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Abstract
Given a complex manifold X and a smooth positive function η thereon, we perturb
the standard differential operator d = ∂ + ∂̄ acting on differential forms to a first-
order differential operator Dη whose principal part is η∂ + ∂̄ . The role of the zero-th
order part is to force the integrability property D2

η = 0 that leads to a cohomology
isomorphic to the de Rham cohomology of X , while the components of types (0, 1)
and (1, 0) of Dη induce cohomologies isomorphic to the Dolbeault and conjugate-
Dolbeault cohomologies. We compute Bochner-Kodaira-Nakano-type formulae for
the Laplacians induced by these operators and a given Hermitian metric on X . The
computations throw up curvature-like operators of order one that can be made (semi-
)positive under appropriate assumptions on the function η. As applications, we obtain
vanishing results for certain harmonic spaces on complete, non-compact, manifolds
and for the Dolbeault cohomology of compact complex manifolds that carry certain
types of functions η. This study continues and generalises the one of the operators
dh = h∂ + ∂̄ that we introduced and investigated recently for a positive constant h that
was then let to converge to 0 and, more generally, for constants h ∈ C. The operators
dh had, in turn, been adapted to complex structures from the well-known adiabatic
limit construction for Riemannian foliations. Allowing now for possibly non-constant
functions η creates positivity in the curvature-like operator that stands one in good
stead for various kinds of applications.

Keywords Deformations of complex structures · Elliptic differential operators on
complex manifolds · Cohomology and harmonic theory

1 Introduction

Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t) ⊂ X with t varying in a small open ball B about the origin in some CN . This
means that X is a complex manifold and π is a proper holomorphic submersion.
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It is standard that the degeneration at the first page of the Frölicher spectral sequence
(FSS) is a deformation-open property, namely that E1(X0) = E∞(X0) implies the
analogous property E1(Xt ) = E∞(Xt ) on the nearby fibres Xt when t is sufficiently
close to 0. This follows at once from the Kodaira-Spencer theory, especially from the
upper semi-continuity of the functions B � t �→ h p, q

∂̄
(t) whose values are the Hodge

numbers (i.e. the C-vector space dimensions of the Dolbeault cohomology groups
H p, q

∂̄
(Xt , C) ) of the fibres Xt .

However, this is no longer true for the higher pages of the FSS where the analogous
numbers ep, q

r (t) := dimCE p, q
r (Xt ) need not vary semi-continuouslywith t ∈ B when

r ≥ 2. For an example of such a pathological behaviour, see [ [2], Example 4.8. and
Corollary 4.9.] where Ceballos, Otal, Ugarte andVillacampa consider a nilmanifold M
with underlyingLie algebrah15, endowedwith a family of invariant complex structures
Jt , and observe, as a consequence of their classification of invariant complex structures
on 6-nilmanifolds, that the numbers e1, 12 (t) and e1, 13 (t) are not upper semi-continuous

functions of t , while the numbers e0, 22 (t) and e0, 23 (t) are not lower semi-continuous
functions of t .

Nevertheless, there are quite a few examples of classes of compact complex man-
ifolds whose Frölicher spectral sequence degenerates at E2 (though not at E1) and
for which this property persists in their small deformations. Our intuition is that this
ought to be due to some geometric property of the central fibre that forces the FSS to
behave well under small deformations, so we propose the following issue to ponder.

Problem 1.1 Let r ≥ 2 be an integer. Find a geometric property (P) that certain
compact complex manifolds X satisfy such that, whenever X0 has property (P) and
has its Frölicher spectral sequence degenerate at Er , the Frölicher spectral sequence
of every fibre Xt with t ∈ B close enough to 0 degenerates again at Er .

We refrain from speculating on the nature (metric? cohomological?) of any such
property (P), but we stress the need for it to be readily verifiable on concrete examples
of manifolds. An analytic such property, in terms of the decay rate to 0 of the small
eigenvalues of certain Laplacians, was given in [15], but that result seems hard to apply
in explicit families of manifolds. One of the goals of the present paper is to generalise
the main construction of [15] (whose key points we recall in outline in §1.1 for the
reader’s convenience) in order to make it more flexible.

A solution to Problem 1.1 is expected to play a central role in various contexts,
including in the further development of a non-Kähler mirror symmetry theory that
started in [14] and has continued with [18], [16] and [17].

1.1 Reminder of theMain Facts from [15]

Let X be a complex manifold with dimCX = n.
By adapting to the setting of complex structures the adiabatic limit construction

for Riemannian foliations initiated and subsequently studied in e.g. [19] and [9], we
defined in [15], for constants h > 0, the first-order differential operators

dh := h∂ + ∂̄ : C∞
k (X , C) −→ C∞

k+1(X , C), k ∈ {0, . . . , 2n},
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and the zero-th order pointwise operators

θh : �p, q T � X −→ �p, q T � X , u �−→ θhu := h p u,

that are then extended by linearity to operators θh : �k T � X −→ �k T � X for every k.
The equality dh = θh d θ−1

h implies the integrability property d2
h = 0 and the

vector-space isomorphisms

Hk
d R(X , C)

	−→ Hk
dh

(X , C), {u}d R �−→ {θhu}dh ,

for k ∈ {0, . . . , 2n}, between the de Rham cohomology groups of X and those of
dh-cohomology defined as ker dh/Im dh .

Fix now a Hermitian metric ω on X . The pointwise inner product 〈 , 〉ω induced by
ω on the differential forms on X can be rescaled in the followingway on (p, q)-forms:

〈u, v〉ωh := h2p 〈u, v〉ω, h > 0; u, v ∈ �p, q T � X ,

for every bidegree (p, q). This rescaling defines a new Hermitian metric

ωh = 1

h2 ω, h > 0,

on the holomorphic tangent bundle T 1, 0X of X , or equivalently, a rescaledC∞ positive
definite (1, 1)-form ωh = h−2 ω on X . This, in turn, induces a C∞ positive definite
volume form

dVωh := ωn
h

n! = 1

h2n

ωn

n! = 1

h2n
dVω

on X which, together with the pointwise inner product 〈 , 〉ωh , defines an L2-inner
product

〈〈u, v〉〉ωh :=
∫

X

〈u, v〉ωh dVωh = 1

h2n
〈〈θhu, θhv〉〉ω

for all forms u, v ∈ C∞
p, q(X , C) and all bidegrees (p, q).

The two rescalings (of the operator d and of the metric ω) lead to two different
Laplace-type operators 	h, 	ωh : C∞

k (X , C) −→ C∞
k (X , C) defined respectively

by

	h := dhd�
h + d�

hdh and 	ωh := dd�
ωh

+ d�
ωh

d

on the smooth k-forms for every k ∈ {0, . . . , 2n}. By d�
h we mean the formal adjoint

of dh w.r.t. the L2-inner product induced by the orginal metric ω, while d�
ωh

stands for
the formal adjoint of the original operator d w.r.t. the L2-inner product induced by the
rescaled metric ωh .
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The second-order differential operators 	h and 	ωh are elliptic, self-adjoint and
non-negative, they have the same principal part and are related by the formula

	h = θh	ωh θ
−1
h , h > 0. (1)

This formula implies that 	h and 	ωh have the same spectrum and their respec-
tive eigenspaces E	ωh

(λ) and E	h (λ) are obtained from each other via the rescaling
isometry θh :

θh

(
E	ωh

(λ)

)
= E	h (λ) for every λ ∈ Spec(	h) = Spec(	ωh ).

Themain result of [15] expressed, for every positive integer r and every degree k, the
dimension of the C-vector space Ek

r (X) := ⊕p+q=k E p, q
r (X) (representing the direct

sum of the spaces of total degree k featuring on the r th page of the Frölicher spectral
sequence of X ) in terms of the number of eigenvalues, counted with multiplicities, of
any of the operators 	h and 	ωh that decay sufficiently fast to 0 (at a rate depending
on r ) as h ↓ 0.

Theorem 1.2 ( [15], Theorem 1.3.) Let (X , ω) be a compact Hermitian manifold with
dimCX = n. For every r ∈ N

� and every k = 0, . . . , 2n, the following identity holds:

dimCEk
r (X) = �

{
i | λk

i (h) ∈ O(h2r ) as h ↓ 0

}
, (2)

where 0 ≤ λk
1(h) ≤ λk

2(h) ≤ · · · ≤ λk
i (h) ≤ . . . are the eigenvalues, counted with

multiplicities, of the rescaled Laplacian 	h : C∞
k (X , C) −→ C∞

k (X , C) (= those
of 	ωh : C∞

k (X , C) −→ C∞
k (X , C)) acting on k-forms. As usual, � stands for the

cardinal of a set.

Now, 0 is always an eigenvalue of	h : C∞
k (X , C) −→ C∞

k (X , C) of multiplicity
exactly equal to the k-th Betti number bk = bk(X) of X (since 	h and the standard
Laplacian 	 = dd� + d�d have isomorphic kernels, each of these two kernels being
isomorphic to the corresponding cohomology space, Hk

dh
(X , C), resp. Hk

d R(X , C),
and these cohomology spaces being mutually isomorphic, as recalled above). Thus,
the smallest positive eigenvalue of 	h : C∞

k (X , C) −→ C∞
k (X , C) is λk

bk+1(h). We

will denote it by δ
(k)
h := λk

bk+1(h).
Meanwhile, it is standard that we always have

bk(X) ≤ dimCEk
r (X) for every k ∈ {0, . . . , 2n}

and that the Frölicher spectral sequence of X degenerates at a given page Er if and
only if all these inequalities are equalities, namely if and only if

bk(X) = dimCEk
r (X) for every k ∈ {0, . . . , 2n}.
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Therefore, the above Theorem 1.2 equates the degeneration at Er of the FSS of X
to the fact that 0 is the only eigenvalue of	h in every degree k that decays to 0 at least
as fast as Const · h2r as h ↓ 0. In other words, we have the following

Proposition 1.3 ( [15], Proposition 5.3.) Let (X , ω) be a compact complex Hermitian
manifold with dimCX = n. For every constant h > 0, let δ

(k)
h > 0 be the smallest

positive eigenvalue of 	h : C∞
k (X , C) −→ C∞

k (X , C).
Then, for every r ∈ N

�, the Frölicher spectral sequence of X degenerates at Er if
and only if

lim sup
h→0

δ
(k)
h

h2r
= +∞, for all k ∈ {1, . . . , n}.

In the context of a holomorphic family (Xt )t∈B of compact complex manifolds
on which a C∞ family (ωt )t∈B of Hermitian metrics on the fibres has been fixed,
Proposition 1.3 shows that, for some degree k ∈ {1, . . . , n}, the decay rate to 0 of
δ
(k)
h > 0 can accelerate when one moves from X0 to the nearby fibres Xt if Er (X0) =

E∞(X0) but Er (Xt ) �= E∞(Xt ) for t �= 0.

1.2 Constructions and Results Obtained in this Paper

If one aims at solving Problem 1.1, the takeaway from Proposition 1.3 is that one needs
to control the bottom of the positive part of the spectrum of 	h , possibly in terms of
some (curvature-like) positive quantity whose dependence on the fibre Xt should be
at least continuous.

On the other hand, Bochner-Kodaira-Nakano-type (in-)equalities involving the
operator 	h cannot produce the needed positivity when h remains constant. (See
e.g. [1].) It is this quest for positivity that would translate into information on the
smallest positive eigenvalues of Laplacians like 	h that motivates the main thrust of
this paper (and hopefully of its future sequels): transforming the constant h into a C∞
function whose derivatives would produce positive curvature-like quantities.

Let X be a connected complex manifold with dimCX = n. Fix a C∞ real-valued
function η on X such that η > 0 or η < 0 at every point of X .

The immediate analogue of dh when the constant h has been replaced by η is
dη := η∂ + ∂̄ . However, if η is not constant, dη need not be integrable (in the sense
that it need not square to 0), so it need not define a cohomology. The way round this
takes us to first defining the pointwise analogue θη (cf. (3)) of θh and then defining
Dη := θηdθ−1

η in every degree k (cf. Definition 2.2) by the analogue of the formula

dh = θhdθ−1
h satisfied by dh .

If we fix a Hermitian metric ω on X , we consider the formal adjoint D�
η of Dη w.r.t.

the L2-inner product induced by ω and then the associated twisted Laplacian

	η = Dη D�
η + D�

η Dη : C∞
k (X , C) −→ C∞

k (X , C)

in every degree k. (See Definition 2.5.)
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The twisted metric ωη is defined analogously to the ωh of [15], but the definition of
the twisted Laplacian 	ωη is not as straightforward as in the case where η is constant.
It is necessary to first compute an operator T �

η : C∞
k (X , C) −→ C∞

k−1(X , C) such
that D�

η = θηT �
η θ−1

η in every degree k (cf. Proposition 2.6) that we then use to define
(cf. Definition 2.8) the twisted Laplacian

	ωη = dT �
η + T �

η d

which is then shown to relate to the first twisted Laplacian 	η via the identity (cf.
Corollary 2.9)

	η = θη	ωηθ
−1
η

analogous to (1) of the constant η case. This then implies that 	η and 	ωη have the
same spectrum and that their respective eigenspaces are isomorphic via θη as in the
case where η is constant.

In §3, we compute the formal adjoint of Dη and observe that it depends on D−η, a
fact that leads to η-twisted commutation relations (Proposition 3.5) and eventually
to two Bochner-Kodaira-Nakano-type identities relating the Laplacians 	η and
	−η (cf. Proposition 3.6 giving the rough version of the identity), respectively the
Laplacians 	η and [D−η + τ−η, D

�

−η + τ �−η] (cf. Theorem 3.8), where τη is the
zero-th order operator defined as [�, Dηω ∧ · ]. The latter identity is the refined
version of the former. It absorbs some of the torsion terms into the Laplacian to which
	η is compared and that can be neglected in applications due to its non-negativity.
Both versions of the η-BKN identity expressing 	η in terms of another Laplacian
throw up the first-order curvature operator i [[Dη, D−η], �] that is then computed
in Proposition 3.9.

In §4, we run analogous computations starting from the (0, 1)-part D0, 1
η of Dη =

D1, 0
η + D0, 1

η and its conjugate. This setting has the advantage that D0, 1
η and D1, 0

η

anti-commute (cf. (60)), unlike Dη and D−η of the previous §3. Meanwhile, D0, 1
η and

D1, 0
η are integrable and define cohomologies isomorphic to theDolbeault, respectively

conjugate-Dolbeault, cohomologies of X (see (65)).
We consider the Laplacians

	′′
η := [D0, 1

η , (D0, 1
η )�] and 	′

η := [D0, 1
η , D0, 1

η

�]

that we then relate to each other in what we call the rough η-Bochner-Kodaira-
Nakano (η-BKN) identity (cf. Proposition 4.4). Further commutation relations
involving torsion terms (cf. Lemma 4.5) lead to the refined η-Bochner-Kodaira-
Nakano (η-BKN) identity for this setting (cf. Theorem 4.6). In bidegree (p, q), the

zero-th order part of the first-order curvature operator i [[D0, 1
η , D0, 1

η ], �] turns out
to be (cf. Proposition 4.7) the operator

(p − q)

[(
2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η

)
∧ ·, �

]
.
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We give two applications of our η-BKN identities based on the shape of the curvature
operator.

In §5, we deal with non-compact complete manifolds X on which we assume
the existence of a C∞ function η : X −→ (0, ∞) that induces a positive definite
curvature form

γη := 2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η > 0.

This key positivity assumption, which amounts to requiring the smooth real (1, 1)-
form γη to define a Hermitian metric on X , is impossible on compact manifolds due
to the maximum principle, but is quite natural in the non-compact setting given the
fact that it constitutes the zero-th order term of the operator that plays the role of the
curvature in our η-BKN identities. The result we obtain can be loosely formulated as
follows (see Theorem 5.2 for the precise statement).

Theorem 1.4 Under the extra assumptions that the Hermitian metric γη on X is com-
plete and the pointwise γη-norm |∂η| = |∂η|γη of the (1, 0)-form ∂η is small relative
to η, there exist no non-zero 	′′

η-harmonic L2
γη

-forms of bidegree (p, q) on X whenever

either

(
p > q and p + q ≥ n + 1

)
or

(
p < q and p + q ≤ n − 1

)
.

This resut (Theorem 5.2) can be compared to Gromov’s Main Theorem 2.5. in
[7]. They are both vanishing theorems for certain spaces of L2 harmonic forms on
a complete manifold carrying a Kähler metric. The particular shape of our complete
metric γη can be viewed as a (non-standard) exactness property of γη, while Gromov
imposed the exactness condition requiring themetric to be d(bounded). The vanishing
conclusion inGromov’s theorem applies to all the bidegrees (p, q)with p+q �= n (i.e.
outside themiddle degree),while our conclusion, though applicable to fewer bidegrees,
also avoids the middle degree. Moreover, much as in Gromov’s case, our Theorem
5.2 is mainly intended for applications where the manifold X is the universal cover of
a compact complex manifold Y and the complete metric γη on X is the pullback of
some Hermitian metric on Y .

We hope that Theorem 5.2 will have a role to play in the further development of
a (possibly non-Kähler) hyperbolicity theory linking the existence of certain types of
special Hermitianmetrics having a certain exactness property on the universal cover of
the compact complexmanifold onwhich they are defined to the non-existence of entire
holomorphic maps with a relatively small growth from someCp (with p possibly> 1)
into the given manifold. The Kähler case with p = 1 was treated in [7], while the
more general Hermitian case with p allowed to be > 1 was initiated in [10], [MP22],
and [8].

In §6, we deal with compact manifolds X on which we assume the existence of
a C∞ function η : X −→ (0, ∞) whose induced first-order curvature operator

Fη := i [[D0, 1
η , D0, 1

η ], �] is assumed to be sufficiently positive. Exploiting the fact
that ker	′′

η is isomorphic to the Dolbeault cohomology group H p, q
∂̄

(X , C) in every
bidegree (p, q), our η-BKN identities can be applied to give the following result (see
Theorem 6.1 for the precise statement).
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Theorem 1.5 Let (X , ω) be a compact complex Hermitian manifold with dimCX = n.
If there exists a C∞ function η : X −→ (0, ∞) such that supX |∂̄ω|ω and supX

|∂η|ω
η

are sufficiently small, then for every bidegree (p, q) such that

Fη := i

[
[D0, 1

η , D0, 1
η ], �

]
> C(η) Id

in bidegree (p, q) for an appropriate constant C(η) > 0 depending on η, we have
H p, q

∂̄
(X , C) = {0}.

We hope further applications of these results will be obtained in future work, either
to investigate Problem 1.1 or to study cohomological andmetric properties of complex
manifolds, for example by choosing particular types of functionsη supported by certain
such manifolds.

2 The Twisted Operators andMetrics

Let X be an n-dimensional complex manifold, where n ≥ 2.

2.1 The Twisted Operator D�

With every C∞ function η on X such that η > 0 or η < 0, we associate the bijective
linear operators:

θη(x) : �p, q T �
x X −→ �p, q T �

x X

u(x) �−→ ηp(x) u(x) (3)

defined pointwise on the (p, q)-forms of X at every point x ∈ X and in every bidegree
(p, q). Thus, we get an automorphism θη : �p, q T � X −→ �p, q T � X of the vector
bundle of (p, q)-forms on X defined by θη(u) = ηpu.

We then extend θη by linearity to an automorphism

θη : �k T � X −→ �k T � X

u =
∑

p+q=k

u p, q �−→
∑

p+q=k

θη(u
p, q) =

∑
p+q=k

ηp u p, q

of the vector bundle of k-forms on X for every k ∈ {0, . . . , 2n}.
The conjugate of θη is defined by the condition θη(u) = θη(ū) for every form u.

Observation 2.1 The inverse of θη is given by the formula:

θ−1
η = θη−1 , (4)
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where η−1 = 1/η, while the conjugate of θη is given by the formula:

θη(u
p, q) = ηq u p, q (5)

for every (p, q)-form u p, q .
In particular, θη �= θη in any bidegree (p, q) with p �= q.

Proof Immediate verification. ��
Definition 2.2 For any C∞ function η on X such that η > 0 or η < 0 and any
k ∈ {0, . . . , 2n}, let Dη : C∞

k (X , C) −→ C∞
k+1(X , C) be the differential operator

defined on the C∞ k-forms on X by

Dη = θηdθ−1
η . (6)

Since D2
η = θηd2θ−1

η = 0, the operator Dη induces a cohomology space in every
degree k ∈ {0, . . . , 2n} on the n-dimensional manifold X by

Hk
Dη

(X , C) :=
ker

(
Dη : C∞

k (X , C) −→ C∞
k+1(X , C)

)

Im

(
Dη : C∞

k−1(X , C) −→ C∞
k (X , C)

) . (7)

An immediate observation is that the Dη-cohomology is canonically (i.e. in a way
depending only on the complex structure of X and the function η, but independent of
any metric on X ) isomorphic to the De Rham cohomology of X .

Proposition 2.3 Let X be an n-dimensional complex manifold. For any C∞ function
η on X such that η > 0 or η < 0 and any k ∈ {0, . . . , 2n}, the linear map

θη : Hk
DR(X , C) −→ Hk

Dη
(X , C), {u}DR �−→ {θηu}Dη , (8)

is well defined and an isomorphism.

Proof To prove well-definedness, we need to prove the inclusions:

θη(ker d) ⊂ ker Dη and θη(Im d) ⊂ Im Dη.

These inclusions follow, respectively, from the equivalences:

Dηu = 0 ⇐⇒ d(θ−1
η u) = 0 and u = Dηv ⇐⇒ θ−1

η u = d(θ−1
η v).

These equivalences actually amount to the above inclusions being equalities:

θη(ker d) = ker Dη and θη(Im d) = Im Dη.
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Thanks to these equalities of vector spaces and to θη : C∞
k (X , C) −→ C∞

k (X , C)

being an isomorphism at the level of differential forms, the well-defined linear map
induced by θη in cohomology is an isomorphism. ��
Proposition and Definition 2.4 For every C∞ function η on X such that η > 0 or
η < 0 and every bidegree (p, q), the operator Dη : C∞

p, q(X , C) −→ C∞
p+q+1(X , C)

of Definition 2.2 arises explicitly as

Dη = η∂ + ∂̄ − p

η

(
η∂ + ∂̄

)
η ∧ · = dη − p

η
(dηη) ∧ ·, (9)

where the operator dη : C∞
k (X , C) −→ C∞

k+1(X , C) is defined in any degree k by
dη = η∂ + ∂̄ .

We let D1, 0
η : C∞

p, q(X , C) −→ C∞
p+1, q(X , C) and D0, 1

η : C∞
p, q(X , C) −→

C∞
p, q+1(X , C) be the differential operators:

D1, 0
η = η∂ − p ∂η ∧ · and D0, 1

η = ∂̄ − p

η
∂̄η ∧ · (10)

that are the components of bidegrees (1, 0) and (0, 1) of Dη in the decomposition
Dη = D1, 0

η + D0, 1
η .

Proof For every form u ∈ C∞
p, q(X , C), we have:

Dηu = (θηdθ−1
η )(u) = θηd

(
1

ηp
u

)
= θη

(
1

ηp
du − p

ηp+1 dη ∧ u

)

= 1

ηp
θη(∂u) + 1

ηp
θη(∂̄u) − p

ηp+1 θη(∂η ∧ u) − p

ηp+1 θη(∂̄η ∧ u)

= η ∂u + ∂̄u − p ∂η ∧ u − p

η
∂̄η ∧ u,

where the last equality follows from the definition of θη and the fact that the forms ∂u
and ∂η ∧ u are of bidegree (p + 1, q), while the forms ∂̄u and ∂̄η ∧ u are of bidegree
(p, q + 1). This proves (9). ��

As with any operator, we define the conjugate Dη of Dη by requiring the equality

Dηu = Dη(ū)

to hold for every form u on X . We now compute D−η as it will be needed later on. If
u p, q is a (p, q)-form, by conjugating the expression of Dηu p, q we get: Dηu p, q =
η ∂̄u p, q + ∂u p, q − p ∂̄η ∧ u p, q − p

η
∂η ∧ u p, q . Replacing η with −η, requiring

D−ηu p, q = D−η(u p, q), using the fact that u p, q is of type (q, p) and then permuting
p and q, we get

D−η = ∂ − η∂̄ − q

η
∂η ∧ · + q ∂̄η ∧ · in bidegree (p, q). (11)
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Thus, the coefficients of the zero-th order terms of Dη and D−η depend on the
anti-holomorphic degree (q), while the coefficients of the zero-th order terms of Dη

and D−η depend on the holomorphic degree (p), of the bidegree in which they act.
Meanwhile,

d−η = ∂ − η∂̄ (12)

in every (bi-)degree.

2.2 The TwistedMetric!�

Let ω be a Hermitian metric on X . For every C∞ function η : X −→ (0, +∞),
we define the following twisting of the induced pointwise inner product 〈 , 〉ω on the
(p, q)-forms on X :

〈u, v〉ωη := η2p 〈u, v〉ω = 〈θη(u), θη(v)〉ω, u, v ∈ �p, q T � X , (13)

in every bidegree (p, q). In this way, we get a Hermitian metric ωη on X induced by
the smooth positive definite (1, 1)-form

ωη = 1

η2
ω. (14)

In particular, the volume forms on X induced by the metrics ωη and ω are related
by the formula

dVωη = 1

η2n
dVω. (15)

This leads to the L2-inner products induced by ωη and ω being related as follows:

〈〈u, v〉〉ωη =
∫

X

〈u, v〉ωη dVωη =
∫

X

1

η2(n−p)
〈u, v〉ω dVω, u, v ∈ C∞

p, q(X , C).(16)

2.3 The Twisted Laplacians1� and1!�

Suppose that (X , ω) is a complex Hermitian manifold with dimCX = n.

Definition 2.5 For every C∞ function η on X such that η > 0 or η < 0 and any
k ∈ {0, . . . , 2n}, the Dη-Laplacian	η : C∞

k (X , C) −→ C∞
k (X , C) is the differential

operator defined by

	η = Dη D�
η + D�

η Dη, (17)

where D�
η is the formal adjoint of Dη with respect to the L2-inner product 〈〈 ·, · 〉〉ω

induced by ω.
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Note that the principal part of 	η is the second-order differential operator η2 	′ +
	′′, proving that 	η is elliptic (since 	′ and 	′′ are known to be so). If, moreover, X
is compact, we get, in every degree k, the Hodge isomorphism

Hk
Dη

(X , C) 	 Hk
	η

(X , C) := ker

(
	η : C∞

k (X , C) −→ C∞
k (X , C)

)
(18)

mapping every Dη-cohomology class to its unique 	η-harmonic representative.
We will now compute D�

η in terms of the formal adjoint d�
ωη

of d with respect to
the twisted metric ωη. Specifically, we will prove the following

Proposition 2.6 For every C∞ function η : X −→ (0, +∞) on a compact complex
Hermitian manifold (X , ω) with dimCX = n and for every k ∈ {0, . . . , 2n}, the
operator D�

η : C∞
k (X , C) −→ C∞

k−1(X , C) is given by the formula:

D�
η = θηT �

η θ−1
η , (19)

where T �
η : C∞

k (X , C) −→ C∞
k−1(X , C) is the linear operator

T �
η

( ∑
p+q=k

u p, q
)

=
∑

p+q=k

T �
p, η(u

p, q), with u p, q ∈ C∞
p, q(X , C),

and, for every bidegree (p, q), T �
p, η : C∞

p, q(X , C) −→ C∞
p+q−1(X , C) is the linear

operator defined by

T �
p, η = 1

η2p

(
d�
ωη

− 2(n − p)

[
�, i

(
1

η
∂η − η ∂̄η

)
∧ ·

])
◦ θ2η ,

where d�
ωη

is the formal adjoint of d with respect to the L2-inner product induced by
the twisted metric ωη as in (16).

Before proving this result, we prove a few formulae that will be needed.

Lemma 2.7 Let (X , ω) be a complex Hermitian manifold with dimCX = n. Then:

(i) for any C1 function ρ : X −→ R, any bidegree (p, q) and any smooth (p, q)-form
γ on X, we have:

∂�(ργ ) = ρ ∂�γ + [�, i ∂̄ρ ∧ ·](γ ) and

∂̄�(ργ ) = ρ ∂̄�γ − [�, i∂ρ ∧ ·](γ ). (20)

(ii) for any C∞ function η : X −→ (0, +∞), any bidegree (p, q) and any smooth
(p, q)-form u on X, we have:

∂�
ωη

u = η2∂�
ωu − 2(n − p)η [�, i ∂̄η ∧ ·] u

and ∂̄�
ωη

u = ∂̄�
ωu + 2(n − p)

η
[�, i∂η ∧ ·] u. (21)
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Proof (i) It suffices to prove the latter equality in (20) since the former follows from
it by conjugation. Using the Hermitian commutation identity (ii) of (95), we get the
first equality below:

∂̄�(ργ ) = −i [�, ∂](ργ ) − τ̄ �(ργ ) = −i �(ρ ∂γ + ∂ρ ∧ γ ) + i∂(ρ �γ ) − ρ τ̄ �(γ )

= −iρ

(
�∂γ − ∂�γ

)
− i

(
�(∂ρ ∧ γ ) − ∂ρ ∧ �γ

)
− ρ τ̄ �(γ )

= ρ

(
− i [�, ∂] − τ̄ �

)
(γ ) − [�, i∂ρ ∧ ·](γ ) = ρ ∂̄�γ − [�, i∂ρ ∧ ·](γ ),

where the last equality follows again from the Hermitian commutation identity (ii) of
(95).

(ii) • To prove the former equality in (21), we will first prove the formula

∂�
ω = 1

η2(n−p+1)
∂�
ωη

(
η2(n−p) ·

)
on (p, q)-forms. (22)

To this end, let α ∈ C∞
p−1, q(X , C) and β ∈ C∞

p, q(X , C). We have:

〈〈α, ∂�
ωβ〉〉ω = 〈〈∂α, β〉〉ω =

∫

X

〈∂α, β〉ω dVω

=
∫

X

1

η2p
〈∂α, β〉ωη η2n dVωη = 〈〈∂α, η2(n−p)β〉〉ωη

= 〈〈α, ∂�
ωη

(η2(n−p)β)〉〉ωη =
∫

X

〈α, ∂�
ωη

(η2(n−p)β)〉ωη dVωη

=
∫

X

η2(p−1) 〈α, ∂�
ωη

(η2(n−p)β)〉ω 1

η2n
dVω

= 〈〈α,
1

η2(n−p+1)
∂�
ωη

(η2(n−p)β)〉〉ω.

This proves (22).
Now, let u ∈ C∞

p, q(X , C) be arbitrary. Identity (22) gives the first equality below:

∂�
ωη

u = η2(n−p+1) ∂�
ω

(
1

η2(n−p)
u

)

= η2(n−p+1)
(

1

η2(n−p)
∂�
ωu +

[
�, i ∂̄

(
1

η2(n−p)

)
∧ ·

]
u

)
,

while the second equality follows from the former formula in (20). Since

∂̄

(
1

η2(n−p)

)
= − 2(n − p)

η2(n−p)+1
∂̄η,

we get the former formula in (21).
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• To prove the latter equality in (21), we will first prove the formula

∂̄�
ω = 1

η2(n−p)
∂̄�
ωη

(
η2(n−p) ·

)
on (p, q)-forms. (23)

To this end, let α ∈ C∞
p, q−1(X , C) and β ∈ C∞

p, q(X , C). We have:

〈〈α, ∂̄�
ωβ〉〉ω = 〈〈∂̄α, β〉〉ω =

∫

X

〈∂̄α, β〉ω dVω

=
∫

X

1

η2p
〈∂̄α, β〉ωη η2n dVωη =

〈〈
∂̄α, η2(n−p)β

〉〉
ωη

= 〈〈α, ∂̄�
ωη

(η2(n−p)β)〉〉ωη =
∫

X

〈
α, ∂̄�

ωη
(η2(n−p)β)

〉
ωη

dVωη

=
∫

X

η2p
〈
α, ∂̄�

ωη
(η2(n−p)β)

〉
ω

1

η2n
dVω =

〈〈
α,

1

η2(n−p)
∂̄�
ωη

(η2(n−p)β)

〉〉
ω

.

This proves (23).
Now, let u ∈ C∞

p, q(X , C) be arbitrary. Identity (23) gives the first equality below:

∂̄�
ωη

u = η2(n−p) ∂̄�
ω

(
1

η2(n−p)
u

)

= η2(n−p)

(
1

η2(n−p)
∂̄�
ωu −

[
�, i∂

(
1

η2(n−p)

)
∧ ·

]
u

)
,

while the second equality follows from the latter formula in (20). Since

∂

(
1

η2(n−p)

)
= − 2(n − p)

η2(n−p)+1
∂η,

we get the latter formula in (21). ��
Proof of Proposition 2.6 On the one hand, taking conjugates in the definition (6) of Dη,
we get:

θ−1
η D�

ηθη = θ−2
η d�

ωθ2η (24)

since the formal adjoint of θη with respect to any metric (in particular, in this case,
with respect to ω) is θη itself.

On the other hand, we will express the right-hand side of (24) in a different way.
For any bidegree (p, q) and any form u ∈ C∞

p, q(X , C), formulae (21) give the latter
equality below:

d�
ωu = ∂�

ωu + ∂̄�
ωu = 1

η2
∂�
ωη

u + ∂̄�
ωη

u − 2
n − p

η

[
�, i(∂η − ∂̄η) ∧ ·

]
u.
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Replacing u with θ2η u = η2pu and taking θ−2
η on both sides, the last equality

transforms to:

(θ−2
η d�

ωθ2η )(u) = 1

η2p
∂�
ωη

(θ2η u) + 1

η2p
∂̄�
ωη

(θ2η u)

−2
n − p

η2p

[
�, i

(
1

η
∂η − η ∂̄η

)
∧ ·

]
(θ2η u). (25)

Putting (24) and (25) together, we infer that, for every u ∈ C∞
p, q(X , C), we have:

(θ−1
η D�

ηθη)u = 1

η2p

(
d�
ωη

− 2(n − p)

[
�, i

(
1

η
∂η − η ∂̄η

)
∧ ·

])
(θ2η u) = T �

p, ηu.

This proves formula (27) in bidegree (p, q). By linearity, we get (27) in any degree
k. ��

Prompted by Proposition 2.6, we introduce the following

Definition 2.8 Let (X , ω) be a compact complex Hermitian manifold with dimCX =
n.

For any C∞ function η : X −→ (0, ∞) and any k ∈ {0, . . . , 2n}, the twisted
d-Laplacian 	ωη : C∞

k (X , C) −→ C∞
k (X , C) with respect to the twisted metric ωη

is the differential operator defined by

	ωη = dT �
η + T �

η d, (26)

where T �
η is the first-order differential operator introduced in Proposition 2.6.

In the special case where η is constant, we have T �
η = d�

ωη
, so 	ωη coincides with

the usual d-Laplacian dd�
ωη

+ d�
ωη

d with respect to ωη. In general, for an arbitrary
smooth function η > 0, d�

ωη
is the principal part of T �

η , so the usual d-Laplacian with
respect to ωη is the principal part of 	ωη .

Corollary 2.9 Let (X , ω) be a compact complex Hermitian manifold with dimCX = n.
For any C∞ function η : X −→ (0, ∞) and any k ∈ {0, . . . , 2n}, the twisted

Laplacians 	η, 	ωη : C∞
k (X , C) −→ C∞

k (X , C) are related by the formula:

	η = θη	ωηθ
−1
η . (27)

In particular, they have the same spectrum:

Spec(	η) = Spec(	ωη) (28)

and for every eigenvalue λ, the linear map

Ek
	η

(λ) � u �−→ θ−1
η u ∈ Ek

	ωη
(λ) (29)

is an isomorphism between the corresponding eigenspaces.
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Proof Formulae (6) and (26) yield the second equality below:

	η = Dη D�
η + D�

η Dη = (θηdθ−1
η )(θηT �

η θ−1
η ) + (θηT �

η θ−1
η )(θηdθ−1

η )

= θη(dT �
η + T �

η d)θ−1
η = θη	ωηθ

−1
η .

This proves (27), from which the other two claims follow at once. ��

3 Twisted commutation relations forD� andD−�

Let X be a (possibly non-compact) complex manifold with dimCX = n ≥ 2. We fix
a Hermitian metric ω on X and denote by 〈 , 〉, resp. 〈〈 , 〉〉, the pointwise, resp. L2,
inner product induced by ω on C-valued differential forms on X .

In this section,wegive commutation relations for Dη, D−η and their formal adjoints,
as well as the identities of the Bochner-Kodaira-Nakano-type they induce. The identi-
ties we obtain are the analogues in our twisted and possibly non-Kähler context of the
classical Kähler commutation relations that were subsequently given Hermitian ver-
sions in [6], [12] and [3] for the standard operators ∂ and ∂̄ and then for the operators
dh and d−h twisted by a constant h ∈ C in [1]. In our present case, the twisting is by
a possibly non-constant function η.

We start with a preliminary computation.

Lemma 3.1 For any C∞ function η on X such that η > 0 or η < 0 and any k ∈
{0, . . . , 2n}, the formal adjoint D�

η : C∞
k+1(X , C) −→ C∞

k (X , C) w.r.t. 〈〈 , 〉〉 of the
operator Dη : C∞

k (X , C) −→ C∞
k+1(X , C) introduced in Definition 2.2 is given by

the formula:

D�
ηv = ∂�(ηv) + ∂̄�v −

∑
p+q=k

p (∂η ∧ ·)�v p+1, q −
∑

p+q=k

p

η
(∂̄η ∧ ·)�v p, q+1

(30)

for every form v = ∑
r+s=k+1

vr , s ∈ C∞
k+1(X , C).

Proof For any forms u = ∑
p+q=k

u p, q ∈ C∞
k (X , C) and v = ∑

r+s=k+1
vr , s ∈

C∞
k+1(X , C), formula (9) for Dηu and the fact that the inner product of any two

pure-type forms of different types vanishes lead to the following equivalences:

〈〈Dηu, v〉〉 = 〈〈u, D�
ηv〉〉

⇐⇒
∑

p+q=k

〈〈η∂u p, q − p ∂η ∧ u p, q , v p+1, q〉〉

+
∑

p+q=k

〈〈∂̄u p, q − p

η
∂̄η ∧ u p, q , v p, q+1〉〉 = 〈〈u, D�

ηv〉〉
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⇐⇒
∑

p+q=k

〈〈u p, q , ∂�(η v p+1, q) − p (∂η ∧ ·)�v p+1, q + ∂̄�v p, q+1

− p

η
(∂̄η ∧ ·)�v p, q+1〉〉 = 〈〈u, D�

ηv〉〉.

Now, the last term translates to

〈〈u, D�
ηv〉〉 =

∑
p+q=k

〈〈u p, q , (D�
ηv)p, q〉〉,

so we get:

(D�
ηv)p, q = ∂�(η v p+1, q) + ∂̄�v p, q+1 − p (∂η ∧ ·)�v p+1, q − p

η
(∂̄η ∧ ·)�v p, q+1

for every bidegree (p, q). Summing up over p + q = k, we get (30). ��
Now, we fix a degree k ∈ {0, . . . , 2n} and a form v = ∑

r+s=k+1
vr , s ∈ C∞

k+1(X , C).

Expressing ∂�, ∂̄�, (∂η ∧ ·)� and (∂̄η ∧ ·)� by means of the commutation relations of
Lemmas 7.1 and 7.2, formula (33) reads:

D�
ηv = i[�, ∂̄](ηv) − η τ�(v) − i[�, ∂](v) − τ̄ �(v)

+ i
∑

p+q=k

p [�, ∂̄η ∧ ·](v p+1, q) − i
∑

p+q=k

p

η
[�, ∂η ∧ ·](v p, q+1).

Since

[�, ∂̄](ηv) = �(η ∂̄v + ∂̄η ∧ v) − η ∂̄�v − ∂̄η ∧ �v

= η [�, ∂̄](v) + [�, ∂̄η ∧ ·](v),

the above equality translates to

D�
ηv + (η τ + τ̄ )�(v) = −i [�, ∂ − η∂̄](v) + [�, i ∂̄η ∧ ·](v)

−
∑

p+q=k

p

η
[�, i∂η ∧ ·](v p, q+1)

+
∑

p+q=k

p [�, i ∂̄η ∧ ·](v p+1, q). (31)

On the other hand, using formula (11) for D−η, we get:

[�, D−η](v) =
∑

r+s=k+1

[�, D−η](vr , s)

= −
∑

r+s=k+1

�

(
(η∂̄ − ∂)vr , s − s ∂̄η ∧ vr , s + s

η
∂η ∧ vr , s

)

123



   36 Page 18 of 50 D. Popovici

+
∑

r+s=k+1

(η∂̄ − ∂)(�vr , s) −
∑

r+s=k+1

(s − 1) ∂̄η ∧ �vr , s

+
∑

r+s=k+1

s − 1

η
∂η ∧ �vr , s,

which translates to

− i[�, D−η](v) = −i[�, ∂ − η∂̄](v) −
∑

r+s=k+1

s [�, i ∂̄η ∧ ·] vr , s − i ∂̄η ∧ �(v)

+
∑

r+s=k+1

s

η
[�, i∂η ∧ ·] vr , s +

∑
r+s=k+1

i

η
∂η ∧ �(vr , s). (32)

The conclusionof this computation is a preliminaryη-twisted commutation relation.

Lemma 3.2 For any C∞ function η on X such that η > 0 or η < 0 and any
k ∈ {0, . . . , 2n}, the formal adjoint D�

η : C∞
k+1(X , C) −→ C∞

k (X , C) of Dη :
C∞

k (X , C) −→ C∞
k+1(X , C) is given by

D�
η + (η τ + τ̄ )� = −i [�, D−η] − k + 1

η
[�, i d̄−ηη ∧ ·] − i

η
d̄−ηη ∧ �. (33)

Proof Let v = ∑
r+s=k+1

vr , s ∈ C∞
k+1(X , C).

Plugging into (31) the expression we obtain for −i[�, ∂ − η∂̄](v) from (32), we
get:

D�
ηv + (η τ + τ̄ )�(v) = −i[�, D−η](v) +

∑
r+s=k+1

s [�, i ∂̄η ∧ · ] (vr , s)

+i ∂̄η ∧ �(v)

−
∑

r+s=k+1

s

η
[�, i∂η ∧ · ] (vr , s) −

∑
r+s=k+1

i

η
∂η ∧ �(vr , s)

+[�, i ∂̄η ∧ · ] (v) −
∑

p+q=k

p

η
[�, i∂η ∧ · ](v p, q+1)

+
∑

p+q=k

p [�, i ∂̄η ∧ · ](v p+1, q). (34)

We now form pairs using certain sums featuring on the r.h.s. of (34). We get:

∑
r+s=k+1

s [�, i ∂̄η ∧ · ] (vr , s) +
∑

p+q=k

p [�, i ∂̄η ∧ · ] (v p+1, q) = k [�, i ∂̄η ∧ · ] (v)

after renaming, in the latter sum, p as r − 1 and q as s.
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Similarly, we get:

−
∑

r+s=k+1

s

η
[�, i∂η ∧ · ] (vr , s) −

∑
p+q=k

p

η
[�, i∂η ∧ · ](v p, q+1)

= −k + 1

η
[�, i∂η ∧ ·] (v)

after renaming, in the latter sum, p as r and q as s − 1.
Finally, after using formula (12) giving d−η for the latter equality below, we get:

i ∂̄η ∧ �(v) −
∑

r+s=k+1

i

η
∂η ∧ �(vr , s) = i ∂̄η ∧ �(v) − i

η
∂η ∧ �(v)

= − i

η
d̄−ηη ∧ �(v).

Putting all these expressions together and using (12), we see that (34) becomes the
desired (33). ��

Note that the second and third terms on the r.h.s. of (33) are of order zero. Thus,
the principal part of D�

η is contained in −i [�, D−η].
We now introduce the following

Definition 3.3 For every degree k ∈ {0, . . . , 2n}, the η-torsion operator τη :
�k T � X −→ �k+1T � X is defined pointwise on the C-valued k-forms on X by

τη = [�, Dηω ∧ · ]. (35)

A straightforward computation yields the following

Lemma 3.4 For every k ∈ {0, . . . , 2n}, the η-torsion operator τη : �k T � X −→
�k+1T � X is explicitly given by

τη = ητ + τ̄ + i ω ∧ (∂̄η ∧ · )� − i

η
(∂η ∧ · )� (ω ∧ · ) − (n − k − 1) ∂η ∧ ·

−(n − k)
1

η
∂̄η ∧ ·. (36)

Proof From (9), we get:

Dηω = η∂ω + ∂̄ω − ∂η ∧ ω − 1

η
∂̄η ∧ ω.

Hence, for every k-form u, we get:

τηu = �

(
η ∂ω ∧ u + ∂̄ω ∧ u − ∂η ∧ ω ∧ u − 1

η
∂̄η ∧ ω ∧ u

)
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−
(

η ∂ω + ∂̄ω − ∂η ∧ ω − 1

η
∂̄η ∧ ω

)
∧ �u

= η [�, ∂ω ∧ · ] u + [�, ∂̄ω ∧ · ] u − [�, ω ∧ · ] (∂η ∧ u) − ω ∧ [�, ∂η ∧ · ] u

− 1

η
[�, ∂̄η ∧ · ] (ω ∧ u) − 1

η
∂̄η ∧ [�, ω ∧ · ] u

= η τ(u) + τ̄ (u) − (n − k − 1) ∂η ∧ u + i ω ∧ (∂̄η ∧ · )�(u)

− 1

η
i(∂η ∧ · )� (ω ∧ u) − 1

η
∂̄η ∧ (n − k) u,

which is (36).
We have used the definition of τ , formulae (a) of Lemma 7.2 and the standard

identity [�, ω ∧ · ] = (n − k) Id on k-forms. ��
As a consequence of these computations, we get the following analogue of Lemma

4.1. of [1] (which dealt with the case where the function η was a constant h ∈ R\{0}).
Proposition 3.5 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0, the following η-twisted
commutation relations hold on differential forms of any degree on X:

(a)D�
η + τ �

η = −i [�, D−η] + n

η
[i d−ηη ∧ ·,�];

(b) D
�

−η + τ �−η = i [�, Dη] − n

η
[i dηη ∧ ·,�];

(c)Dη + τη = i [D
�

−η, ω ∧ · ] − n

η
[ω ∧ ·, i (d−ηη ∧ · )�];

(d)D−η + τ−η = −i [D�
η, ω ∧ · ] + n

η
[ω ∧ ·, i (dηη ∧ · )�].

(37)

Proof It suffices to prove (a), since (b) will then follow by taking conjugates and
replacing η with −η, (c) will follow by taking adjoints in (a), while (d) will follow by
taking adjoints in (b).

Taking adjoints in (36), we get:

τ �
η = ητ� + τ̄ � − i ∂̄η ∧ � + i

η
�(∂η ∧ · ) − (n − k − 1) (∂η ∧ · )�

−(n − k)
1

η
(∂̄η ∧ · )�

in degree k + 1. (Note that the switch from the degree k of (36) to the current degree
k + 1 is due to τηu being a (k + 1)-form whenever of u is a k-form.)

Plugging the value for ητ� + τ̄ � given by the above equality into (33), we get:

D�
η + τ �

η = −i [�, D−η] − k + 1

η
�(i ∂η ∧ · )
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+k + 1

η
�(iη ∂̄η ∧ · ) + k + 1

η
i∂η ∧ � − k + 1

η
η i ∂̄η ∧ �

− i

η
∂η ∧ � + i

η
η ∂̄η ∧ � − i ∂̄η ∧ � + i

η
�(∂η ∧ · )

− (n − k − 1) (∂η ∧ · )� − (n − k)
1

η
(∂̄η ∧ · )� (38)

in degree k + 1.
Now, using the commutation relations (a) of Lemma 7.2, we see that the last line

translates to

−(n − k − 1) i ∂̄η ∧ � + (n − k − 1)�(i ∂̄η ∧ · ) + n − k

η
i∂η ∧ �

−n − k

η
�(i∂η ∧ · ).

Therefore, (38) becomes:

D�
η + τ �

η = −i [�, D−η] + n

η
[i∂η ∧ ·,�] − n [i ∂̄η ∧ ·,�],

which is nothing but (a). ��
We are now in a position to give the first main result of this section. It generalises

Corollary 4.2. of [1] (which dealt with the case where the function η was a constant
h ∈ R \ {0}).
Proposition 3.6 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0 and any k ∈ {0, . . . , 2n}, the
following rough η-Bochner-Kodaira-Nakano (η-BKN) identity holds on the C∞
forms on X:

	η = 	−η + i [[Dη, D−η], �] + [D−η, τ �−η] − [Dη, τ �
η ]

+ n

[
Dη,

1

η
[id−ηη ∧ ·, �]

]

+n

[
D−η,

1

η
[idηη ∧ ·, �]

]
. (39)

Proof Using the expression for D�
η given in (a) of (37), we get the second equality

below:

	η = [Dη, D�
η] = −i [Dη, [�, D−η]]−[Dη, τ �

η ]+n

[
Dη,

1

η
[id−ηη ∧ ·, �]

]
.

(40)

Now, the Jacobi identity yields the former equality below (expressing the first term
on the r.h.s. of (40)), while the η-twisted commutation relation (b) of (37) yields the
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latter equality:

− i [Dη, [�, D−η]] = [D−η, i [�, Dη]] + i [[D−η, Dη], �]
= i [[Dη, D−η], �] +

[
D−η, D

�

−η+τ �−η+ n

η
[idηη ∧ ·, �]

]
.

(41)

Plugging into (40) the expression given for −i [Dη, [�, D−η]] in (41) and using
the equality [D−η, D

�

−η] = 	−η, we get (39). ��
We shall now refine the above η-BKN identity by incorporating some of the first-

order terms on the right into a twisted Laplacian. The starting point is the following
analogue for a possibly non-constant function η of Lemma 4.4. in [1].

Lemma 3.7 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2. For
any C∞ function η on X such that η > 0 or η < 0 and any bidegree (p, q), the
following identities hold:

(i) [L, τη] = 3 Dηω ∧ · , (ii) [�, τη] = 2i τ �−η,

(iii) [Dη, D
�

−η] = −[Dη, τ �−η] −
[

Dη,
n
η

(d−ηη ∧ ·)�
]
,

(iv) [Dη, D�
η] + [Dη, τ �

η ] − [D−η, τ �−η] = [Dη + τη, D�
η + τ �

η ] + S(η)
ω

+n

η
[τη, (dηη ∧ ·)�],

where

S(η)
ω := i

2
[�, [�, D−η Dηω ∧ · ]] − [Dηω ∧ ·, (Dηω ∧ · )�].

Proof (i) The definition of τη and the Jacobi identity yield the first and respectively
the second identities below:

[L, τη] = [L, [�, Dηω ∧ · ]] = −[�, [Dηω ∧ ·, L]] − [Dηω ∧ ·, [L, �]].

Now, [Dηω∧· , L] = Dηω∧ (ω∧· )−ω∧ (Dηω∧· ) = 0, so the first term on the
r.h.s. above vanishes. Meanwhile, it is standard that [L, �] = (k − n) Id on k-forms.
So for any k-form u, we get

[Dηω ∧ ·, [L, �]] u = Dηω ∧ ([L, �] u) − [L, �] (Dηω ∧ u)

= (k − n) Dηω ∧ u − (k + 3 − n) Dηω ∧ u = −3 Dηω ∧ u.

Thus, [Dηω ∧ · , [L, �]] = −3 Dηω ∧ · and (i) follows.
(ii) We know from the η-twisted commutation relation (c) of Proposition 3.5 that

τη = i [D
�

−η, L]− Dη − n
η

[L, i (d−ηη∧· )�]. This implies the former identity below,
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while (b) of Proposition 3.5 yields the latter:

[�, τη] = i [�, [D
�

−η, L]] − [�, Dη] − n

η
[�, [L, i (d−ηη ∧ · )�]]

= i [�, [D
�

−η, L]] + i (D
�

−η + τ �−η) − n

η
[dηη ∧ ·, �]

−n

η
[�, [L, i (d−ηη ∧ · )�]]. (42)

We transform the first term on the right of (42) using the Jacobi identity

[�, [D
�

−η, L]] + [D
�

−η, [L, �]] + [L, [�, D
�

−η]] = 0. (43)

Since [L, �] = (k − n) Id on k-forms, we get [D
�

−η, [L, �]] = D
�

−η.
We then transform the last term on the right of (42) using the Jacobi identity

0 = [�, [L, i (d−ηη ∧ · )�]] + [L, [i (d−ηη ∧ · )�, �]] + [i (d−ηη ∧ · )�, [�, L]]
= [�, [L, i (d−ηη ∧ · )�]] − [[L, i d−ηη ∧ · ], �]� − i (d−ηη ∧ · )�,

where we used again the identity [L, �] = (k − n) Id on k-forms to get the last term.
Meanwhile, the last term on the left of (43) can be written as [L, [�, D

�

−η]] =
[[D−η, L], �]�, so after putting all these pieces of information together, we see that
(42) translates to:

[�, τη] = −i [[D−η, L], �]� − i D
�

−η + i (D−η + τ−η)
� − n

η
[dηη ∧ ·, �]

− n

η
[[L, i d−ηη ∧ · ], �]� − n

η
i (d−ηη ∧ · )�.

Since [dηη∧· , �] = −i (d−ηη∧· )� (see (a) of Corollary 7.3) and [L, i d−ηη∧· ] = 0
(immediate verification), we get:

[�, τη] = −i [[D−η, L], �]� + i τ �−η. (44)

Now, for an arbitrary (p, q)-form u, using (11) we get:

[D−η, L] u = D−η(ω ∧ u) − ω ∧ D−ηu

= (∂ − η ∂̄)ω ∧ u + ω ∧ (∂ − η ∂̄)u

−q + 1

η
∂η ∧ (ω ∧ u) + (q + 1) ∂̄η ∧ (ω ∧ u)

− ω ∧ (∂ − η ∂̄) u + ω ∧ q

η
∂η ∧ u − q ω ∧ ∂̄η ∧ u

=
(

∂ − η ∂̄ − 1

η
∂η ∧ · + ∂̄η ∧ ·

)
ω ∧ u = D−ηω ∧ u.
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This shows that [D−η, L] = D−ηω ∧ ·. Combined with the equality τ−η =
−[D−ηω ∧ · , �], this transforms (44) to the desired identity [�, τη] = 2i τ �−η.

This proves (ii).
(iii) The η-twisted commutation relation (b) of Proposition 3.5 implies

[Dη, D
�

−η] = −[Dη, τ �−η] + i [Dη, [�, Dη]] − [Dη,
n

η
[i dηη ∧ ·, �]]. (45)

Meanwhile, the Jacobi identity yields

−[Dη, [�, Dη]] + [�, [Dη, Dη]] + [Dη, [Dη, �]] = 0.

Since [Dη, Dη] = 0 (because D2
η = 0) and [Dη, �] = −[�, Dη], we get

[Dη, [�, Dη]] = 0.
Togetherwith [i dηη∧· , �] = (d−ηη∧· )� (see (a) ofCorollary 7.3), this transforms

(45) into the identity claimed under (iii).
(iv) Applying part (ii) and then the Jacobi identity, we get:

[D−η, τ �−η] = − i

2
[D−η, [�, τη]] = − i

2
[�, [τη, D−η]] − i

2
[τη, [D−η, �]].

(46)

On the other hand,

[τη, D−η] (a)= [D−η, τη] (b)= [D−η, [�, Dηω ∧ · ]]
(c)= [�, [Dηω ∧ ·, D−η]] + [Dηω ∧ ·, [D−η, �]]

(d)= [�, D−η Dηω ∧ · ] − i [Dηω ∧ ·, D�
η + τ �

η ]
−n

η

[
Dηω ∧ ·, [d−ηη ∧ ·, �]

]
, (47)

where (a) follows from τη and D−η being operators of odd degrees, (b) follows from
the definition of τη, (c) follows from the Jacobi identity, while the sum of the last two
terms in (d) follows from

[D−η, �] = −i (D�
η + τ �

η ) − n

η
[d−ηη ∧ ·, �]

which is a consequence of the η-twisted commutation relation (a) of Proposition 3.5.
The computation of the first term in (d) of (47) runs, for any (p, q)-form u, as

follows.
• First,

[Dηω ∧ ·, D−η] u = Dηω ∧ D−ηu + D−η(Dηω ∧ u)

= Dηω ∧ D−ηu + D−η(D1, 0
η ω ∧ u) + D−η(D0, 1

η ω ∧ u).
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• Then, we see that

D−η(D1, 0
η ω ∧ u) = (∂ − η ∂̄)(D1, 0

η ω ∧ u)

−q + 1

η
∂η ∧ D1, 0

η ω ∧ u + (q + 1) ∂̄η ∧ D1, 0
η ω ∧ u

and that

D−η(D0, 1
η ω ∧ u) = (∂ − η ∂̄)(D0, 1

η ω ∧ u)

−q + 2

η
∂η ∧ D0, 1

η ω ∧ u + (q + 2) ∂̄η ∧ D0, 1
η ω ∧ u.

• Putting these pieces of information together, we deduce that

[Dηω ∧ ·, D−η] u = Dηω ∧ D−ηu + (∂ − η ∂̄) (Dηω) ∧ u

−D1, 0
η ω ∧

(
(∂ − η ∂̄) u − q + 1

η
∂η ∧ u + (q + 1) ∂̄η ∧ u

)

−D0, 1
η ω ∧

(
(∂ − η ∂̄) u − q + 2

η
∂η ∧ u + (q + 2) ∂̄η ∧ u

)
.

Hence,

[Dηω ∧ ·, D−η] u = Dηω ∧ D−ηu + (∂ − η ∂̄) (D1, 0
η ω) ∧ u + (∂ − η ∂̄) (D0, 1

η ω) ∧ u

− Dηω ∧ D−ηu + D1, 0
η ω ∧

(
1

η
∂η ∧ u − ∂̄η ∧ u

)
+ D0, 1

η ω ∧
(
2

η
∂η ∧ u − 2 ∂̄η ∧ u

)

= D−η(D1, 0
η ω) ∧ u + D−η(D0, 1

η ω) ∧ u.

• We conclude that the formula

[Dηω ∧ ·, D−η] = D−η Dηω ∧ · (48)

holds in every (bi-)degree.
This finishes the computation of the first term in (d) of (47).
Taking the bracket with � in (47), we get:

[�, [τη, D−η]] = [�, [�, D−η Dηω ∧ · ]] − i [�, [Dηω ∧ ·, D�
η + τ �

η ]]
−n

η

[
�,

[
Dηω ∧ ·, [d−ηη ∧ ·, �]

]]
. (49)
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• Now, we compute the second term on the right of (49) starting from the Jacobi
formula:

[�, [Dηω ∧ ·, D�
η + τ�

η ]] = −[Dηω ∧ ·, [D�
η + τ�

η , �]] + [D�
η + τ�

η , [�, Dηω ∧ · ]]
= −[Dηω ∧ ·, [L, Dη + τη]�] + [D�

η + τ�
η , τη]. (50)

Moreover, for any (p, q)-form u, we have:

[L, Dη] u = ω ∧ Dηu − Dη(ω ∧ u)

= ω ∧ Dηu − (η ∂ + ∂̄)(ω ∧ u) + (p + 1) ∂η ∧ ω ∧ u

+ p + 1

η
∂̄η ∧ ω ∧ u

= ω ∧ Dηu − ω ∧ Dηu −
(

(η ∂ + ∂̄) − ∂η ∧ · − 1

η
∂̄η ∧ ·

)
ω ∧ u

= −Dηω ∧ u.

We have thus got the formula

[L, Dη] = −Dηω ∧ ·,

which, together with the one proved under (i), yields

[L, Dη + τη] = −Dηω ∧ · + [L, τη] = 2 Dηω ∧ ·.

Combining this with (50), we transform (49) to

[�, [τη, D−η]] = [�, [�, D−η Dηω ∧ · ]]
+2i [Dηω ∧ ·, (Dηω ∧ · )�]] − i [D�

η + τ �
η , τη]

−n

η

[
�,

[
Dηω ∧ ·, [d−ηη ∧ ·, �]

]]
. (51)

This is the end of the computation of the last but one term in (46).
• Using (51), (46) becomes

[D−η, τ �−η] = − i

2
[�, [�, D−η Dηω ∧ · ]] + [Dηω ∧ ·, (Dηω ∧ · )�]

−1

2
[D�

η + τ �
η , τη]

− i

2
[τη, [D−η, �]] + n

2η

[
�,

[
Dηω ∧ ·, [id−ηη ∧ ·, �]

]]
. (52)
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Now, expressing i [D−η, �] by means of the η-twisted commutation relation (a)
of Proposition 3.5, the last but one term in (52) reads:

− i

2
[τη, [D−η, �]] = −1

2
[τη, D�

η + τ �
η ] + n

2η
[τη, [id−ηη ∧ ·, �]].

Meanwhile, the Jacobi identity expresses the last term in (52) as

n

2η

[
�,

[
Dηω ∧ ·, [id−ηη ∧ ·, �]

]]
= − n

2η

[
Dηω ∧ ·,

[
[id−ηη ∧ ·, �], �

]]

+ n

2η

[
[id−ηη ∧ ·, �],

[
�, Dηω ∧ ·

]]
.

Using these equalities, (52) reduces to

−[D−η, τ �−η] = [D�
η + τ �

η , τη] + i

2
[�, [�, D−η Dηω ∧ · ]]

−[Dηω ∧ ·, (Dηω ∧ · )�]
−n

η

[
τη, [id−ηη ∧ ·, �]

]
+ n

2η

[
Dηω ∧ ·,

[
[id−ηη ∧ ·, �], �

]]
. (53)

Now, in the last but one term, (b) of Corollary 7.3 ensures that [id−ηη ∧ · , �] =
−(dηη ∧ · )�. Meanwhile, the last term in (53) vanishes since

[
[id−ηη ∧ ·, �], �

]
= −[(dηη ∧ · )�, �] = −[L, dηη ∧ · ]� = 0,

the last vanishing being a consequence of the equalities

[L, dηη ∧ · ] u = ω ∧ (dηη ∧ u) − dηη ∧ (ω ∧ u) = 0

that hold for any form u.
Thus, using these observations and the notation S(η)

ω spelt out in the statement, we
see that (53) translates to

−[D−η, τ �−η] = [D�
η + τ �

η , τη] + S(η)
ω + n

η
[τη, (dηη ∧ · )�].

It remains to add [Dη, D�
η]+[Dη, τ �

η ] = [Dη, D�
η + τ �

η ] to either side of this equality
to get the desired equality (iv) of Lemma 3.7. ��

We can now give the main result of this section.

Theorem 3.8 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0 and any k ∈ {0, . . . , 2n}, the

123



   36 Page 28 of 50 D. Popovici

following refined η-Bochner-Kodaira-Nakano (η-BKN) identity holds on the C∞
forms on X:

	η = [D−η + τ−η, D
�

−η + τ �−η] + T (η)
ω + i [[Dη, D−η], �]

+n

[
D−η + τ−η,

1

η
(d−ηη ∧ · )�

]

−n

[
Dη,

1

η
(dηη ∧ · )�

]
, (54)

where T (η)
ω is the zero-th order operator defined by

T (η)
ω := S(−η)

ω = − i

2
[�, [�, Dη D−ηω ∧ · ]] − [D−ηω ∧ ·, (D−ηω ∧ · )�].

Proof Putting together the rough η-BKN formula (39) and equality (iv) of Lemma
3.7, we get:

	η + [Dη + τη, D�
η + τ �

η ] + S(η)
ω + n

η
[τη, (dηη ∧ · )�]

= 	−η + i [[Dη, D−η], �] + [D−η, τ �−η]
−[Dη, τ �

η ] + [Dη, D�
η] + [Dη, τ �

η ] − [D−η, τ �−η]
+n

[
Dη,

1

η
[id−ηη ∧ ·, �]

]
+ n

[
D−η,

1

η
[idηη ∧ ·, �]

]
.

Since [Dη, D�
η] = 	η and since the terms [Dη, τ �

η ] and [D−η, τ �−η] reoccur with
the opposite signs, this equality reduces to

	−η = [Dη + τη, D�
η + τ �

η ] + S(η)
ω − i [[Dη, D−η], �]

+ n

[
τη,

1

η
(dηη ∧ · )�

]
+ n

[
Dη,

1

η
(dηη ∧ · )�

]
− n

[
D−η,

1

η
(d−ηη ∧ · )�

]
.

Identity (54) follows from this by taking conjugates and replacing η with −η. ��
We now compute the operator [Dη, D−η] that features in identity (54).

Proposition 3.9 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0 and any bidegree (p, q), the
following identities hold:

[Dη, D−η] (u p, q) =
(

η − 1

η

)
∂̄η ∧ ∂u p, q −

(
η + 1

η

)
∂η ∧ ∂̄u p, q

+ 2
p − q

η2
∂η ∧ ∂̄η ∧ u p, q + (q − p)

(
η + 1

η

)
∂∂̄η ∧ u p, q ,
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and

i

[
[Dη, D−η], �

]
(u p, q) =

(
η − 1

η

) (
[i ∂̄η ∧ ·, �] ∂u p, q + i ∂̄η ∧ [∂, �] u p, q

)

−
(

η + 1

η

)(
[i∂η ∧ ·, �] ∂̄u p, q + i∂η ∧ [∂̄, �] u p, q

)

+2
p − q

η2

[
i∂η ∧ ∂̄η ∧ ·, �

]
u p, q + (q − p)

(
η + 1

η

)[
i∂∂̄η ∧ ·, �

]
u p, q

(55)

for any C∞ (p, q)-form u p, q .

Proof We compute separately the two terms in the sum [Dη, D−η] (u p, q) =
(Dη D−η) (u p, q) + (D−η Dη) (u p, q).

• We use (9) to get the first line and then (11) to get the next four lines below:

(D−η Dη) (u p, q) = D−η(η ∂u p, q) + D−η(∂̄u p, q)

−p D−η(∂η ∧ u p, q) − p D−η

(
1

η
∂̄η ∧ u p, q

)

= ∂(η ∂u p, q) − η∂̄(η ∂u p, q) − q

η
η ∂η ∧ ∂u p, q + qη ∂̄η ∧ ∂u p, q

+∂∂̄u p, q − q + 1

η
∂η ∧ ∂̄u p, q + (q + 1) ∂̄η ∧ ∂̄u p, q

−p∂(∂η ∧ u p, q) + pη ∂̄(∂η ∧ u p, q) − pq ∂̄η ∧ ∂η ∧ u p, q

−p∂

(
1

η
∂̄η ∧ u p, q

)
+ pη ∂̄

(
1

η
∂̄η ∧ u p, q

)
+ p(q + 1)

η2
∂η ∧ ∂̄η ∧ u p, q .

This leads, through straightforward computations, to

(D−η Dη) (u p, q) = p

(
q + q + 2

η2

)
∂η ∧ ∂̄η ∧ u p, q − p

(
η + 1

η

)
∂∂̄η ∧ u p, q

+ (p − q + 1) ∂η ∧ ∂u p, q +
(

p

η
+ (q + 1) η

)
∂̄η ∧ ∂u p, q

−
(

pη + q + 1

η

)
∂η ∧ ∂̄u p, q + (q − p + 1) ∂̄η ∧ ∂̄u p, q

+ (1 + η2) ∂∂̄u p, q . (56)

• Meanwhile, we use (11) to get the first line and then (9) to get the next four lines
below:

(Dη D−η) (u p, q) = Dη(∂u p, q) − Dη(η ∂̄u p, q) − q Dη

(
1

η
∂η ∧ u p, q

)

+q Dη(∂̄η ∧ u p, q)
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= ∂̄∂u p, q − (p + 1) ∂η ∧ ∂u p, q − p + 1

η
∂̄η ∧ ∂u p, q

− η ∂(η ∂̄u p, q) − ∂̄(η ∂̄u p, q) + pη ∂η ∧ ∂̄u p, q + p ∂̄η ∧ ∂̄u p, q

− qη ∂

(
1

η
∂η ∧ u p, q

)
− q ∂̄

(
1

η
∂η ∧ u p, q

)

+ (p + 1)q

η2
∂̄η ∧ ∂η ∧ u p, q

+ qη ∂(∂̄η ∧ u p, q) + q ∂̄(∂̄η ∧ u p, q) − pq ∂η ∧ ∂̄η ∧ u p, q .

This leads, through straightforward computations, to

(Dη D−η) (u p, q) = −
(

(p + 2)q

η2
+ pq

)
∂η ∧ ∂̄η ∧ u p, q + q

(
η + 1

η

)
∂∂̄η ∧ u p, q

+ (q − p − 1) ∂η ∧ ∂u p, q −
(

p + 1

η
+ q η

)
∂̄η ∧ ∂u p, q

+
(

(p − 1) η + q

η

)
∂η ∧ ∂̄u p, q + (p − q − 1) ∂̄η ∧ ∂̄u p, q

− (1 + η2) ∂∂̄u p, q . (57)

Adding up (56) and (57) yields the former desired equality.

Now, starting from i

[
[Dη, D−η], �

]
(u p, q) = i [Dη, D−η] (�u p, q) −

�

(
i [Dη, D−η] (u p, q)

)
and using the equality we just proved, we get

i

[
[Dη, D−η], �

]
(u p, q) =

(
η − 1

η

) (
i ∂̄η ∧ ∂� u p, q

−�(i ∂̄η ∧ ∂u p, q)

)

−
(

η + 1

η

)(
i∂η ∧ ∂̄� u p, q − �(i∂η ∧ ∂̄u p, q)

)

+2
p − q

η2

[
i∂η ∧ ∂̄η ∧ ·, �

]
u p, q + (q − p)

(
η + 1

η

)[
i∂∂̄η ∧ ·, �

]
u p, q .

It remains to notice that on the first line on the r.h.s. above we can write:

i ∂̄η ∧ ∂� u p, q − �(i ∂̄η ∧ ∂u p, q) = [i ∂̄η ∧ ·, �] ∂u p, q + i ∂̄η ∧ [∂, �] u p, q ,

while on the second line on the r.h.s. above we can write:

i∂η ∧ ∂̄� u p, q − �(i∂η ∧ ∂̄u p, q) = [i∂η ∧ ·, �] ∂̄u p, q + i∂η ∧ [∂̄, �] u p, q

to get (55). ��
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4 Twisted commutation relations forD1, 0
� andD0, 1

�

The setting is the same as in the previous section §3. Besides the differential operators
defined by:

D1, 0
η = η∂ − p∂η ∧ · and D0, 1

η = ∂̄ − p

η
∂̄η ∧ · ,

on (p, q)-forms, we now also consider the operators d ′
η = η∂ and d ′′

η = ∂̄ , as well as

τ1, 0η := [�, D1, 0
η ω ∧ · ] = ητ −

[
�, ∂η ∧ ω ∧ ·

]
and τ0, 1η := [�, D0, 1

η ω ∧ · ] = τ

−
[
�,

1

η
∂̄η ∧ ω ∧ ·

]
.

Thus, we have:

Dη = D1, 0
η + D0, 1

η ; dη = d ′
η + d ′′

η ; τη = τ 1, 0η + τ 0, 1η .

Lemma 4.1 (i) The following formulae hold in any bidegree:

τ = τ
0, 1
η +

[
�,

1

η
∂η ∧ ω ∧ ·

]
and τ = τ 0, 1η +

[
�,

1

η
∂̄η ∧ ω ∧ ·

]
.

(58)

(ii) For any p, q, the following formulae hold in bidegree (p, q):

D0, 1
η + τ 0, 1η = (∂̄ + τ̄ ) − p

η
∂̄η ∧ · −

[
�,

1

η
∂̄η ∧ ω ∧ ·

]

D0, 1
η + τ

0, 1
η = (∂ + τ) − q

η
∂η ∧ · −

[
�,

1

η
∂η ∧ ω ∧ ·

]
. (59)

Proof Immediate verification. ��
Equating the bidegrees in D2

η = 0, we get:

(i) (D1, 0
η )2 = 0; (i i) D1, 0

η D0, 1
η = −D0, 1

η D1, 0
η ; (i i i) (D0, 1

η )2 = 0. (60)

The anti-commutation of D1, 0
η and D0, 1

η is an advantage these operators have over

Dη and D−η (that do not anti-commute – see Proposition 3.9) considered in §.4.
We also consider the Laplacians:

	′′
η := [D0, 1

η , (D0, 1
η )�] and 	′

η := [D0, 1
η , D0, 1

η

�],
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where the conjugate operator D0, 1
η is defined by requiring D0, 1

η u = D0, 1
η ū for every

form u.
An immediate computation shows that, in bidegree (p, q), we have:

D0, 1
η = ∂ − q

η
∂η ∧ ·, hence also D0, 1

η

� = ∂� − q

η
(∂η ∧ · )�. (61)

Lemma 4.2 The following formula holds in any bidegree (p, q):

D0, 1
η

� + τ
0, 1
η

� = (∂� + τ �) − q

η
(∂η ∧ · )� −

[(
1

η
∂η ∧ ω ∧ ·

)�

, ω ∧ ·
]
. (62)

Proof It follows at once by conjugating the latter equality in (59). ��
On the other hand, the identity Dη = θηdθ−1

η (see (6)) yields:

D1, 0
η = θη∂θ−1

η and D0, 1
η = θη∂̄θ−1

η . (63)

In particular, for every bidegree (p, q), the D1, 0
η -cohomology and D0, 1

η -
cohomology spaces:

H p, q

D1, 0
η

(X , C) :=
ker

(
D1, 0

η : C∞
p, q(X , C) −→ C∞

p+1, q(X , C)

)

Im

(
D1, 0

η : C∞
p−1, q(X , C) −→ C∞

p, q(X , C)

) ,

H p, q

D0, 1
η

(X , C) :=
ker

(
D0, 1

η : C∞
p, q(X , C) −→ C∞

p, q+1(X , C)

)

Im

(
D0, 1

η : C∞
p, q−1(X , C) −→ C∞

p, q(X , C)

) (64)

are isomorphic to the corresponding ∂-cohomology, resp. ∂̄-cohomology, spaces via
the following isomorphisms induced in cohomology by θη as in Proposition 2.3:

θη : H p, q
∂ (X , C) −→ H p, q

D1, 0
η

(X , C), {u}∂ �−→ {θηu}D1, 0
η

,

θη : H p, q
∂̄

(X , C) −→ H p, q

D0, 1
η

(X , C), {u}∂̄ �−→ {θηu}D0, 1
η

. (65)

Another immediate observation is that

D0, 1
η = D0, 1

−η , hence also τ 0, 1η = τ
0, 1
−η and 	′

η = 	′−η. (66)

On the other hand, the principal part of 	′′
η is the classical ∂̄-Laplacian 	′′, while

the principal part of 	′
η is 	′. This shows that 	′′

η and 	′
η are elliptic. Consequently,
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if X is compact, we get, in every bidegree (p, q), the Hodge isomorphism

H p, q

D0, 1
η

(X , C) 	 Hp, q
	′′

η
(X , C) := ker

(
	′′

η : C∞
p, q(X , C) −→ C∞

p, q(X , C)

)
(67)

mapping every D0, 1
η -cohomology class to its unique 	′′

η-harmonic representative, as

well as the analogous statement for 	′
η and D0, 1

η .
Splitting each of the η-twisted commutation relations (37) into two identities

according to the bidegrees, we see that Proposition 3.5 translates to

Proposition 4.3 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0, the following η-twisted
commutation relations hold on differential forms of any degree on X:

(a′) (D1, 0
η )� + (τ 1, 0η )� = −i [�, D1, 0

−η ] + n

η
[i d ′−ηη ∧ ·,�];

(a′′) (D0, 1
η )� + (τ 0, 1η )� = −i [�, D0, 1

−η ] + n

η
[i d ′′−ηη ∧ ·,�];

(b′) D1, 0
−η

� + τ
1, 0
−η

� = i [�, D1, 0
η ] − n

η
[i d ′

ηη ∧ ·,�];

(b′′) D0, 1
−η

� + τ
0, 1
−η

� = i [�, D0, 1
η ] − n

η
[i d ′′

η η ∧ ·,�];

(c′) D1, 0
η + τ 1, 0η = i [D1, 0

−η

�

, ω ∧ · ] − n

η
[ω ∧ ·, i (d ′−ηη ∧ · )�];

(c′′) D0, 1
η + τ 0, 1η = i [D0, 1

−η

�

, ω ∧ · ] − n

η
[ω ∧ ·, i (d ′′−ηη ∧ · )�];

(d ′) D1, 0
−η + τ

1, 0
−η = −i [(D1, 0

η )�, ω ∧ · ] + n

η
[ω ∧ ·, i (d ′

ηη ∧ · )�];

(d ′′) D0, 1
−η + τ

0, 1
−η = −i [(D0, 1

η )�, ω ∧ · ] + n

η
[ω ∧ ·, i (d ′′

η η ∧ · )�]. (68)

As a consequence of these η-twisted commutation relations, we get the following
analogue of Proposition 3.6.

Proposition 4.4 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0 and any k ∈ {0, . . . , 2n}, the
following rough η-Bochner-Kodaira-Nakano (η-BKN) identity holds on the C∞
forms of any degree on X:

	′′
η = 	′

η + i

[
[D0, 1

η , D0, 1
η ], �

]
+ [D0, 1

η , τ
0, 1
η

�] −
[

D0, 1
η , (τ 0, 1η )�

]

+ n

[
D0, 1

η ,
i

η
[∂η ∧ ·, �]

]

+n

[
D0, 1

η ,
i

η
[∂̄η ∧ ·, �]

]
. (69)
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Proof Using the expression for (D0, 1
η )� given in (a”) of (68),we get the second equality

below:

	′′
η = [D0, 1

η , (D0, 1
η )�] = −i

[
D0, 1

η , [�, D0, 1
−η ]

]
− [D0, 1

η , (τ 0, 1η )�]

+n

[
D0, 1

η ,
i

η
[∂η ∧ ·, �]

]
. (70)

Now, the Jacobi identity yields the former equality below (expressing the first term
on the r.h.s. of (70)), while the η-twisted commutation relation (b”) of (68) yields the
latter equality:

− i

[
D0, 1

η , [�, D0, 1
−η ]

]
=

[
D0, 1

−η , i [�, D0, 1
η ]

]
+ i

[
[D0, 1

−η , D0, 1
η ], �

]

= i

[
[D0, 1

η , D0, 1
−η ], �

]

+
[

D0, 1
−η , D0, 1

−η

� + τ
0, 1
−η

� + n

η
[i ∂̄η ∧ ·, �]

]
. (71)

Plugging into (70) the expression given for−i

[
D0, 1

η , [�, D0, 1
−η ]

]
in (71) and using

the equality [D0, 1
−η , D0, 1

−η

�] = 	′−η as well as (66), we get (69). ��
The first step towards refining the above η-BKN identity by incorporating some of

the first-order terms on the right into a twisted Laplacian is the following analogue of
Lemma 3.7.

Lemma 4.5 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2. For
any C∞ function η on X such that η > 0 or η < 0 and any bidegree (p, q), the
following identities hold:

(i) [L, τ 0, 1η ] = 3 D0, 1
η ω ∧ · , (ii) [�, τ 0, 1η ] = 2i τ

0, 1
−η

�

,

(iii) [D0, 1
η , D0, 1

−η

�] = −[D0, 1
η , τ

0, 1
−η

�] −
[

D0, 1
η , n

η
(∂η ∧ · )�

]
,

(iv)

[D0, 1
η , (D0, 1

η )�] + [D0, 1
η , (τ 0, 1η )�] −

[
D0, 1

−η , τ
0, 1
−η

�
]

= [D0, 1
η + τ 0, 1η , (D0, 1

η )� + (τ 0, 1η )�] + S(η)′′
ω

+n

η
[τ 0, 1η , (∂̄η ∧ ·)�],

where

S(η)′′
ω := i

2
[�, [�, D0, 1

η D0, 1
η ω ∧ · ]] − [D0, 1

η ω ∧ ·, (D0, 1
η ω ∧ · )�].
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Proof The computations are the exact analogues of those forming the proof of Lemma
3.7 when Dη is replaced by D0, 1

η , τη is replaced by τ 0, 1η , etc. The details will not be
repeated. ��

The main result of this section is the following analogue of Theorem 3.8.

Theorem 4.6 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
For any C∞ function η on X such that η > 0 or η < 0 and any k ∈ {0, . . . , 2n}, the
following refined η-Bochner-Kodaira-Nakano (η-BKN) identity holds on the C∞
forms on X:

	′′
η =

[
D0, 1

η + τ
0, 1
η , D0, 1

η

� + τ
0, 1
η

�
]

x + T (η)′′
ω + i

[
[D0, 1

η , D0, 1
η ], �

]

+n

[
D0, 1

η + τ
0, 1
η ,

1

η
(∂η ∧ · )�

]
− n

[
D0, 1

η ,
1

η
(∂̄η ∧ · )�

]
, (72)

where T (η)′′
ω is the zero-th order operator defined by

T (η)′′
ω := S(−η)′′

ω = − i

2
[�, [�, D0, 1

η D0, 1
η ω ∧ · ]] − [D0, 1

η ω ∧ ·, (D0, 1
η ω ∧ · )�].

Proof It is the exact analogue of the proof of Theorem 3.8, based on the use of Propo-
sition 4.4 instead of Proposition 3.6 and the use of Lemma 4.5 instead of Lemma 3.7.
We have also replaced −η by η in the subscripts of the statement thanks to the already
noticed equalities D0, 1

η = D0, 1
−η and τ 0, 1η = τ

0, 1
−η . ��

We now compute the operator i

[
[D0, 1

η , D0, 1
η ], �

]
that plays in (72) the role of the

curvature operator of the classical Bochner-Kodaira-Nakano identity and the (1, 1)-

form D0, 1
η D0, 1

η ω that features in the definition of T (η)′′
ω . The following statement is

the analogue of Proposition 3.9.

Proposition 4.7 Let (X , ω) be a complex Hermitian manifold with dimCX = n ≥ 2.
Fix any C∞ function η on X such that η > 0 or η < 0.

(i) For any bidegree (p, q), the following identities hold:

i [D0, 1
η , D0, 1

η ] (u p, q) = −1

η

(
i ∂̄η ∧ ∂u p, q + i∂η ∧ ∂̄u p, q

)

+ p − q

η

(
2

η
i∂η ∧ ∂̄η − i∂∂̄η

)
∧ u p, q ,

and

i

[
[D0, 1

η , D0, 1
η ], �

]
(u p, q) = 1

η
[�, i ∂̄η ∧ · ] ∂u p, q + 1

η
[�, i∂η ∧ · ] ∂̄u p, q

+ 1

η
i ∂̄η ∧ [�, ∂] u p, q + 1

η
i∂η ∧ [�, ∂̄] u p, q
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+ (p − q)

[(
2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η

)
∧ ·, �

]
u p, q

(73)

for any C∞ (p, q)-form u p, q on X.
(ii) The following identities hold:

D0, 1
η D0, 1

η ω = η2 ∂̄

(
1

η
∂

(
1

η
ω

))

= −∂∂̄ω − 1

η

(
2 ∂̄η ∧ ∂ω − ∂η ∧ ∂̄ω

)
+ 1

η

(
∂∂̄η − 3

η
∂η ∧ ∂̄η

)
∧ ω.

(74)

Proof (i) We compute separately the two terms in the sum [D0, 1
η , D0, 1

η ] (u p, q) =
(D0, 1

η D0, 1
η ) (u p, q) + (D0, 1

η D0, 1
η ) (u p, q).

• We use (61) to get the first line and then (10) to get the next line below:

(D0, 1
η D0, 1

η ) (u p, q) = D0, 1
η

(
∂u p, q − q

η
∂η ∧ u p, q

)

= ∂̄

(
∂u p, q − q

η
∂η ∧ u p, q

)

− p + 1

η
∂̄η ∧

(
∂u p, q − q

η
∂η ∧ u p, q

)
.

This leads to

(D0, 1
η D0, 1

η ) (u p, q) = −∂∂̄u p, q + 1

η

(
q ∂η ∧ ∂̄u p, q − (p + 1) ∂̄η ∧ ∂u p, q

)

+ q

η

(
∂∂̄η − p + 2

η
∂η ∧ ∂̄η

)
∧ u p, q . (75)

• Meanwhile, we use (10) to get the first line and then (61) to get the next line
below:

(D0, 1
η D0, 1

η ) (u p, q ) = D0, 1
η

(
∂̄u p, q − p

η
∂̄η ∧ u p, q

)

= ∂

(
∂̄u p, q − p

η
∂̄η ∧ u p, q

)
− q + 1

η
∂η ∧

(
∂̄u p, q − p

η
∂̄η ∧ u p, q

)
.

This leads to

(D0, 1
η D0, 1

η ) (u p, q) = ∂∂̄u p, q + 1

η

(
p ∂̄η ∧ ∂u p, q − (q + 1) ∂η ∧ ∂̄u p, q

)

+ p

η

(
q + 2

η
∂η ∧ ∂̄η − ∂∂̄η

)
∧ u p, q . (76)
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Adding up (75) and (76) yields the first equality claimed under (i).

Now, starting from i

[
[D0, 1

η , D0, 1
η ], �

]
(u p, q) = i [D0, 1

η , D0, 1
η ] (�u p, q) −

�

(
i [D0, 1

η , D0, 1
η ] (u p, q)

)
and using the first equality under (i), we get

i

[
[D0, 1

η , D0, 1
η ], �

]
(u p, q) =

(
− 1

η
i ∂̄η ∧ ∂�u p, q + 1

η
�(i ∂̄η ∧ ∂u p, q)

)

+
(

− 1

η
i∂η ∧ ∂̄�u p, q + 1

η
�(i∂η ∧ ∂̄u p, q)

)

+ p − q

η

[(
2

η
i∂η ∧ ∂̄η − i∂∂̄η

)
∧ ·,�

]
u p, q .

(77)

It remains to notice that the first parenthesis on the right of (77) equals

1

η
[�, i ∂̄η ∧ · ] ∂u p, q + 1

η
i ∂̄η ∧ [�, ∂] u p, q ,

while the second parenthesis on the right on the right of (77) equals

1

η
[�, i∂η ∧ · ] ∂̄u p, q + 1

η
i∂η ∧ [�, ∂̄] u p, q ,

to get (73).
(ii) Using (63), we get:

D0, 1
η D0, 1

η ω = θη∂̄θ−1
η θη∂

(
1

η
ω

)
= (θη∂̄θ−1

η )

(
η ∂

(
1

η
ω

))
= (θη∂̄)

(
1

η
∂

(
1

η
ω

))

= η2 ∂̄

(
1

η
∂

(
1

η
ω

))
,

which is the former identity in (74).

The latter identity in (74) can be proved by a direct computation. We get D0, 1
η ω =

∂ω − 1
η

∂η ∧ ω, hence

D0, 1
η D0, 1

η ω = ∂̄

(
∂ω − 1

η
∂η ∧ ω

)
− 2

η
∂̄η ∧

(
∂ω − 1

η
∂η ∧ ω

)

= −∂∂̄ω + 1

η2
∂̄η ∧ ∂η ∧ ω − 1

η
∂̄∂η ∧ ω

+1

η
∂η ∧ ∂̄ω − 2

η
∂̄η ∧ ∂ω + 2

η2
∂̄η ∧ ∂η ∧ ω.

Collecting terms, we get the latter identity in (74). ��
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If ϕ is the real-valued C∞ function on X defined by η = e−ϕ , the quantities
depending on η featuring in (73) read:

1

η
i∂η = −i∂ϕ; 1

η
i ∂̄η = −i ∂̄ϕ; 1

η
i∂∂̄η = i∂ϕ ∧ ∂̄ϕ − i∂∂̄ϕ;

2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η = i∂ϕ ∧ ∂̄ϕ + i∂∂̄ϕ. (78)

5 Vanishing of certain L2 1′′
�-harmonic spaces on certain

non-compact complete complexmanifolds

Let X be a complex manifold with dimCX = n. With every C∞ function η : X −→
(0, ∞), we associate the C∞ real (1, 1)-form

γη := 2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η

featuring in the “curvature” term (73) of the refined η-BKN identity (72). Note that
the former term in γη is ≥ 0 on X , while the latter term may be signless in general
and, by the maximum principle, is signless or vanishes identically if X is compact.

Lemma 5.1 D0, 1
η γη = 0. Hence, d( 1

η
γη) = 0.

Proof Straightforward calculations yield:

∂γη = − 1

η2
∂η ∧ i∂∂̄η and

1

η
∂η ∧ γη = − 1

η2
∂η ∧ i∂∂̄η.

Hence, using (61) for the former equality below, we get:

D0, 1
η γη = ∂γη − 1

η
∂η ∧ γη = 0.

This proves the former claimed equality, which in turn implies the latter one thanks
to (63). ��

Henceforth, we will make the assumption that γη is positive definite at every point
of X :

γη := 2

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η > 0. (79)

This assumption is made necessary by the need to create positivity in the refined
η-BKN identity (72), specifically in its “curvature” term (73).

Assumption (79) means that γη defines a Hermitian metric on X . Together with
Lemma 5.1, this further implies that 1

η
γη defines a Kähler metric on X . Meanwhile,
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assumption (79) is never satisfied on a compact manifold X since, otherwise, the
maximum principle would imply that η is constant, hence γη would vanish identically,
contradicting the strict positivity assumption (79).

Summing up, assumption (79) implies that X is a non-compact Kähler complex
manifold. We now choose the Hermitian metric ω on X to be γη, i.e. ω := γη. It is
with respect to this metric that all the norms, inner products, formal adjoints and other
objects will be considered in this §5. Note that ω = γη is not Kähler, only 1

η
γη is.

We can now state the main result of this section, an application of Theorem 4.6.

Theorem 5.2 Let X be a (non-compact) complex manifold with dimCX = n. Suppose
there exists a C∞ function η : X −→ (0, ∞) satisfying the following three conditions:

(i) the C∞ (1, 1)-form γη := 2
η2

i∂η∧ ∂̄η− 1
η

i∂∂̄η is positive definite at every point
of X;

(ii) the Hermitian metric γη defined on X under (i) is complete;
(iii) the pointwise γη-norm |∂η| = |∂η|γη of the (1, 0)-form ∂η is small relative to η

in that

C1(η) := sup
X

|∂η|
η

<
1

10n + 4n
√

n + 8n C(ϕ)
, (80)

where ϕ := − log η and C(ϕ) := sup
X

|i∂∂̄ϕ|γη .

Then, for any bidegree (p, q) such that either

(
p > q and p + q ≥ n + 1

)

or

(
p < q and p + q ≤ n − 1

)
, the space of 	′′

η-harmonic L2
γη

-forms on X of

bidegree (p, q) vanishes:

Hp, q
	′′

η
(X , C) := ker

(
	′′

η : Domp, q(	′′
η) −→ L2

p, q(X , C)

)
= {0}, (81)

where 	′′
η is the closed and densely defined unbounded extension to the space of

L2
γη

-forms of bidegree (p, q) of the operator 	′′
η previously defined on C∞ forms

w.r.t. the metric ω = γη.

Note that the metric γη and the positive real C1(η) are invariant under rescalings
of η by positive constants λ:

γλη = γη; C1(λη) = C1(η).

Proof of Theorem 5.2 With the choice of metric ω = γη, Lemma 5.1 implies that

D0, 1
η ω = 0, hence also D0, 1

η D0, 1
η ω = 0. Consequently, we get:

τ 0, 1η = [�, D0, 1
η ω ∧ · ] = 0 and T (η)′′

ω

= − i

2
[�, [�, D0, 1

η D0, 1
η ω ∧ · ]] − [D0, 1

η ω ∧ ·, (D0, 1
η ω ∧ · )�] = 0,
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as well as 0 = [�, D0, 1
η ω ∧ · ] = [�, ∂ω ∧ · ]− [�, 1

η
∂η ∧ω ∧ · ]. This last equality

translates to

τ = [�,
1

η
∂η ∧ ω ∧ · ]. (82)

These equalities reduce (59) and (62) to the following formulae holding in any
bidegree (p, q):

D0, 1
η = ∂̄ − p

η
∂̄η ∧ · and D0, 1

η = ∂ − q

η
∂η ∧ ·

D0, 1
η

� = ∂� − q

η
(∂η ∧ · )� and (D0, 1

η ) � = ∂̄� − p

η
(∂̄η ∧ · )�. (83)

Similarly, our refined η-BKN identity (72) reduces to

	′′
η = 	′

η + i

[
[D0, 1

η , D0, 1
η ], �

]
+ n

[
D0, 1

η + τ
0, 1
η ,

1

η
(∂η ∧ · )�

]

−n

[
D0, 1

η ,
1

η
(∂̄η ∧ · )�

]
, (84)

where, in bidegree (p, q), the curvature term is given by

i

[
[D0, 1

η , D0, 1
η ], �

]
= A + (p − q) [γη ∧ ·, �] = A + (p − q)(p + q − n) Id,

(85)

while the first-order operator A is given by

A = 1

η
[�, i ∂̄η ∧ · ] ∂ + 1

η
[�, i∂η ∧ · ] ∂̄ + 1

η
i ∂̄η ∧ [�, ∂] + 1

η
i∂η ∧ [�, ∂̄]

= 1

η
[�, i ∂̄η ∧ · ] ∂ + 1

η
[�, i∂η ∧ · ] ∂̄ + 1

η
i ∂̄η ∧ i(∂̄� + τ̄ �) − 1

η
i∂η ∧ i(∂� + τ�)

= 1

η
[�, i ∂̄η ∧ · ]

(
D0, 1

η + q

η
∂η ∧ ·

)
+ 1

η
[�, i∂η ∧ · ]

(
D0, 1

η + p

η
∂̄η ∧ ·

)

− 1

η
∂̄η ∧

(
(D0, 1

η ) � + p

η
(∂̄η ∧ · )� + τ̄ �

)

+ 1

η
∂η ∧

(
D0, 1

η

�

+ q

η
(∂η ∧ · )� + τ�

)
, (86)

where we have used the standard Hermitian commutation relations (95) to get the
second equality and (83) to get the third one.
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Now, the pointwise operator norm of � = �ω induced by the pointwise norm
| | = | |ω defined by any metric ω on X satisfies

|�| = |L| = sup
|u|=1

|ω ∧ u| ≤ √
n

since |ω|ω = √
n at every point of X , where L = Lω = ω ∧ ·.

Consequently, the pointwise operator norm of τ = τω induced by the pointwise
norm | | = | |ω satisfies

|τ | = sup
|u|=1

|τu| ≤ sup
|u|=1

|�(∂ω ∧ u)| + sup
|u|=1

|∂ω ∧ �u| ≤ 2
√

n |∂ω|.

Since in our case ω = γη, we have ∂ω = ∂γη = −(2/η2) ∂η ∧ i∂∂̄η. Hence, if we

put C2(η) := sup
X

|∂∂̄η|
η

, we get:

|τ | ≤ 4
√

n
|∂η|
η

|∂∂̄η|
η

≤ 4
√

n C1(η) C2(η)

at every point of X .
We will now estimate each of the last three terms on the r.h.s. of (84).
• Estimating A.
From (86) combined with these remarks, we deduce that, for every (p, q)-form u,

we have:

|〈〈Au, u〉〉| ≤ √
n C1(η) ||u||

(
||D0, 1

η u|| + q C1(η) ||u|| + ||D0, 1
η u|| + p C1(η) ||u||

+||(D0, 1
η ) �u|| + p C1(η) ||u|| + 4

√
n C1(η) C2(η) ||u||

+||D0, 1
η

�

u|| + q C1(η) ||u|| + 4
√

n C1(η) C2(η) ||u||
)

.

means that

|〈〈Au, u〉〉| ≤ √
n C1(η)

(
||D0, 1

η u|| ||u|| + ||D0, 1
η u|| ||u|| + ||(D0, 1

η ) �u|| ||u||

+||D0, 1
η

�

u|| ||u|| + 2(p + q) C1(η) ||u||2 + 8
√

n C1(η) C2(η) ||u||2
)

.

Applying the elementary inequality ab ≤ (a2 + b2)/2 with b = |u| and a each of

the norms of D0, 1
η

�

u, D0, 1
η u, (D0, 1

η ) �u and D0, 1
η

�

u, we further get the inequality:

|〈〈Au, u〉〉| ≤
√

n

2
C1(η)

(
||D0, 1

η u||2 + ||D0, 1
η

�

u||2

+||D0, 1
η u||2 + ||(D0, 1

η ) �u||2 + C1, 2(p, q, n) ||u||2
)
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for every (p, q)-form u on X , where we put

C1, 2(p, q, n) := 4

(
1 + (p + q) C1(η) + 4

√
n C1(η) C2(η)

)
.

Thus, we get:

|〈〈Au, u〉〉| ≤
√

n

2
C1(η)

(
〈〈	′

ηu, u〉〉 + 〈〈	′′
ηu, u〉〉 + C1, 2(p, q, n) ||u||2

)

(87)

for every (p, q)-form u on X in the relevant domains.
Note that we have used the completeness of the metric ω = γη (hypothesis (ii)) in

order to have

||D0, 1
η u||2 + ||D0, 1

η

�

u||2 = 〈〈	′
ηu, u〉〉 and ||D0, 1

η u||2 + ||(D0, 1
η ) �u||2

= 〈〈	′′
ηu, u〉〉

for every form u ∈ Dom	′
η ∩ Dom	′′

η.
• Estimating the last but one term on the r.h.s. of (84).
Recall that τ 0, 1η = 0. Thus, w.r.t. the L2

ω-inner product, for every (p, q)-form u we
get:

∣∣∣∣
〈〈

n

[
D0, 1

η + τ
0, 1
η ,

1

η
(∂η ∧ · )�

]
u, u

〉〉∣∣∣∣
≤ n

∣∣∣∣
〈〈

D0, 1
η u,

1

η
∂η ∧ u

〉〉∣∣∣∣ + n

∣∣∣∣
〈〈
1

η
(∂η ∧ · )�u, D0, 1

η

�

u

〉〉∣∣∣∣
≤ n C1(η)

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣ ||u|| +

∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣ ||u||

)

≤ n

2
C1(η)

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣
2

+ 2 ||u||2
)

.

After using the completeness of ω = γη, we get:

∣∣∣∣
〈〈

n

[
D0, 1

η + τ
0, 1
η ,

1

η
(∂η ∧ · )�

]
u, u

〉〉∣∣∣∣ ≤ n

2
C1(η)

(〈〈
	′

ηu, u

〉〉
+ 2 ||u||2

)

(88)

for every (p, q)-form u on X in the relevant domains.
• Estimating the last term on the r.h.s. of (84).
W.r.t. the L2

ω-inner product, for every (p, q)-form u we get:

∣∣∣∣
〈〈

n

[
D0, 1

η ,
1

η
(∂̄η ∧ · )�

]
u, u

〉〉∣∣∣∣ ≤ n

∣∣∣∣
〈〈

D0, 1
η u,

1

η
∂̄η ∧ u

〉〉∣∣∣∣
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+n

∣∣∣∣
〈〈

1

η
(∂̄η ∧ · )�u, (D0, 1

η )� u

〉〉∣∣∣∣
≤ n C1(η)

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣ ||u|| +

∣∣∣∣
∣∣∣∣(D0, 1

η )� u

∣∣∣∣
∣∣∣∣ ||u||

)

≤ n

2
C1(η)

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣(D0, 1

η )�u

∣∣∣∣
∣∣∣∣
2

+ 2 ||u||2
)

.

After using the completeness of ω = γη, we get:

∣∣∣∣
〈〈

n

[
D0, 1

η ,
1

η
(∂̄η ∧ · )�

]
u, u

〉〉∣∣∣∣ ≤ n

2
C1(η)

(
〈〈	′′

ηu, u〉〉 + 2 ||u||2
)

(89)

for every (p, q)-form u on X in the relevant domains.
• Putting together (84)–(89), we get:

〈〈	′′
ηu, u〉〉 ≥ 〈〈	′

ηu, u〉〉 + (p − q)(p + q − n) ||u||2

−
√

n

2
C1(η)

(
〈〈	′

ηu, u〉〉 + 〈〈	′′
ηu, u〉〉 + C1, 2(p, q, n) ||u||2

)

− n

2
C1(η)

(
〈〈	′

ηu, u〉〉 + 2 ||u||2
)

− n

2
C1(η)

(
〈〈	′′

ηu, u〉〉 + 2 ||u||2
)

,

which amounts to

(
1 +n + √

n

2
C1(η)

)
〈〈	′′

ηu, u〉〉 ≥
(
1 − n + √

n

2
C1(η)

)
〈〈	′

ηu, u〉〉

+
[
(p − q)(p + q − n) − C1(η)

(
2n +

√
n

2
C1, 2(p, q, n)

)]
||u||2 (90)

for every (p, q)-form u on X in the relevant domains.
Since 〈〈	′′

ηu, u〉〉, 〈〈	′
ηu, u〉〉 ≥ 0, (90) shows that the vanishing of 〈〈	′′

ηu, u〉〉
(which is equivalent to u ∈ ker	′′

η) implies the vanishing of 〈〈	′
ηu, u〉〉 (which is

irrelevant to us here) and the vanishing of u whenever the coefficients of 〈〈	′
ηu, u〉〉

and ||u||2 are positive. For this to happen, we need

(a) C1(η) <
2

n + √
n

and

(b) C1(η)

(
2n +

√
n

2
C1, 2(p, q, n)

)
< (p − q)(p + q − n).

Since p, q are integers and we require that either (p > q and p + q ≥ n + 1) or
(p < q and p +q ≤ n −1), the r.h.s. of (b) is a positive integer. Hence, (b) is satisfied
whenever the inequality

(b′) C1(η)

(
2n +

√
n

2
C1, 2(p, q, n)

)
< 1
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is satisfied. Meanwhile, p + q ≤ 2n, so

C1, 2(p, q, n) ≤ 4

(
1 + 2n C1(η) + 4

√
n C1(η) C2(η)

)
.

Thus, for (b’) to hold, it suffices to have

C1(η)

[
2n +

√
n

2
4

(
1 + 2n C1(η) + 4

√
n C1(η) C2(η)

)]
< 1,

which is equivalent to

C1(η)2 4n

(√
n + 2C2(η)

)
+ 2n C1(η) < 1.

Since C1(η)2 < C1(η) (indeed, (a) implies C1(η) < 1), for this to happen it suffices
that

(b′′) C1(η)

[
4n

(√
n + 2C2(η)

)
+ 2n

]
< 1.

Now, recall that ϕ is the function such that η = e−ϕ . Thus, C1(η) = sup
X

(|∂η|/η) =
sup

X
|∂ϕ| and

C2(η) = sup
X

|∂∂̄η|
η

= sup
X

|∂ϕ ∧ ∂̄ϕ − ∂∂̄ϕ| ≤ sup
X

|∂ϕ|2 + sup
X

|∂∂̄ϕ| ≤ C1(η)2 + C(ϕ).

This upper estimate for C2(η) shows that (b”) holds whenever

2nC1(η)

[
1 + 2

(√
n + 2C1(η)2 + 2C(ϕ)

)]
< 1.

This is equivalent to

2n C1(η) + 4n
√

n C1(η) + 8n C1(η)3 + 8n C1(η) C(ϕ) < 1.

Since C1(η)3 < C1(η), for this to happen it suffices that

C1(η)

(
10n + 4n

√
n + 8n C(ϕ)

)
< 1.

This holds thanks to hypothesis (80), which also implies (a). The proof of Theorem
5.2 is complete. ��
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Wenowdiscuss twovariants ofTheorem5.2.As noticed in (78), ifwewriteη = e−ϕ

we have

γη = 1

η2
i∂η ∧ ∂̄η +

(
1

η2
i∂η ∧ ∂̄η − 1

η
i∂∂̄η

)
= i∂ϕ ∧ ∂̄ϕ + i∂∂̄ϕ ≥ i∂∂̄ϕ,

the last inequality being a consequence of the standard inequality iα ∧ α ≥ 0 for any
(1, 0)-form α. In particular, if we assume i∂∂̄ϕ > 0 on X , we also have γη > 0 on X .
Moreover, if we further assume the metric i∂∂̄ϕ to be complete on X , the metric γη is
complete as well.

Thus, if i∂∂̄ϕ is supposed to be a complete metric on X , hypotheses (i) and (ii) of
Theorem 5.2 are satisfied, while |∂η|γη ≤ |∂η|i∂∂̄ϕ and

|i∂∂̄ϕ|γη ≤ |i∂∂̄ϕ|i∂∂̄ϕ = √
n

at every point of X . In particular, C(ϕ) = sup
X

|i∂∂̄ϕ|γη ≤ √
n, so we get the following

consequence of Theorem 5.2.

Corollary 5.3 Let X be a (non-compact) complex manifold with dimCX = n. Suppose
there exists a C∞ function η = e−ϕ : X −→ (0, ∞) such that the (1, 1)-form i∂∂̄ϕ is
positive definite at every point and the Hermitian metric it defines on X is complete.
Suppose, moreover, that

sup
X

|∂ϕ|i∂∂̄ϕ <
1

10n + 12n
√

n
. (91)

Then, for any bidegree (p, q) such that either

(
p > q and p + q ≥ n + 1

)
or(

p < q and p +q ≤ n −1

)
, the space of 	′′

η-harmonic L2
γη

-forms on X of bidegree

(p, q) vanishes:

Hp, q
	′′

η
(X , C) := ker

(
	′′

η : Domp, q(	′′
η) −→ L2

p, q(X , C)

)
= {0}, (92)

where 	′′
η is the closed and densely defined unbounded extension to the space of L2

γη
-

forms of bidegree (p, q) of the operator 	′′
η defined on C∞ forms w.r.t. the metric

ω = γη = i∂ϕ ∧ ∂̄ϕ + i∂∂̄ϕ.

The next observation is that the upper bound in hypothesis (91) can be made as
small as we wish after possibly replacing ϕ with εϕ and choosing the constant ε > 0
small enough. Indeed,

|∂(εϕ)|i∂∂̄(εϕ) = ε |∂ϕ|ε i∂∂̄ϕ = ε√
ε

|∂ϕ|i∂∂̄ϕ = √
ε |∂ϕ|i∂∂̄ϕ.
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Thus, the following consequence of Corollary 5.3 is a manifestation of the twisted
adiabatic limit (as ε ↓ 0 in this case) introduced in this paper.

Corollary 5.4 Let X be a (non-compact) complex manifold with dimCX = n. Suppose
there exists a C∞ function η = e−ϕ : X −→ (0, ∞) such that the (1, 1)-form i∂∂̄ϕ is
positive definite at every point and the Hermitian metric it defines on X is complete.
Suppose, moreover, that

sup
X

|∂ϕ|i∂∂̄ϕ < ∞. (93)

For every constant ε > 0, let ηε = e−εϕ .

Then, for any bidegree (p, q) such that either

(
p > q and p + q ≥ n + 1

)
or(

p < q and p + q ≤ n − 1

)
and for every ε > 0 small enough, the space of

	′′
ηε

-harmonic L2
γηε

-forms on X of bidegree (p, q) vanishes:

Hp, q
	′′

ηε
(X , C) := ker

(
	′′

ηε
: Domp, q(	′′

ηε
) −→ L2

p, q(X , C)

)
= {0}, (94)

where 	′′
ηε

is the closed and densely defined unbounded extension to the space of L2
γηε

-
forms of bidegree (p, q) of the operator 	′′

ηε
defined on C∞ forms w.r.t. the metric

ωε = γηε = ε2 i∂ϕ ∧ ∂̄ϕ + ε i∂∂̄ϕ.

Proof The positive definiteness and the completeness of i∂ϕ ∧ ∂̄ϕ are preserved when
ϕ is replaced by εϕ. Thus, the claim follows at once from Corollary 5.3 and from the
short discussion that preceded the statement. ��

6 Vanishing of certain Dolbeault cohomology groups on certain
compact complexmanifolds

The discussion in this section is the analogue in the compact setting of the one we had
in §5.

Let (X , ω) be a compact Hermitian manifold with dimCX = n. Fix an arbitrary
C∞ function η : X −→ (0, ∞). For any (p, q), we consider the curvature-like (1-st
order differential) operator

Fη := i

[
[D0, 1

η , D0, 1
η ], �

]
: C∞

p, q(X , C) −→ C∞
p, q(X , C).

We will use the following standard terminology: if A and B are linear operators
acting on the differential forms on X , we will say that A ≥ B (resp. A > B) if
〈〈Au, u〉〉 ≥ 〈〈Bu, u〉〉 for every u (resp. if 〈〈Au, u〉〉 > 〈〈Bu, u〉〉 for every u �= 0).
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As in §5, we consider the constant C1(η) := sup
X

|∂η|
η

< ∞. Unlike in §5, the

pointwise norm |∂η|, like all the norms and all the inner products in this section, is the
one induced by ω and, due to the compactness of X , the constant C1(η) is finite. We
start by noticing that the pointwise operator norm of τ 0, 1η = [�, D0, 1

η ω ∧ · ] w.r.t. ω
satisfies

∣∣∣∣τ 0, 1η

∣∣∣∣ = sup
|u|=1

∣∣∣∣τ 0, 1η u

∣∣∣∣ ≤ 2
√

n

∣∣∣∣D0, 1
η ω

∣∣∣∣ = 2
√

n

∣∣∣∣∂̄ω

−1

η
∂̄η ∧ ω

∣∣∣∣ ≤ 2
√

n

(
|∂̄ω| + C1(η)

√
n

)
:= C3(η).

Theorem 6.1 Let (X , ω) be a compact complex Hermitian manifold with dimCX = n.
If there exists a C∞ function η : X −→ (0, ∞) such that:

(i) C3(η) + n
√

n C1(η) < 2;

(ii) for some bidegree (p, q), Fη > 2

(
C3(η) + n

√
n C1(η)

)
Id in bidegree (p, q),

then H p, q
∂̄

(X , C) = {0}.
Proof The rough η-BKN identity (69) will suffice for our purposes. We will esti-
mate the last four terms on its r.h.s. by using the Cauchy-Schwarz inequality and the
elementary inequality ab ≤ (a2 + b2)/2 for non-negative reals a, b.

Let u ∈ C∞
p, q(X , C). For the L2-inner products w.r.t. ω, we get:

∣∣∣∣
〈〈[

D0, 1
η , τ

0, 1
η

�
]

u, u

〉〉∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
∣∣∣∣
∣∣∣∣τ 0, 1η u

∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣
∣∣∣∣
∣∣∣∣τ 0, 1η

�

u

∣∣∣∣
∣∣∣∣

≤ C3(η)

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣ ||u|| +

∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣ ||u||

)

≤ C3(η)

2

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣
2

+ 2||u||2
)

.

Similarly, we get:

∣∣∣∣
〈〈[

D0, 1
η , (τ0, 1η ) �

]
u, u

〉〉∣∣∣∣ ≤ C3(η)

2

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣(D0, 1

η )� u

∣∣∣∣
∣∣∣∣
2

+ 2 ||u||2
)

,

∣∣∣∣
〈〈

n

[
D0, 1

η ,
i

η
[∂η ∧ ·, �]

]
u, u

〉〉∣∣∣∣ ≤ n
√

n C1(η)

2

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣(D0, 1

η )� u

∣∣∣∣
∣∣∣∣
2

+ 2 ||u||2
)

,

∣∣∣∣
〈〈

n

[
D0, 1

η ,
i

η
[∂̄η ∧ ·, �]

]
u, u

〉〉∣∣∣∣ ≤ n
√

n C1(η)

2

(∣∣∣∣
∣∣∣∣D0, 1

η u

∣∣∣∣
∣∣∣∣
2

+
∣∣∣∣
∣∣∣∣D0, 1

η

�

u

∣∣∣∣
∣∣∣∣
2

+ 2 ||u||2
)

.

From these four inequalities and the rough η-BKN identity (69), we get:

〈〈	′′
ηu, u〉〉 ≥ 〈〈	′

ηu, u〉〉 + 〈〈Fηu, u〉〉 − C3(η)

2

(
〈〈	′

ηu, u〉〉 + 2 ||u||2
)

123



   36 Page 48 of 50 D. Popovici

−C3(η)

2

(
〈〈	′′

ηu, u〉〉 + 2 ||u||2
)

−n
√

n C1(η)

2

(
〈〈	′′

ηu, u〉〉 + 2 ||u||2
)

− n
√

n C1(η)

2

(
〈〈	′

ηu, u〉〉 + 2 ||u||2
)

for every u ∈ C∞
p, q(X , C).

This amounts to

(
1 + C3(η) + n

√
n C1(η)

2

)
〈〈	′′

ηu, u〉〉

≥
(
1 − C3(η) + n

√
n C1(η)

2

)
〈〈	′

ηu, u〉〉 + 〈〈Fηu, u〉〉

− 2

(
C3(η) + n

√
n C1(η)

)
||u||2

for every u ∈ C∞
p, q(X , C).

This inequality, together with the hypotheses (i) and (ii), implies that whenever
	′′

ηu = 0 we must have u = 0. The result follows from this, from the Hodge
isomorphism (67) and from the cohomology isomorphism (65). ��

7 Appendix: review of standard commutation relations

We briefly recall here some standard formulae that were used throughout the paper.

Lemma 7.1 Let (X , ω) be a compact complex Hermitian manifold. The following
standard Hermitian commutation relations ( [3], see also [Dem97, VII, §.1]) hold:

(i) (∂ + τ)� = i [�, ∂̄]; (i i) (∂̄ + τ̄ )� = −i [�, ∂];
(i i i) ∂ + τ = −i [∂̄�, L]; (iv) ∂̄ + τ̄ = i [∂�, L], (95)

where the upper symbol � stands for the formal adjoint w.r.t. the L2 inner product
induced by ω, L = Lω := ω ∧ · is the Lefschetz operator of multiplication by ω,
� = �ω := L� and τ := [�, ∂ω ∧ ·] is the torsion operator (of order zero and type
(1, 0)) associated with the metric ω.

Again following [Dem97, VII, §.1], recall that the commutation relations (1)
immediately induce via the Jacobi identity theBochner-Kodaira-Nakano-type identity

	′′ = 	′ + [∂, τ �] − [∂̄, τ̄ �] (96)

relating the ∂̄-Laplacian 	′′ = [∂̄, ∂̄�] = ∂̄ ∂̄� + ∂̄�∂̄ and the ∂-Laplacian 	′ =
[∂, ∂�] = ∂∂� + ∂�∂ . This, in turn, induces the following Bochner-Kodaira-Nakano-
type identity (cf. [3]) in which the first-order terms have been absorbed in the twisted
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Laplace-type operator 	′
τ := [∂ + τ, (∂ + τ)�]:

	′′ = 	′
τ + Tω, (97)

where Tω :=
[
�, [�, i

2 ∂∂̄ω]
]

− [∂ω ∧ ·, (∂ω ∧ ·)�] is a zeroth order operator of

type (0, 0) associated with the torsion of ω. Formula (97) is obtained from (96) via
the following identities (cf. [3] or [Dem97, VII, §.1]) which have an interest of their
own:

(i) [L, τ ] = 3 ∂ω ∧ ·, (i i) [�, τ ] = −2i τ̄ �,

(i i i) [∂, τ̄ �] = −[∂, ∂̄�] = [τ, ∂̄�], (iv) − [∂̄, τ̄ �] = [τ, (∂ + τ)�] + Tω.

(98)

Note that (i i i) yields, in particular, that ∂ and ∂̄� + τ̄ � anti-commute, hence by
conjugation, ∂̄ and ∂� + τ � anti-commute, i.e.

[∂, ∂̄� + τ̄ �] = 0 and [∂̄, ∂� + τ �] = 0. (99)

The following formulae can be viewed as commutation relations for zeroth-order
operators (see [ [13], §.1.0.2] or [Pop23, Appendix]).

Lemma 7.2 Let (X , ω) be a complex Hermitian manifold and η a real-valued C∞
function on X.

The following identities hold pointwise for arbitrary differential forms of any degree
on X.

(a) [∂η ∧ ·, �] = i (∂̄η ∧ ·)�, [∂̄η ∧ ·, �] = −i (∂η ∧ ·)�
[L, (∂η ∧ ·)�] = −i ∂̄η ∧ ·, [(∂̄η ∧ ·)�, L] = −i ∂η ∧ ·.

(b) [i ∂η ∧ ∂̄η ∧ ·, �] = (∂η ∧ ·) (∂η ∧ ·)� − (∂̄η ∧ ·)� (∂̄η ∧ ·)
= (∂̄η ∧ ·) (∂̄η ∧ ·)� − (∂η ∧ ·)� (∂η ∧ ·).

Corollary 7.3 In the setting of Lemma 7.2, the next pointwise identities hold:
(a) [�, idηη ∧ · ] = −(d̄−ηη ∧ ·)�, (b) [�, i d̄−ηη ∧ · ] = (dηη ∧ ·)�.

Proof This follows right away from Lemma 7.2 after we use the identities:

dηη = η ∂η + ∂̄η and d̄−ηη = ∂η − η ∂̄η.

��
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