while cases 6,14,24 are failures of
WCGAIN, because our local solver already gets a value larger than the upper bound
of WCGAIN. Based on the medians, Algorithm 1 is approximately 18 times faster
than WCGAIN. The fact that the results of both methods are in good agreement can
be understood as an endorsement of our approach.

7.2 Robust stability over ∆

In our second test Algorithm 1 is applied to program (27). We have used a bench
of 32 cases gathered in Table 2, and Algorithm 1 converges to the value α∗ in
t∗ seconds. To certify α∗ we have implemented Algorithm 2, known as integral
global optimization, or as the Zheng-method (ZM), based on [49]. Here µ is any

Algorithm 2 Zheng-method for global optimization α∗ = maxx∈∆ f(x)

. Step 1 (Initialize). Choose initial α < α∗.

. Step 2 (Iterate). Compute α+ =

∫
[f≥α] f(x) dµ(x)

µ[f ≥ α]
.

. Step 3 (Stopping). If progress of α+ over α is marginal, stop, otherwise update α by α+

and loop on with step 2.

continuous finite Borel measure on ∆. Numerical implementations use Monte-
Carlo to compute the integral, and we refer to [49] for details. Our numerical tests
are performed with 2000·m initial samples, and stopping criterion variance = 10−7;
cf. [49]. The result obtained by ZM are αZM obtained in tZM seconds CPU.

A favorable feature of ZM is that it can be initialized with the lower bound
α∗, and this leads to a significant speedup. Altogether ZM and Algorithm 1 are in
very good agreement on the test set, which we consider an argument in favor of
our approach.
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] Benchmark n Structure α∗ αZM t∗ tZM

28 Beam3 11 133111 -1.2e-7 -1.2e-7 0.19 32.70
29 Beam4 11 133111 -1.7e-7 -1.7e-7 0.04 33.00
30 Dashpot system 1 17 16 0.0186 0.0185 0.23 90.25
31 Dashpot system 2 17 16 -1.0e-6 -1.0e-6 0.39 39.63
32 Dashpot system 3 17 16 -1.6e-6 -1.6e-6 0.08 39.70
33 DC motor 3 7 1122 -0.0010 -0.0010 0.02 20.63
34 DC motor 4 7 1122 -0.0010 -0.0010 0.02 20.74
35 DVD driver 2 10 11331131 -0.0165 -0.0165 0.04 49.29
36 Four disk system 3 16 113514 0.0089 0.0088 0.10 159.61
37 Four disk system 4 16 113514 -7.5e-7 -7.5e-7 0.29 73.86
38 Four disk system 5 16 113514 -7.5e-7 -7.5e-7 0.29 74.36
39 Four tank system 3 12 14 -6.0e-6 -6.0e-6 0.17 25.81
40 Four tank system 4 12 14 -6.0e-6 -6.0e-6 0.02 26.20
41 Hard disk driver 3 22 132414 266.70 266.70 0.09 1252.20
42 Hard disk driver 4 22 132414 -1.6026 -1.6026 0.06 80.40
43 Hydraulic servo 3 9 19 -0.3000 -0.3000 0.04 51.41
44 Hydraulic servo 4 9 19 -0.3000 -0.3000 0.02 50.95
45 Mass-spring 3 8 12 -0.0054 -0.0054 0.01 31.59
46 Mass-spring 4 8 12 -0.0368 -0.0370 0.01 16.94
47 Missile 3 35 1363 22.6302 22.1682 0.07 104.18
48 Missile 4 35 1363 -0.5000 -0.5000 0.07 51.78
49 Missile 5 35 1363 -0.5000 -0.5000 0.07 52.24
50 Filter 3 8 11 -0.0148 -0.0148 0.06 7.05
51 Filter 4 8 11 -0.0148 -0.0148 0.02 6.89
52 Filter-Kim 3 3 12 -0.2500 -0.2500 0.01 12.83
53 Filter-Kim 4 3 12 -0.2500 -0.2500 0.01 12.90
54 Satellite 3 11 116111 3.9e-5 3.9e-5 0.02 44.02
55 Satellite 4 11 116111 -0.0269 -0.0269 0.02 26.02
56 Satellite 5 11 116111 -0.0268 -0.0268 0.02 26.08
57 Mass-spring-damper 3 13 11 0.2022 0.2022 0.01 8.30
58 Mass-spring-damper 4 13 11 -0.1000 -0.1000 0.01 6.91
59 Mass-spring-damper 5 13 11 -0.1000 -0.1000 0.01 6.94

Table 2 Benchmarks for worst-case spectral abscissa (27).

7.3 Distance to instability

In this last part we apply Algorithm 1 to (29) using the test bench of Table 3,
which can be found in [19]. The distance computed by Algorithm 1 is d∗ in column
2 of Table 3. We certify d∗ using ZM [49] and by comparing to the local method
of [19].

To begin with, ZM is used in the following way. For a given d∗ and a confidence
level γ = 0.05 we compute

α = max{α(A(δ)) : δ ∈ (1− γ)d∗∆} (31)

and
α = max{α(A(δ)) : δ ∈ (1 + γ)d∗∆}. (32)

If α < 0 and α > 0 then d∗ is certified by ZM with that confidence level γ. This
happens in all cases except 87, where ZM failed due to the large size.

We also compared d∗ to the result dF of the technique [19], which is a sophisti-
cated tool tailored to problem (29). Column 6 of Table 3 shows perfect agreement
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] Benchmark n Structure d∗ dF/d
∗ DZM t∗ tZM

60 Academic example 5 11 0.79 1
√

0.15 7.3
61 Academic example 4 13 3.41 1

√
0.13 23.9

62 Academic example 4 22 0.58 1
√

0.15 97.4
63 Inverted pendulum 4 13 0.84 1

√
0.22 24.7

64 DC motor 4 1321 11 1.25 1
√

0.19 37.7
65 Bus steering system 9 2131 1.32 0.99

√
0.37 13.8

66 Satellite 9 2112 1.01 0.99
√

0.3 20.2
67 Bank-to-turn missile 6 14 0.60 0.99

√
0.17 167.7

68 Aeronautical vehicle 8 14 0.61 0.99
√

0.19 38.9
69 Four-tank system 10 14 6.67 0.99

√
0.27 24.9

70 Re-entry vehicle 6 312131 6.20 1
√

0.44 21.8
71 Missile 14 14 7.99 1

√
0.25 24.9

72 Cassini spacecraft 17 14 0.06 1
√

0.13 25.1
73 Mass-spring-damper 7 16 1.17 1

√
0.17 2536.3

74 Spark ignition engine 4 17 1.22 0.99
√

0.41 42.8
75 Hydraulic servo system 8 18 1.50 0.99

√
0.41 62.8

76 Academic example 41 2113 1.18 0.99
√

0.57 36.5
77 Drive-by-wire vehicle 4 1227 1 0.99

√
0.96 97.0

78 Re-entry vehicle 7 136141 1.02 0.98
√

0.42 132.4
79 Space shuttle 34 19 0.79 0.99

√
0.8 60.9

80 Rigid aircraft 9 114 5.42 1
√

0.54 252.5
81 Fighter aircraft 10 31151162111 0.59 0.99

√
1.31 171.3

82 Flexible aircraft 46 120 0.22 0.99
√

1.26 180.3
83 Telescope mockup 70 120 0.02 0.99

√
1.37 274.8

84 Hard disk drive 29 1824111 0.82 1
√

2.87 202.1
85 Launcher 30 122212316111228 1.16 0.99

√
4.08 271.2

86 Helicopter 12 304 0.08 0.99
√

0.85 70.7
87 Biochemical network 7 3913 0.00 1 failed 36.76 -

Table 3 Benchmarks for distance to instability (29), available in [53].

on the test set from [19]. Given the highly dedicated character of [19], this can be
understood as an endorsement of our optimization-based approach.

Following [26] one can certify robust stability over ∆ by showing that the value
of the following polynomial optimization problem is strictly positive:

minimize det(H(δ))
subject to δ ∈∆

(33)

where H(δ) is the so-called Hermite-matrix [26]. For ∆ = [−1, 1]m in (33), the
method [31] gives finite convergence. We follow [26] and apply GloptiPoly [27]
to (33), where Maple 14 is used beforehand to compute the determinant of H(δ)
formally. Based on (31) and (32) this leads to a procedure to certify or reject our
heuristic d∗.

The method was indeed able to certify d∗ in cases 20, 21, 26 and 27. In the tests
of Table 3 the method was not able to furnish a decision even when the feasibility
radius of the SDP-solver SeDuMi was enlarged to 103, and a large number of
LMIs was considered. The bottleneck of the proposed method appears to be slow
convergence vk → v∗, the fact that lower bounds cannot be taken into account
in (33), and the necessity to compute the determinant of H(δ) formally, which is



Bundle trust-region algorithm 33

impossible for matrices larger that 7× 7. In all other aspects the method remains
very promising.

8 Conclusion

We have presented a bundle trust-region method for nonsmooth, nonconvex min-
imization, where cutting planes are tangents to a convex local model φ(·, x) of
f , and where a trust-region strategy replaces the proximity control mechanism.
Global convergence of our method was proved under natural hypotheses.

By way of an example we have shown that the standard approach in trust-
region methods based on the Cauchy point fails for nonsmooth functions. We
have identified a particular class S of nonsmooth functions, where the Cauchy
point argument can be salvaged. Functions in S , even when nonsmooth, can be
minimized as if they were smooth. The class S must therefore be regarded as
atypical in a nonsmooth optimization program, convex functions with a genuine
nonsmoothness are not in S .

Algorithm 1 was validated numerically on a test set of 87 problems in auto-
matic control, where the versatility of Algorithm 1 with regard to the choice of
the norm was exploited. We were able to compute good quality lower bounds for
three NP-hard optimization problems related to the analysis of parametric robust-
ness in system theory. In the majority of cases, posterior application of a global
optimization technique allowed us to certify these results as globally optimal.
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