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Abstract

Given a complex manifold X and a smooth positive function n thereon, we perturb
the standard differential operator d = 9 + 9 acting on differential forms to a first-
order differential operator D, whose principal part is no + d. The role of the zero-th
order part is to force the integrability property D% = 0 that leads to a cohomology
isomorphic to the de Rham cohomology of X, while the components of types (0, 1)
and (1, 0) of D, induce cohomologies isomorphic to the Dolbeault and conjugate-
Dolbeault cohomologies. We compute Bochner-Kodaira-Nakano-type formulae for
the Laplacians induced by these operators and a given Hermitian metric on X. The
computations throw up curvature-like operators of order one that can be made (semi-
)positive under appropriate assumptions on the function 7. As applications, we obtain
vanishing results for certain harmonic spaces on complete, non-compact, manifolds
and for the Dolbeault cohomology of compact complex manifolds that carry certain
types of functions 7. This study continues and generalises the one of the operators
d, = hd+ 9 that we introduced and investigated recently for a positive constant / that
was then let to converge to 0 and, more generally, for constants 4 € C. The operators
dy had, in turn, been adapted to complex structures from the well-known adiabatic
limit construction for Riemannian foliations. Allowing now for possibly non-constant
functions 7 creates positivity in the curvature-like operator that stands one in good
stead for various kinds of applications.

Keywords Deformations of complex structures - Elliptic differential operators on
complex manifolds - Cohomology and harmonic theory

1 Introduction

Let m : X — B be a holomorphic family of compact complex manifolds X; :=
771 (t) ¢ X with ¢ varying in a small open ball B about the origin in some CV. This
means that X is a complex manifold and 7 is a proper holomorphic submersion.
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Itis standard that the degeneration at the first page of the Frolicher spectral sequence
(FSS) is a deformation-open property, namely that E1(Xo) = E~(Xo) implies the
analogous property E1(X;) = Ex(X;) on the nearby fibres X; when ¢ is sufficiently
close to 0. This follows at once from the Kodaira-Spencer theory, especially from the
upper semi-continuity of the functions B > ¢ — hg *4(t) whose values are the Hodge
numbers (i.e. the C-vector space dimensions of the Dolbeault cohomology groups
HY" (X, ©)) of the fibres X

However, this is no longer true for the higher pages of the FSS where the analogous
numbers ! 4 () := dimc E!* ¢ (X,) need not vary semi-continuously with¢ € B when
r > 2. For an example of such a pathological behaviour, see [ [2], Example 4.8. and
Corollary 4.9.] where Ceballos, Otal, Ugarte and Villacampa consider a nilmanifold M
with underlying Lie algebra b5, endowed with a family of invariant complex structures
Ji, and observe, as a consequence of their classification of invariant complex structures
on 6-nilmanifolds, that the numbers e;’ ! (¢t) and e;‘ ! () are not upper semi-continuous
functions of ¢, while the numbers eg’ 2(t) and 6(3)’ 2(t) are not lower semi-continuous
functions of ¢.

Nevertheless, there are quite a few examples of classes of compact complex man-
ifolds whose Frolicher spectral sequence degenerates at E, (though not at £7) and
for which this property persists in their small deformations. Our intuition is that this
ought to be due to some geometric property of the central fibre that forces the FSS to
behave well under small deformations, so we propose the following issue to ponder.

Problem 1.1 Let r > 2 be an integer. Find a geometric property (P) that certain
compact complex manifolds X satisfy such that, whenever Xo has property (P) and
has its Frolicher spectral sequence degenerate at E,, the Frolicher spectral sequence
of every fibre X; with t € B close enough to 0 degenerates again at E,.

We refrain from speculating on the nature (metric? cohomological?) of any such
property (P), but we stress the need for it to be readily verifiable on concrete examples
of manifolds. An analytic such property, in terms of the decay rate to O of the small
eigenvalues of certain Laplacians, was given in [15], but that result seems hard to apply
in explicit families of manifolds. One of the goals of the present paper is to generalise
the main construction of [15] (whose key points we recall in outline in §1.1 for the
reader’s convenience) in order to make it more flexible.

A solution to Problem 1.1 is expected to play a central role in various contexts,
including in the further development of a non-Ké&hler mirror symmetry theory that
started in [14] and has continued with [18], [16] and [17].

1.1 Reminder of the Main Facts from [15]
Let X be a complex manifold with dim¢ X = n.

By adapting to the setting of complex structures the adiabatic limit construction
for Riemannian foliations initiated and subsequently studied in e.g. [19] and [9], we

defined in [15], for constants i > 0, the first-order differential operators

dp:=hd+0:CP(X, C) — C2y(X, ©), ke{0,...,2n},
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and the zero-th order pointwise operators
O : APIT*X — APIT*X, u +—> Opu = ht u,

that are then extended by linearity to operators 6, : AKT*X —> AKT*X for every k.
The equality dp, = 6,d 6, ! implies the integrability property dﬁ = 0 and the
vector-space isomorphisms

HiR (X, ©) = HE (X, ©),  {u}ar —> {6ntt}a,.

for k € {0, ..., 2n}, between the de Rham cohomology groups of X and those of
dp-cohomology defined as ker dj, /Im dj,.

Fix now a Hermitian metric @ on X. The pointwise inner product (, ), induced by
w on the differential forms on X can be rescaled in the following way on (p, ¢)-forms:

(i, V), = h* (1, V), h>0; ujve APIT*X,

for every bidegree (p, g). This rescaling defines a new Hermitian metric
wp = — o, h>0,

on the holomorphic tangent bundle 7" X of X, or equivalently, arescaled C* positive
definite (1, 1)-form wy, = h~2 w on X. This, in turn, induces a C*® positive definite
volume form

o) 1 o 1

=—-dV,

o =20 = ol =

on X which, together with the pointwise inner product (, ), , defines an L2-inner
product

1
(U, V)o, = /(M, Vay, dVoy, = 72 {{Ontt, Opv))o
X

for all forms u, v € C;‘fq (X, C) and all bidegrees (p, ¢).

The two rescalings (of the operator d and of the metric w) lead to two different
Laplace-type operators A, Ay, : CZ°(X, C) — C°(X, C) defined respectively
by

Ap = dhd;{ + d;dh and Awh = dd;h + d;)hd

on the smooth k-forms for every k € {0, ..., 2n}. By d; we mean the formal adjoint
of dj, w.r.t. the L?-inner product induced by the orginal metric w, while dy, stands for

the formal adjoint of the original operator d w.r.t. the L?-inner product induced by the
rescaled metric wy,.
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The second-order differential operators Ay, and A, are elliptic, self-adjoint and
non-negative, they have the same principal part and are related by the formula

Ap = 0 Aw, 6, ", h > 0. (1)

This formula implies that Aj, and A, have the same spectrum and their respec-
tive eigenspaces E Ay, (A) and Ea,, (1) are obtained from each other via the rescaling
isometry 6:

on (EAw,, (A)) =Ep, () forevery A € Spec(Ay) = Spec(Ay,).

The main result of [ 15] expressed, for every positive integer r and every degree k, the
dimension of the C-vector space E f (X) := ®prg=k EFP7(X) (representing the direct
sum of the spaces of total degree k featuring on the r*# page of the Frélicher spectral
sequence of X) in terms of the number of eigenvalues, counted with multiplicities, of
any of the operators Ay, and A, that decay sufficiently fast to O (at a rate depending
onr)ash | 0.

Theorem 1.2 ([15], Theorem 1.3.) Let (X, w) be a compact Hermitian manifold with
dimcX = n. Foreveryr € N*and everyk =0, .. ., 2n, the following identity holds:

dimc E¥(X) = ji{i | MKy e Oy as h | 0}, )

where 0 < )“]1( (h) < Ag(h) <... < )»f.‘ (h) < ... are the eigenvalues, counted with
multiplicities, of the rescaled Laplacian Ay, : C°(X, C) — C°(X, C) (= those
of Ay, : CP°(X, C) — CP°(X, ©)) acting on k-forms. As usual, § stands for the
cardinal of a set.

Now, 0 is always an eigenvalue of Aj, : C2°(X, C) — Cp°(X, C) of multiplicity
exactly equal to the k-th Betti number by = bi(X) of X (since Aj, and the standard
Laplacian A = dd* + d*d have isomorphic kernels, each of these two kernels being
isomorphic to the corresponding cohomology space, H 1;11{;, (X, C), resp. H 0’1‘ (X, C),
and these cohomology spaces being mutually isomorphic, as recalled above). Thus,
the smallest positive eigenvalue of A, : C°(X, C) — C°(X, O)is )‘Il(wrl (h). We
will denote it by 81 1= 2% | (h).

Meanwhile, it is standard that we always have

br(X) < dimg EF(X) for every k € {0, ..., 2n}

and that the Frolicher spectral sequence of X degenerates at a given page E, if and
only if all these inequalities are equalities, namely if and only if

br(X) = dim(cEf(X) for every k € {0, ..., 2n}.
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Therefore, the above Theorem 1.2 equates the degeneration at E, of the FSS of X
to the fact that 0 is the only eigenvalue of Aj, in every degree k that decays to O at least
as fast as Const - h*" as h J 0. In other words, we have the following

Proposition 1.3 ( [15], Proposition 5.3.) Let (X, w) be a compact complex Hermitian

manifold with dimcX = n. For every constant h > 0, let 5;(lk) > 0 be the smallest

positive eigenvalue of Ay : C°(X, C) — CP(X, O).
Then, for every r € N*, the Frolicher spectral sequence of X degenerates at E, if
and only if

s®
lim sup “h
h2r

h—0

=+o00, forall ke{l,..., n}.

In the context of a holomorphic family (X;);ep of compact complex manifolds
on which a C* family (w;);cp of Hermitian metrics on the fibres has been fixed,
Proposition 1.3 shows that, for some degree k € {1, ..., n}, the decay rate to O of
8 }(lk) > ( can accelerate when one moves from Xy to the nearby fibres X, if E,(Xg) =
Eoo(Xo) but E(X;) # Exo(X;) fort # 0.

1.2 Constructions and Results Obtained in this Paper

If one aims at solving Problem 1.1, the takeaway from Proposition 1.3 is that one needs
to control the bottom of the positive part of the spectrum of Ay, possibly in terms of
some (curvature-like) positive quantity whose dependence on the fibre X; should be
at least continuous.

On the other hand, Bochner-Kodaira-Nakano-type (in-)equalities involving the
operator Ay cannot produce the needed positivity when A remains constant. (See
e.g. [1].) It is this quest for positivity that would translate into information on the
smallest positive eigenvalues of Laplacians like Ay, that motivates the main thrust of
this paper (and hopefully of its future sequels): transforming the constant 4 into a C*°
function whose derivatives would produce positive curvature-like quantities.

Let X be a connected complex manifold with dim¢X = n. Fix a C* real-valued
function 1 on X such that n > 0 or n < 0 at every point of X.

The immediate analogue of dj, when the constant & has been replaced by 7 is
dy :=1n0d + 9. However, if n is not constant, d, need not be integrable (in the sense
that it need not square to 0), so it need not define a cohomology. The way round this
takes us to first defining the pointwise analogue 6, (cf. (3)) of 8, and then defining
Dy := 6,d6, Uin every degree k (cf. Definition 2.2) by the analogue of the formula
dy = 6,d6, " satisfied by dj,.

If we fix a Hermitian metric @ on X, we consider the formal adjoint D} of Dy w.r.t.
the L2-inner product induced by w and then the associated twisted Laplacian

Ay = DyD; + D;Dy : C°(X, C) — C°(X, ©)
in every degree k. (See Definition 2.5.)
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The twisted metric w, is defined analogously to the wy, of [15], but the definition of
the twisted Laplacian A, is not as straightforward as in the case where 7 is constant.
It is necessary to first compute an operator Tn* : C,fo X, C) — C,fi 1(X, ©) such
that D}, = 0,176, !in every degree k (cf. Proposition 2.6) that we then use to define
(cf. Definition 2.8) the twisted Laplacian

Ao, =dT; +T;d

which is then shown to relate to the first twisted Laplacian A, via the identity (cf.
Corollary 2.9)
971

@

Ay = 6yA

analogous to (1) of the constant 7 case. This then implies that A; and A, have the
same spectrum and that their respective eigenspaces are isomorphic via 6, as in the
case where 7 is constant.

In §3, we compute the formal adjoint of D, and observe that it depends on D__,7 a
fact that leads to n-twisted commutation relations (Proposition 3.5) and eventually
to two Bochner-Kodaira-Nakano-type identities relating the Laplacians A, and
Z—n (cf. Proposition 3.6 giving the rough version of the identity), respectively the
Laplacians A, and [B_,, + 7Ty, 5:,7 + ?‘_n] (cf. Theorem 3.8), where 7, is the
zero-th order operator defined as [A, Dyw A -]. The latter identity is the refined
version of the former. It absorbs some of the torsion terms into the Laplacian to which
A, is compared and that can be neglected in applications due to its non-negativity.
Both versions of the 7-BKN identity expressing A, in terms of another Laplacian
throw up the first-order curvature operator i [[ Dy, D_;], A] that is then computed
in Proposition 3.9.

In §4, we run analogous computations starting from the (0, 1)-part Dg’ ! of D, =
D,ll* 04 Dg’ !"and its conjugate. This setting has the advantage that DS* Iand D,ll' 0
anti-commute (cf. (60)), unlike D, and D__77 of the previous §3. Meanwhile, D,?’ Land
D}]* 0 are integrable and define cohomologies isomorphic to the Dolbeault, respectively
conjugate-Dolbeault, cohomologies of X (see (65)).

We consider the Laplacians

n._ ol 0, 1y% TN RN
Al =[DY", (DY )] and Ay =Dy, Dyt
that we then relate to each other in what we call the rough n-Bochner-Kodaira-
Nakano (n-BKN) identity (cf. Proposition 4.4). Further commutation relations
involving torsion terms (cf. Lemma 4.5) lead to the refined n-Bochner-Kodaira-
Nakano (7-BKN) identity for this setting (cf. Theorem 4.6). In bidegree (p, ¢), the

zero-th order part of the first-order curvature operator i [[DS* L DS‘ 1], A] turns out
to be (cf. Proposition 4.7) the operator

2 - 1 -
(r—q [(—zian Adn — —i88n> A A].
n n
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We give two applications of our n-BKN identities based on the shape of the curvature
operator.

In §5, we deal with non-compact complete manifolds X on which we assume
the existence of a C* function  : X —> (0, co) that induces a positive definite
curvature form

2 - 1. -
Yy = —ZidnAdn— —iddn > 0.
n n

This key positivity assumption, which amounts to requiring the smooth real (1, 1)-
form y;, to define a Hermitian metric on X, is impossible on compact manifolds due
to the maximum principle, but is quite natural in the non-compact setting given the
fact that it constitutes the zero-th order term of the operator that plays the role of the
curvature in our n-BKN identities. The result we obtain can be loosely formulated as
follows (see Theorem 5.2 for the precise statement).

Theorem 1.4 Under the extra assumptions that the Hermitian metric y, on X is com-
plete and the pointwise y,-norm |dn| = |0nl,, of the (1, 0)-form 91 is small relative
to 1, there exist no non-zero AZ -harmonic L}z,'7 -forms of bidegree (p, q) on X whenever

either(p>q andp+qzn+1)0r<p<q andp+q§n—1>.

This resut (Theorem 5.2) can be compared to Gromov’s Main Theorem 2.5. in
[7]. They are both vanishing theorems for certain spaces of L> harmonic forms on
a complete manifold carrying a Kéhler metric. The particular shape of our complete
metric y; can be viewed as a (non-standard) exactness property of y;, while Gromov
imposed the exactness condition requiring the metric to be d (bounded). The vanishing
conclusion in Gromov’s theorem applies to all the bidegrees (p, g) with p+q # n (i.e.
outside the middle degree), while our conclusion, though applicable to fewer bidegrees,
also avoids the middle degree. Moreover, much as in Gromov’s case, our Theorem
5.2 is mainly intended for applications where the manifold X is the universal cover of
a compact complex manifold Y and the complete metric y;; on X is the pullback of
some Hermitian metric on Y.

We hope that Theorem 5.2 will have a role to play in the further development of
a (possibly non-Kihler) hyperbolicity theory linking the existence of certain types of
special Hermitian metrics having a certain exactness property on the universal cover of
the compact complex manifold on which they are defined to the non-existence of entire
holomorphic maps with a relatively small growth from some C? (with p possibly > 1)
into the given manifold. The Kéhler case with p = 1 was treated in [7], while the
more general Hermitian case with p allowed to be > 1 was initiated in [10], [MP22],
and [8].

In §6, we deal with compact manifolds X on which we assume the existence of
a C* function n : X —> (0, co) whose induced first-order curvature operator

F,=i [[DS* L D?I’ 1], A] is assumed to be sufficiently positive. Exploiting the fact
that ker A/n’ is isomorphic to the Dolbeault cohomology group Ha-p 1(X, C) in every
bidegree (p, q), our n-BKN identities can be applied to give the following result (see
Theorem 6.1 for the precise statement).
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Theorem 1.5 Let (X, w) be a compact complex Hermitian manifold with dimc X = n.
If there exists a C* function n : X —> (0, 00) such that supy |dw|, and supy %
are sufficiently small, then for every bidegree (p, q) such that

Fp=i [[Dg’l, DY, A} > C(n)1d

in bidegree (p, q) for an appropriate constant C(n) > 0 depending on n, we have
Hg”q(x, C) = {0}.

We hope further applications of these results will be obtained in future work, either
to investigate Problem 1.1 or to study cohomological and metric properties of complex

manifolds, for example by choosing particular types of functions 7 supported by certain
such manifolds.

2 The Twisted Operators and Metrics

Let X be an n-dimensional complex manifold, where n > 2.

2.1 The Twisted Operator D,

With every C*° function 1 on X such that n > 0 or n < 0, we associate the bijective
linear operators:

Opy : APITIX — APITEX
u(x) —> n”(x) u(x) 3)
defined pointwise on the (p, g)-forms of X at every pointx € X and in every bidegree
(p, ). Thus, we get an automorphism 6, : A”»9T*X — AP 9T*X of the vector

bundle of (p, ¢g)-forms on X defined by 6, (1) = n”u.
We then extend 6, by linearity to an automorphism

6, : AFT*X — A*T*X

U= Z uld —s Z O, P 1) = Z nP ub 4

prq=k ptq=k p+q=k

of the vector bundle of k-forms on X for every k e_{O, ..., 2n}.
The conjugate of 6, is defined by the condition 6, (u) = 6, () for every form u.

Observation 2.1 The inverse of 6, is given by the formula:
0" =0,-1. )
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1

where n~" = 1/n, while the conjugate of 6, is given by the formula:

8,9 = uh? 5)

for every (p, q)-form u?-4.
In particular, 6, # 0, in any bidegree (p, q) with p # q.

Proof Immediate verification. O
Definition 2.2 For any C*° function n on X such that » > 0 or n < 0 and any

k €{0,...,2n}, let D, : C,‘:O(X, C) — C,fil(X, C) be the differential operator
defined on the C* k-forms on X by

Dy = 6,d; . (6)
Since D% = 0,,d29,7’ ' = 0, the operator Dj, induces a cohomology space in every
degree k € {0, ..., 2n} on the n-dimensional manifold X by

ker (D,7 C (X, C) — C,fil(X, (C))

H,’gn (X, C) := (7)

Im (D,, LR (X, C) — CP(X, (C))

An immediate observation is that the D,-cohomology is canonically (i.e. in a way
depending only on the complex structure of X and the function 7, but independent of
any metric on X) isomorphic to the De Rham cohomology of X.

Proposition 2.3 Let X be an n-dimensional complex manifold. For any C* function
non X such thatn > 0orn < 0andany k € {0, ..., 2n}, the linear map

6y Hpr(X, C) — Hp, (X, ©), {uypr —> {Oyu}p,. ®)

is well defined and an isomorphism.
Proof To prove well-definedness, we need to prove the inclusions:

0, (kerd) C ker D, and 0,(Imd) C Im D,,.
These inclusions follow, respectively, from the equivalences:

Dyu=0 < d6;'u)=0 and u=Dy < 0, 'u=d@®, ).

These equivalences actually amount to the above inclusions being equalities:

0y (ker d) = ker D, and 0,(Imd) = Im D,,.
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Thanks to these equalities of vector spaces and to 6, : C°(X, C) — C°(X, C)
being an isomorphism at the level of differential forms, the well-defined linear map
induced by 6, in cohomology is an isomorphism. O

Proposition and Definition 2.4 For every C™ function n on X such that n > 0 or
n < 0and every bidegree (p, q), the operator Dy, : C (X, C) — Cp+q+l(X, C)
of Definition 2.2 arises explicitly as

Dn=na+5—%<n8+é)n/\~:d,,—§(d,,n)A~, )

where the operator dy : C°(X, C) —> C3(X, C) is defined in any degree k by
dy =1 + 9.

We let D)0 : C (X, C) — CX1.4(X, ©) and D) CR (X, C) —
C;f’ q 11X, ©) be the dlﬁ‘erentlal operators:

DO=nd—pdnn- and DY'=3—ZdnA- (10)

that are the components of bidegrees (1, 0) and (0, 1) of D, in the decomposition
D,=D}%+ D).

Proof For every form u € C;‘f q (X, C), we have:

Dyu

1 1
-1 _ —
(6ndB, ") (u) = 9,,d<—’7 u) = 9,7<np du — an dn N u)

—9 (au)+i9 @u) — —— 0,3 A ) — ——= 6, A u)
nP

=n8u+8u—p8n/\u——8n/\u,
n

where the last equality follows from the definition of ¢, and the fact that the forms du
and dn A u are of bidegree (p + 1, g), while the forms du and 91 A u are of bidegree
(p, g + 1). This proves (9). O

As with any operator, we define the conjugate 5,, of D, by requiring the equality

Dyu = D, (ir)

to hold for every form u on X. We now compute D _ » as it will be needed later on. If
u?4is a (p, g)-form, by con]ugatmg the expression of Dju? 4 we get: Dyu?P-4 =
nouP-d + duP-4 — pan A ub-d — 877 A uP-4. Replacing n with —7, requiring

D_juP- 9 = ,n(ul’v ), using the fact that u?-4 is of type (¢, p) and then permuting
p and g, we get

Doy=0-nd—Lonn-+qdnn- in bidegree (p, q). (11)
n
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Thus, the coefficients of the zero-th order terms of D, and D_, depend on the
anti-holomorphic degree (¢), while the coefficients of the zero-th order terms of D,
and D_,; depend on the holomorphic degree (p), of the bidegree in which they act.
Meanwhile,

d_y=23-nd (12)

in every (bi-)degree.

2.2 The Twisted Metric @

Let @ be a Hermitian metric on X. For every C* function n : X — (0, +00),
we define the following twisting of the induced pointwise inner product (, ), on the
(p, g)-forms on X:

(U, V)w, = 2P (u, v)y = (O (), 0y (V))w, u,ve APIT*X, (13)

in every bidegree (p, ¢). In this way, we get a Hermitian metric w, on X induced by
the smooth positive definite (1, 1)-form

1
wy, = — . (14)
"= 2

In particular, the volume forms on X induced by the metrics w, and w are related
by the formula

1

v, = de‘”' (15)

This leads to the L>-inner products induced by wy and w being related as follows:

1
(U, V), = /(u, Vo, dVo, = / e (U, V) dVe, u,v e Cyr (X, ©)6)
X

2.3 The Twisted Laplacians A and A, n

Suppose that (X, w) is a complex Hermitian manifold with dim¢ X = n.

Definition 2.5 For every C* function n on X such that » > 0 or n < 0 and any
k €{0,...,2n},the D;-Laplacian A, : C2°(X, C) —> C°(X, C)is the differential
operator defined by

Ay = DD} + D}D,, (17)

where D; is the formal adjoint of D,, with respect to the L2-inner product ({-, - ))e
induced by w.
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Note that the principal part of A, is the second-order differential operator n? A+
A", proving that A, is elliptic (since A" and A” are known to be so). If, moreover, X
is compact, we get, in every degree k, the Hodge isomorphism

Hfy (X, ©) =~ M} (X, ©) :=ker (An 1 CX(X, C) — CP(X, <C)> (18)

mapping every D;,-cohomology class to its unique A,;-harmonic representative.
We will now compute D} in terms of the formal adjoint d; of d with respect to
the twisted metric w,. Specifically, we will prove the following

Proposition 2.6 For every C* function n : X —> (0, +00) on a compact complex
Hermitian manifold (X, w) with dimcX = n and for every k € {0, ..., 2n}, the
operator D} CE (X, C) — C2 (X, C) is given by the formula:

-1
D} = 6,T;6

10, (19)

where Tn* 1 CR (X, C) — C2 (X, C) is the linear operator

T,;< Z MM) = Z T} ), with u?? € C° (X, C),

ptq=k ptq=k

and, for every bidegree (p, q), T;’ p Cgf’q X, C) — C;ﬁ_q_l(X, QC) is the linear
operator defined by

. L (. (1 - 5
Tp»nznTp<dw,7 —2(n—p) [A, l(;&n—n&n) /\~i|>o€n,

where d;n is the formal adjoint of d with respect to the L*-inner product induced by
the twisted metric wy as in (16).

Before proving this result, we prove a few formulae that will be needed.

Lemma 2.7 Let (X, w) be a complex Hermitian manifold with dimc X = n. Then:
(i) forany C' function p : X —> R, anybidegree (p, q) and any smooth (p, q)-form

y on X, we have:

0" (py) = pd*y + A, idp A1)  and
3*(py) = p 3"y —[A, idp A-1(y). (20)

(ii) for any C function n : X —> (0, 4+00), any bidegree (p, q) and any smooth

(p, q@)-formu on X, we have:

* 2a% .3
Bw” u=n"ou—2mn—pmnlA, ionA-lu

_ _ 2(n —
and 3%, u T s N YNET IO Q1)
0

@ Springer



Twisted Adiabatic Limit Page 130f50 36

Proof (i) It suffices to prove the latter equality in (20) since the former follows from
it by conjugation. Using the Hermitian commutation identity (ii) of (95), we get the
first equality below:

3*(py) = —i[A, 3(py) — T*(py) = —i A(pdy + Ip Ay) +id(p Ay) — pT*(¥)

= —ip (Aé)y - 8Ay> —1i (A(Bp AY)—0p A Ay) —pTr(y)
=p <— i[A, 9] — f*)(y) —[A, idp A-I(y) = p3*y —[A, idp A-1(y),

where the last equality follows again from the Hermitian commutation identity (ii) of
93).
(i1) e To prove the former equality in (21), we will first prove the formula

. U e
3 = R e <772(" 2 ) on (p, q)-forms. (22)

To this end, let @ € C;"_l’q(X, C)and B € C;?q(X, C). We have:

({a. 33BN 0 = (e, Bw = /(30& BlodVe
X

1

= f 25 (0t Bl " d Ve, = (o, 1P ),
X

= (@, 35, "7 B))w, = / (@, 93, (PP B)) sy d Ve,
X

T 1
= / 7 e 83, 0P B dVe
X

= (. 35, (PP ).

P2=p+D)

This proves (22).
Now, letu € C;f’ X, C) be arbitrary. Identity (22) gives the first equality below:

1
* _ 2(n—p+1) qx
3w,7“ =0 8w<n2<np) u)

1 - 1
— 2(n—p+1) * . )
A C= Y P Cmy P T

while the second equality follows from the former formula in (20). Since

5 1 _ 2(n—p) 5
P20=p) ) T TR p UB

we get the former formula in (21).
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e To prove the latter equality in (21), we will first prove the formula

_ 1 -, B
5 = m awn (772(n p) ) on (p, q)-forms. (23)

To this end, let o € C;‘?q,l(X, C)and B € C;‘fq(X, C). We have:

(. 358w = (B B = / (Bets B dVer
X
1

25 (Pt Blay 0™ AV, = (e, 2=}

@y

P —

= {{a, 562”(n2(n—17)ﬂ)>>wn =/<a, E_);)r](,72(;1—17),3)>w77 AV,
X

- 1 1 -
2 2(n— 2(n—
- /77 ’ <a’ 0, (1 " p)ﬂ)>w n2n Vo = <<a, n2(n=p) %, (1 : p)ﬂ)>> '
X

w

This proves (23).
Now, letu € Cgf’ (X, C) be arbitrary. Identity (23) gives the first equality below:

- 1
* o 2(n—p) q*
3w,7” =7 d <n2(np) u)

w
1 - 1
— n2(m—=p) T i .
_y <n2<n—w i [A,la<n2(n_p))A}u>,

while the second equality follows from the latter formula in (20). Since

3 1 _ 2(n — p) 5
2= | = T pa=p+t O

we get the latter formula in (21). O

Proof of Proposition 2.6 On the one hand, taking conjugates in the definition (6) of D,
we get:

0, D30y = 0,°d}0, (24)

since the formal adjoint of 6,, with respect to any metric (in particular, in this case,
with respect to w) is 6, itself.

On the other hand, we will express the right-hand side of (24) in a different way.
For any bidegree (p, ¢) and any form u € C;f’ q (X, C), formulae (21) give the latter
equality below:

_ 1 _ — _
diu = O+ 3u = — 3 u+ahu—2"—L |:A, i@n — dn) A } .
n

,72
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Replacing u with qu = »?Pu and taking 0, 2 on both sides, the last equality
transforms to:

* * 1 ax
0, 2d500) (u) = Tpawn(eguwr nTpawn(egu)
n— 1 - 2
-2 2p A, il =an—ndn)A-|©Ou. (25)
n n

Putting (24) and (25) together, we infer that, for every u € C;?q(X , ©), we have:

1 1 _
©, ' D}oy)u = s (d;n —2(n—p) [A, i<; m—n an> D OFu) =T} u

This proves formula (27) in bidegree (p, g). By linearity, we get (27) in any degree
k. O

Prompted by Proposition 2.6, we introduce the following

Definition 2.8 Let (X, w) be a compact complex Hermitian manifold with dim¢ X =
n.

For any C* function n : X —> (0, o0) and any k € {0, ..., 2n}, the twisted
d-Laplacian A, : CZ°(X, C) — C°(X, C) with respect to the twisted metric w;,
is the differential operator defined by

Ao, =dT} + T}, (26)

where 77 is the first-order differential operator introduced in Proposition 2.6.

In the special case where 7 is constant, we have T,; = d:)n, SO Awn coincides with
the usual d-Laplacian ddj, + dg, d with respect to @;. In general, for an arbitrary
smooth function n > 0, d;)n is the principal part of T, so the usual d-Laplacian with
respect to wy is the principal part of A,

Corollary 2.9 Let (X, w) be acompact complex Hermitian manifold with dimc X = n.
For any C* function n : X —> (0, 00) and any k € {0, ..., 2n}, the twisted
Laplacians Ay, Ay, : CZ2(X, C) — C°(X, C) are related by the formula:

Ay =0y00,0," (27)

In particular, they have the same spectrum:
Spec(Ay) = Spec(Awn) (28)

and for every eigenvalue A, the linear map
Ej, () 3 ur— 6, u e E§, (1) (29)

is an isomorphism between the corresponding eigenspaces.
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Proof Formulae (6) and (26) yield the second equality below:

Ay = DD}y + D} Dy = (0,d0, ) (0,T;0,") + (0,T76,7)(0,d0, ")
= 0,(dT} + T3 d)0, " = 0,700,

@y

This proves (27), from which the other two claims follow at once. O

3 Twisted commutation relations for D, and 5_,1

Let X be a (possibly non-compact) complex manifold with dim¢X = n > 2. We fix
a Hermitian metric  on X and denote by (, ), resp. ((, )), the pointwise, resp. L2,
inner product induced by w on C-valued differential forms on X.

In this section, we give commutationrelations for D, 5_,, and their formal adjoints,
as well as the identities of the Bochner-Kodaira-Nakano-type they induce. The identi-
ties we obtain are the analogues in our twisted and possibly non-Kihler context of the
classical Kidhler commutation relations that were subsequently given Hermitian ver-
sions in [6], [12] and [3] for the standard operators d and 9 and then for the operators
dy, and d_, twisted by a constant 2 € C in [1]. In our present case, the twisting is by
a possibly non-constant function 7.

We start with a preliminary computation.

Lemma 3.1 For any C* function n on X such thatn > 0 orn < 0 and any k €
{0, ..., 2n}, the formal adjoint D; : C,‘:j’_l(X, C) — C (X, ©) wrt. )) of the
operator Dy : C°(X, C) —> C77(X, C) introduced in Definition 2.2 is given by
the formula:

* * a*x * p a *
Div=09*(q)+ v — Y p@nayvPtha— N =@y arerat!

p+q=k ptq=k
(30)
for every formv = 3 "% e C2(X, C).
r+s=k+1
Proof For any forms u = Y u?? € CF(X,C)andv = ) "° €
p+q=k r+s=k+1

i +1(X C), formula (9) for D,u and the fact that the inner product of any two
pure-type forms of different types vanishes lead to the following equivalences:

((Dyu, v)) = ((u, Dyv))

= Y ((oul? —pongAurd, Pty
p+q=k

+ ) (@Burt — 3nAu” ¢ 0PI = ((u, Djv))
p+q=k
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= (Wl Pt — p @y AP ThE 4 §ryr et
p+q=k

=L@ n et = (. Dyw)).
n

Now, the last term translates to
(. Dyv)) = Y ((h9, (Dyv)P9)),
p+q=k

SO we get:
(Div)P 9 = 9*(quP Tl ) + 3P+~ p ay AP = LGy Ayt et
n

for every bidegree (p, ¢). Summing up over p + g = k, we get (30). O

Now, we fixadegree k € {0,...,2n}andaformv =) v"%¢€ Cei (X, ©).
r+s=k+1
Expressing 9*, 9%, (3n A -)* and (37 A -)* by means of the commutation relations of
Lemmas 7.1 and 7.2, formula (33) reads:
Dy = i[A, 31(pv) — nT*(v) —i[A, 31(v) — 7*(v)

+ i Z pIA, an A JPthay — Z p [A, 99 A .](Up,qﬂ).
ptq=k p+q=k

Since

[A, 31(qv) = A(dv +dn Av) —ndAv — I A Av
=n[A, 91(v) +[A, 00 A-](v),

the above equality translates to

Div+ (T +17)"(v) =—i[A, 9 —ndl(v) +[A, idn A-](v)
_ Z p [A, idn A .](Up»q+1)
p+q=k 7
+ Y pIA, idn A JPTR), (31)
p+q=k

On the other hand, using formula (11) for B—n’ we get:

[A. D_Jw)= > [A, Dl

r+s=k+1

— Z A((né — NS —sanp AV 4+ 2 on A vr’s>
r+s=k+1 "
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+ Y - — Y (s—DanAAve

r+s=k+1 r+s=k+1
s—1
+ > A A,

r+s=k+1

which translates to
—i[A, D) = —i[A, 0 —ndl(v) — Y S[A,idnA-Jv"" —idn A A()
r+s=k+1

+ 3 Zlacimadt+ Y Sanaaet. (32)
r+s=k+1 n r+s=k+1

The conclusion of this computation is a preliminary n-twisted commutation relation.
Lemma 3.2 For any C* function n on X such that n > 0 or n < 0 and any

k € {0,...,2n}, the formal adjoint D; : C,fil(X, C) — CXX,C) of Dy :
X, C) — C,‘:j’_l(X, C) is given by

_ k 1 _ |
DI+ T+ =—i[A, Dyl - A idn A= Ld A A (33)
0 n

Proof Letv =}  v"% ey (X, O).
r+s=k+1

Plugging into (31) the expression we obtain for —i[A, 9 — nf_)](v) from (32), we
get:

Dy + (7 +9)"(v) = —i[A, Dyl + Y s[A idnA-10")

r+s=k+1

+idn A A(v)
- > ZIA, i AT — > oA AQ"Y)

r+s=k+1 " r+s=k+1 n
HA, i AT = Y A, ian AP ath

p+q=k

+ Y pIA, idn A J@PTR), (34)

pt+q=k

We now form pairs using certain sums featuring on the r.h.s. of (34). We get:

D S AT+ Y0 pIA i A TP = KA, idn A1 ()
r+s=k+1 ptq=k

after renaming, in the latter sum, p asr — 1 and g as s.
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Similarly, we get:

— Y Saiamalen) = Y B ian A jeneth

r4s=k+1 p+q=k

= —% [A, idn A -] (v)

after renaming, in the latter sum, p as r an(i qgass—1.
Finally, after using formula (12) giving d_,, for the latter equality below, we get:

- i - i
imAAW) = Y —anAAQ™) =idn A A@) — =30 A A®)
r+s=k+1 n

=2 d_nAA).
0

Putting all these expressions together and using (12), we see that (34) becomes the
desired (33). O

Note that the second and third terms on the Lh.s. of (33) are of order zero. Thus,
the principal part of D;‘) is contained in —i [A, D_,].
We now introduce the following

Definition 3.3 For every degree k € {0,...,2n}, the 5-torsion operator t,
AFT*X — AMIT*X is defined pointwise on the C-valued k-forms on X by

7, =[A, DyoA-]. (35)
A straightforward computation yields the following

Lemma 3.4 For every k € {0,...,2n}, the n-torsion operator T, : AT*X —
AT X s explicitly given by

T, = nr+f+iw/\(5n/\~)*—l—(8n/\~)*(a)/\-)—(n—k—1)37]/\-
n
1 -
—(m—k)y—onn-. (36)

n

Proof From (9), we get:
_ 1 -
Dyw =ndw+ 0w —9nAw——0nAow.
n

Hence, for every k-form u, we get:

_ 1 -
Twu=AlndoAu+0dwoAu—InAoAU——InAwAU

n
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_ 1 -
— <n8a)+8w—8n/\w——8n/\a))/\Au
U]

=1n[A, doA-Ju—+[A, 5a)/\~]u—[A,a)/\~](3n/\u)—a)A[A, onA-lu

—_—

1 -
— —[A, A l(@AU)——nA[A, oA -]u
n

=

:nt(u)+f(u)—(n—k—l)anAu—i-iwA(ér)/\-)*(u)

1 1 -
— (A (@Au)——0nAm—ku,
n n

which is (36).
We have used the definition of 7, formulae (a) of Lemma 7.2 and the standard
identity [A, w A -] = (n — k) Id on k-forms. O

As a consequence of these computations, we get the following analogue of Lemma
4.1. of [1] (which dealt with the case where the function n was a constant z# € R\ {0}).

Proposition 3.5 Let (X, w) be a complex Hermitian manifold with dimcX =n > 2.
For any C® function n on X such that n > 0 or n < 0, the following n-twisted
commutation relations hold on differential forms of any degree on X:

n —
(a)D,;+T,; =—i[A ]—I—;[i d_yn A -, Al

D,
(b) D, +7T, =ilA, Dn]—%[idnn/\-,A];
Dy + 7y =i[D",, w/\-]—%[w/\-,i(ﬁ_nm~)*];
()Dy + Ty = —i [D @ A1+ (@A~ i (dyn AL

! 37

Proof 1t suffices to prove (a), since (b) will then follow by taking conjugates and
replacing n with —n, (c) will follow by taking adjoints in (a), while (d) will follow by
taking adjoints in (b).
Taking adjoints in (36), we get:
=T T i AN+ =A@ A ) — (—k— 1) (@A)
n
1 - *
—(n—k);(anw)

in degree k + 1. (Note that the switch from the degree k of (36) to the current degree
k + 1is due to t,;u being a (k + 1)-form whenever of u is a k-form.)
Plugging the value for nt* + T* given by the above equality into (33), we get:

* * . n k+1 .
Dy 41y =—i[A, D_y]— —— AGdnA-)
n
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k+1

k+1 - k+1 -
+LA(in3n/\-)+ iONAA———nidnAA
n n

—lanAA+ LA —idnaAA+ L A@IA)
n n n
1 -
—(n—k=D@nA-)=@m—k—@nA-)" (38)
n

in degree k + 1.
Now, using the commutation relations (a) of Lemma 7.2, we see that the last line
translates to

_ _ —k
=k =D iIAA+n—k—1)AGIA-) + 2

ion A A
n—k .
—— A@In A ).
n
Therefore, (38) becomes:
Dy +7) = —i[A, Doyl + ~[idn A-, Al —nlidn A-, Al,
n

which is nothing but (a). O

We are now in a position to give the first main result of this section. It generalises
Corollary 4.2. of [1] (which dealt with the case where the function n was a constant
h e R\ {0}).

Proposition 3.6 Ler (X, w) be a complex Hermitian manifold with dimcX =n > 2.
For any C® function n on X such thatn > 0 orn < QO and any k € {0, ..., 2n}, the
following rough n-Bochner-Kodaira-Nakano (7-BKN) identity holds on the C*
forms on X:
Ay =A_y+illDy, D_yl, Al+[D—y, T°,1 = [Dy, 7]
)
+n I:Dn, —lid_yn A -, A]i|
n
1
+n|D_,, =lidygm A -, Al|. (39)
n

Proof Using the expression for Dy given in (a) of (37), we get the second equality
below:

— 1 —
Ay = [Dy, D1 = —i [Dy. [A, D_yl1=[Dy, 1}1+n |:D,,, S lidon A]:|.
(40)

Now, the Jacobi identity yields the former equality below (expressing the first term
on the r.h.s. of (40)), while the n-twisted commutation relation (b) of (37) yields the
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latter equality:

- l [Dr]s [Av B—)1]] = [5—7’]1 l[Aa Dr]]] +i[[5—7]7 D?’]L A]

_ — n
i[[Dy, D_;], A1+ [D_,], D_n+?1,7+; lidyn A -, A]].
(41)
Plugging into (40) the expression given for —i [D;), [A, 5,,7]] in (41) and using
the equality [5_,], 5:,7] = Z_,,, we get (39). O

We shall now refine the above n-BKN identity by incorporating some of the first-
order terms on the right into a twisted Laplacian. The starting point is the following
analogue for a possibly non-constant function  of Lemma 4.4. in [1].

Lemma 3.7 Let (X, w) be a complex Hermitian manifold with dimc X = n > 2. For
any C® function n on X such that n > 0 or n < 0 and any bidegree (p, q), the
following identities hold:

(i) [L, tyl=3DyoA-, (i) [A, Tyl =2i7T2,,

(iii) [Dy, D)= —[Dy. 7%,1— [Dn, @y A )}

(iv) [Dy. D}1+[Dy, 71— [D_y, T*,1=[Dy + 1. D} + 1714 S

n
+5 [Ty, (dyn A '],
where
s :=%[A, [A, D_yDyw A -11 = [Dyo A -, (Dyo A -)*].

Proof (i) The definition of 7, and the Jacobi identity yield the first and respectively
the second identities below:

[L, ] =L, [A, Dyo A-11=—[A, [Dyo A -, L1 — [Dyo A -, [L, Al
Now, [DywA-, L] = DyoA(wA-)—wA(DywA-) =0, so the first term on the
r.h.s. above vanishes. Meanwhile, it is standard that [L, A] = (k — n) Id on k-forms.

So for any k-form u, we get

[Dyo A -, [L, Allu = Dyo A (L, Alu) — [L, Al (Dyo A u)
=k —-—nDywAu—(k+3—n)DyowAu=-3DywAu.
Thus, [Dyw A -, [L, All = =3 Dyw A - and (i) follows.
(i) We know from the n-twisted commutation relation (c) of Proposition 3.5 that

T, =i [5'(_,), L]1-D,— % [L,i (c_l_,,n A +)*]. This implies the former identity below,
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while (b) of Proposition 3.5 yields the latter:

gJ

[A, 7] =i [A, [DL,. L1 - [A, Dn]—f[A, [L.i @_yn A-)*]]

°J

—i[A, (D", LI +i(D", +7" )—%[dnn/\-,A]

n . = N
— (A [Lei @y )DL 42)
We transform the first term on the right of (42) using the Jacobi identity
[A, [D_,,, L]+ [D_n, [L. All+[L, [A, D" _,11=0. (43)

Since [L, A] = (k — n) Id on k-forms, we get [Dfn’ [L, A]] = 7,]
We then transform the last term on the right of (42) using the Jacobi identity

0=1[A, [L,id_ynATN+IL, li dogn A=) AN+ i (doyn A )Y [A, L]]
=[A, [Lyi(d_gn AN =L, id_yn A-1, AT =i (d_yn A )",

where we used again the identity [L, A] = (k — n) Id on k-forms to get the last term.
Meanwhile, the last term on the left of (43) can be written as [L, [A, —n]] =

[[D_,,, L], AJ*, so after putting all these pieces of information together, we see that
(42) translates to:

e rr * ] e _ * n
(A, ) = =i Dy, L1, A" =i DLy 41 Doy 7" = 1y A Al

n L= * n . B - *
= UL @ AL AL = i @ A"

Since [dynA-, Al = —i (3_,,77/\~ )* (see (a) of Corollary 7.3)and [L, i 3_,77]/\- 1=0
(immediate verification), we get:

[A, 1)) = =i [[D—y, L], AT" i7", (44)
Now, for an arbitrary (p, g)-form u, using (11) we get:

[D_,, Llu=D_y(@Au)— o AD_yu
=@ —-ndwAu+wn@—ndu

—&Bn/\(w/\u)+(q+l)8n/\(a)/\u)
n

—a)/\(E)—né)u%—a)/\ganAu—qw/\én/\u
n

_ 1 _
=(8—7}8——3nA-+8nA->w/\u=D_,7w/\u.
n
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This shows that [D_,, L] = D_,w A -. Combined with the equality T_,
—~[D_,w A -, A, this transforms (44) to the desired identity [A, 7,] = 2i T,

This proves (ii).

(iii) The n-twisted commutation relation (b) of Proposition 3.5 implies

[D,, D1 = —[Dy. T, 1+i[Dy, [A, Dyl - Dy, %[i dyn A Al (45)

Meanwhile, the Jacobi identity yields
_[Dm [A, Dn]] +[A, [Di’)v Dn]] + [Dn: [Dn, All=0.
Since [D;, D;] = 0 (because D% = 0) and [Dy,, A] = —[A, Dy], we get
[D,, [A, Dy]] = 0. ~
Together with [i dynA-, Al = (d_,nA-)* (see(a)of Corollary 7.3), this transforms
(45) into the identity claimed under (iii).
(iv) Applying part (ii) and then the Jacobi identity, we get:

(Do T = =5 (Do [A, 7yl) = =5 [A. (5. Doyl = 5 [, (Do AlL
(46)

On the other hand,

— b) —
QD). ;1 2Dy [A, Dy A-1]

QA [Dyw A+, Doyll + [Dyw A -, [Dy, All

[7717’ 5—7)]

d = .
DA, DoyDyw A1 =i [Dyo A, D+ )]

2D nn @ a1 @7

where (a) follows from 7, and 5_,7 being operators of odd degrees, (b) follows from
the definition of t,, (c) follows from the Jacobi identity, while the sum of the last two

terms in (d) follows from

oY . * * n —
(D Al= =i (D} + ) =~ [d-gn A Al

which is a consequence of the n-twisted commutation relation (a) of Proposition 3.5.
The computation of the first term in (d) of (47) runs, for any (p, g)-form u, as

follows.
o First,

[Dyo A -, 5,,7] u= Dyw A 5,,,14 + B,U(Dna) AU)
=Dyo A 5,,,14 + B,n(D}”Ow Au)+ E,W(Dg’ Yo Au).
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e Then, we see that

D_y(Dy 0 Au)y =@ —nd) Dy wAu)

_ 1 1,0 3 1,0
InADy oAu+(q+1D)onADy wAu

and that

D_y(DY'o Au)y =@ —nd)(DY'wAu)

2 _
—ian/\Dg’lw/\u—i—(q+2)817/\D2’1a)/\u.
n

e Putting these pieces of information together, we deduce that
[Dyo A -, 5,,7] u=DyoA Efnu +@—nd) (Dyw) Au
n

_ 1 _
—Dl’oa)/\<(8—178)u—i&nAu—i—(q—i—l)anAu)
n

_ 2 _
—Dg’la)/\<(8—778)u—%317/\u+(q+2)8n/\u>.

Hence,

[Dyw A~ D_plu = Dyo AD_yu+ (@ —n3) (D) w) Au+ @ —nd) (D) 'w) Au

— 1 _
—Dna)/\D,nu—}—D,l]’Oa)/\(;Bn/\u—an/\u>+D2’la)/\

2 _
<78n/\u—28n/\u>
n

D_y(D} %) Au+D_p (DY 'w) Au.

e We conclude that the formula
[Dyw A+, D_yl = D_yDyo A - (48)

holds in every (bi-)degree.
This finishes the computation of the first term in (d) of (47).
Taking the bracket with A in (47), we get:

[A, [y, Dyl =1[A, [A, D_yDyo A1l =i[A, [Dyw A, Dy +17]]
n

—— [A, [D,,am o ldogn Ay A]H. (49)
n
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e Now, we compute the second term on the right of (49) starting from the Jacobi
formula:

[A, [Dyw A~ D+ 7211 = —[Dyw A~ (D} + 15 All+ D} + 7, [A, Dyoo A1l
= —[Dyo A -, [L, Dy +t]"1+ D} + 7, ] (50)

Moreover, for any (p, g)-form u, we have:

[L, Dylu = w A Dyu — Dy(w A u)
:w/\Dnu—(na—i—é)(w/\u)—i—(p—i—1)817/\a)/\u

1 -
+i8n/\w/\u
n

_ 1 -
:w/\Dnu—a)/\Dnu—((na—i—a)—an/\o—gan/\o)a)/\u

=—Dyo Au.
We have thus got the formula
[L, Dy] = —Dyo A -,
which, together with the one proved under (i), yields
[L, Dy+ 1]l =—-Dyon-+[L, iyl =2Dpo A -.
Combining this with (50), we transform (49) to
[A, [Ty, Dyl =I[A, [A, D_yDyo A -1

+2i [Dyw A -, (Dyo A )] —i [D; + r;, 7]

-2 [A, [an/\-, [d_yn A, A]H. (51)
n

This is the end of the computation of the last but one term in (46).
e Using (51), (46) becomes

— . i — .

(D T,1 = =5 [A, [A, Dy Dyoo A -1+ [Dyo A, (Dyeo A-)']
1 * *

—5 D)+ 7). 7

i — n —
—3 [z, [D—y, All+ Z |:A, [Dna) A lid_gm A, A]]i|. (52)
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Now, expressing i [E_y,, A] by means of the n-twisted commutation relation (a)
of Proposition 3.5, the last but one term in (52) reads:

i — 1 n —
=5 o0, Doy, All = =3 [, D} 4571+ 5[5, id g A Al

Meanwhile, the Jacobi identity expresses the last term in (52) as

n
2n

n [ —
+Z |:[ld_,7n A~ Al |:A, Dy A H

[A, [an/\ o lid_yn A -, A]:H - —Zi |:D,7a)/\ y [[iﬁ_nn A Al AH
0

Using these equalities, (52) reduces to

(D, T,) = D} +7;. 5]+ 3 [A. [A. Doy Dy A -]
—[Dyo A -, (Dyo A -)*]
_n [r,,, [id_yn A - A]} + 5 |:D,7w/\ . [[iﬁ_nn A Al AH (53)
n n

Now, in the last but one term, (b) of Corollary 7.3 ensures that [ig,,,n A, Al =
—(dyn A -)*. Meanwhile, the last term in (53) vanishes since

|:[i3_,717 A+ Al A:| = —[(dm~-) Al=—[L, dynA-1" =0,

the last vanishing being a consequence of the equalities
[L,dmA-lu=wAdmAu) —dmA(@Au) =0

that hold for any form u.
Thus, using these observations and the notation S(E)") spelt out in the statement, we
see that (53) translates to

55) = * * n *
—[D_,). T, =D} + 1. 1yl + S + ; [ty (dyn A -)*1.

It remains to add [D,, D;"] +[Dy, 1:,”‘ 1= 1Dy, D;‘) + 'C;; ] to either side of this equality
to get the desired equality (iv) of Lemma 3.7. O

We can now give the main result of this section.

Theorem 3.8 Let (X, w) be a complex Hermitian manifold with dimcX = n > 2.
For any C® function n on X such thatn > 0 orn < QO and any k € {0, ..., 2n}, the
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following refined n-Bochner-Kodaira-Nakano (n-BKN) identity holds on the C*
forms on X:

Ay=[D_y+T . D, +7 1+ TV +il[Dy. D], A
— 1 —
+n |:D;7 +?7177 - (dfnn A )*:|
n
1 *
—-n |:Dn’ ;(dnn/\-) i|, (54)
where Tag") is the zero-th order operator defined by
. m_ L - B s "
T,V =8y " = 7 [A, [A, DyD_yoA-11=[D_yo A-, (D_yo A-)*].

Proof Putting together the rough n-BKN formula (39) and equality (iv) of Lemma
3.7, we get:

n
Ay +[Dy+ 1y D+ 171+ S0 + ; [Ty, (dyn A -)*]

=A_,+illDy, D], Al+[D—,, T°,]
—[Dy. T}1+ Dy, D}1+[Dy. ©)1— D, T,

1 — — 1
+n |:D,7, —lid_yn A -, A]] +n |:D_,7, = lidyn A -, A]].
n n

Since [ Dy, D;] = A, and since the terms [D,, t,;] and [5_,7, ?’Ln] reoccur with
the opposite signs, this equality reduces to

A_y=[Dy+1y D} + 131+ S0 — i [[Dy, D_yl, Al

1 1 — 1 -
+n |:r,,, ;(d,,n A ')*:| +n |:D,,, ;(d,,n A ~)*:| —n |:D,,, Z(d,,,n A -)*:|.

Identity (54) follows from this by taking conjugates and replacing n with —n. O
We now compute the operator [D,,, 5_,7] that features in identity (54).

Proposition 3.9 Ler (X, w) be a complex Hermitian manifold with dimcX =n > 2.
For any C® function n on X such that n > 0 or n < 0 and any bidegree (p, q), the
following identities hold:

_ 1\ - 1 )
[Dy, Dyl ™) = <n - —) an A ul? — <n + —) an A duP4
n n

— _ 1 _
1272 2qBnAanAup’q—i-(q—p)<n+—>88n/\ul”q,
n n
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and
i [[Dn, D_,l, A} P = (n - %) <[i5n A« A duP 9 +idn A [0, A]uM>

1 _ _
—(n-l— —) ([ian/\', AlouP 9 +idn A [0, A] u”’q>
n

_ _ 1 =
+22 2q [ian NI A -, A] u”9+ (g — p) (77 + —) [iaan A A] w4
n n
(55)
forany C* (p, q)-form u? 1.
Proof We compute separately the two terms in the sum [D,, D_,] uP9) =

(DyD_y) P 9) + (D_yDy) uP9).
e We use (9) to get the first line and then (11) to get the next four lines below:

(D—yDy) @P ) = D_y(n duP*?) + D_(du” )
— — 1 -
—pD_,@nAur)—p D_,7<— on A up’q)
n
=d(mou” ) —nd(nour9) — 4 non A dul 9 4+ gnan A duP 4
n

_ 1 _ _
+0ou? 1 — i877 AouP 1 4 (g 4+ 1)an A dul 4
n

—pd@n Aul 9y 4+ pnd@n AuP 1) — pqgdan A dn Aulq
1 - (1 1 -
—p8<— E)nAup’q) —i—pna(— SnAup’q) + p(q—j)an/\an/\up’q.
n n n
This leads, through straightforward computations, to

_ 2 - 1\ .-
(D—yDp) (uP9) = p<q+ qt >8n/\an/\u”’q —p<n+—> don Aul1
n n

+ (P—4+1)377/\314p’q+(%-ﬁ-(q—i—l)n)én/\aul”q
1 - _
- (pn+—q+ )anAauP’qu(q—erl)anAaquq
n
+ (1 + 1) ddur 1. (56)

e Meanwhile, we use (11) to get the first line and then (9) to get the next four lines
below:

— - 1
(DyD_p) (u” 9y = Dy(du?9) — Dy(ndu”?) —q D, (— an A up"f)
n
+q Dy (30 A uP?)
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p—l—l

=39uP 9 — (p+1)an A duP 7 — an A duP 4

— 3 ouP 1) —d(nouP 1) + pndn A duP 9+ pdn A dul 9

1 -1
— qna(— anAup’q> —q8<— 817/\141"‘1)
n n

M on Ao AuPd
+qnd@n AuP 1) +qd@n Aul9) — pgdn Adn Aul9.
This leads, through straightforward computations, to
(DyD_y) WP ?) = ((p: 24 +pq) nAnonAul?+q <n + %) don A ul 1
+(q—p—1DdnAdul9— (‘UTJrl +qn) an A duP 1
+ ((p— l)n—i—%)an/\éup’q—i-(p—q— 1)3n A JuP 4
— (1 +n%00ul 1. (57)

Adding up (56) and (57) yields the former desired equality.
Now, starting from i |:[D,,, 5_,7], Ai| P9y = i[Dy, B—n] (AuP-1) —

A <i [D,, 5,,7] (uP q)) and using the equality we just proved, we get

— 1 _
i |:[D,7, D_,l, Ai| W) = (n — ;) <i877 AOAub 4
—A@{dn A aup’q)>
L\ (. = . =
—(n + —) (lan ANIAuP T — A@idn A Bu”’q)>
n

_ _ 1 =
27 2q [ian/\ar;/\-, A} ul>? +(q — p) (77+ —) [ii?a'?/\w A} ub 4.
n n

It remains to notice that on the first line on the r.h.s. above we can write:

idn AdAuP 9 — A@idn A duP 9y =T[idn A -, AlouP 4 +idn A0, Alul 9,
while on the second line on the r.h.s. above we can write:

idn AdAuP 9 — A@Gdan A duP 9y =[idn A -, AlouP 4 +idn A9, AluP4

to get (55).
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4 Twisted commutation relations for D}z’ %and Dg’ 1

The setting is the same as in the previous section §3. Besides the differential operators
defined by:

A -,

D=y —pima- and DO'=3-L
n

on (p, g)-forms, we now also consider the operators d,’7 = nd and d,’; = 9, as well as
r,}‘o = [A, D,]]'Ow/\~]=77r— [A, 3U/\a)/\~] and r,?’] = [A, Dg‘lw/v]:?
1 -
—[A, 7311/\w/\-i|.
n
Thus, we have:

_ nl,0 0,1. _ oy ", _ 1,0 0,1

D,7—D,7 +Dn ; dn—dn—i—dn, =T, T, .

Lemma 4.1 (i) The following formulae hold in any bidegree:

1 1-
‘E=‘C$’l+|:A,;377Aa)/\~i| and ?=r,?’1+|:A,;377/\a)A-j|.

(58)
(ii) For any p, q, the following formulae hold in bidegree (p, q):
D2’1+1’,(7)’l =(5+f)—£5r;/\~— [A, %577/\a)/\ i|
D$*‘+z,?7=(a+r)—%am-—[1\,%an/\am-} (59)
Proof Immediate verification. O

Equating the bidegrees in D,% = 0, we get:
() (Dy"*=0; (i) DDy =-DY'D)0 (i) (D) )? =0. (60)

The anti-commutation of D}f 0 and DS* !'is an advantage these operators have over

D, and D_, (that do not anti-commute — see Proposition 3.9) considered in §.4.
We also consider the Laplacians:

*

0,1 0,1
Ay =Dy, (DY) and Al :=[Dy ', Dyl ],
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where the conjugate operator D?,’ !is defined by requiring Dg = Dg’ ' for every
form u.
An immediate computation shows that, in bidegree (p, ¢), we have:

*

DI =9-Loyn., hence also DI =9 — Lt 61)
0 n

Lemma 4.2 The following formula holds in any bidegree (p, q):

* *

1 *
Dyl 4! =(a*+r*)—i(am-)*—[<—amw/\-) ,w/\-:|. (62)
n n

Proof It follows at once by conjugating the latter equality in (59). O
On the other hand, the identity D, = ende,; 1 (see (6)) yields:
1,0 _ -1 0,1 _ g 5p-1
D," = 6,00, and Dy’ =0,00,". (63)

In particular, for every bidegree (p, g), the D}I'O—cohomology and Dg’l-
cohomology spaces:

ker (D)0 : CP (X, C) — C%, (X, C)

p+l.q

N———"

Hg;g,qo(x, C):

Im(Dy?:C¥, (X, C) — C (X, C)

r—1l.q

N———"

ker ( D! : €2 (X, ©) — €, (X, ©)

(64)

H9 (X, C) =
DY!

Im (D)1 C®,_ (X, C) — C, (X, ©)

S—"

are isomorphic to the corresponding d-cohomology, resp. d-cohomology, spaces via
the following isomorphisms induced in cohomology by 6, as in Proposition 2.3:

Oy : Hy (X, C) — H,’;;o(x, ), {uls > {Bpul pro,

Oy Hy (X, C) — HJ (X, ©), lulg = 1Oy} o (65)

n
Another immediate observation is that

0,1 _ 0,1 0,1 _ _0,1 I Al
D, =DZ,, hencealso 71, =177 and A, =A_. (66)

On the other hand, the principal part of A;’ is the classical 9-Laplacian A”, while
the principal part of A} is A’. This shows that A} and A} are elliptic. Consequently,
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if X is compact, we get, in every bidegree (p, ¢q), the Hodge isomorphism
Hl‘;g;,‘ﬂ (X, C) ~ Hi’g‘f(x, C) := ker (A’,; 1CR, (X, C) — CP (X, (C)) (67)

mapping every DS' !_cohomology class to its unique A;; -harmonic representative, as

well as the analogous statement for A;? and D(,),’ !
Splitting each of the n-twisted commutation relations (37) into two identities
according to the bidegrees, we see that Proposition 3.5 translates to

Proposition 4.3 Letr (X, w) be a complex Hermitian manifold with dimcX =n > 2.
For any C function n on X such that n > 0 or n < 0, the following n-twisted
commutation relations hold on differential forms of any degree on X:

* * n
@) (DY + (z) O = —i[A, DL ]—l—;[ld/,]nA LAl
* . n._.——
@) (DI + (- H* = —i[a, D%+ o Edln A Al
@) DL+ <L —ia, DY = Zlidn A AY;
n
@' D% 1% =ilA, DY = S lid)n A Al
n

*

) DY+ =i (D1 AT = DA i @ A
n
@) DO 0 =i (D% oA 1= 2w A i @0 A
n
n
@) D-Y+ <10 = —i (D) 0y, wA-]+;[wA-,i(d,’,n/\')*];
@) D%1 4 %1 =i (DY), o A1+ % [wA-idnA-)]. (68

As a consequence of these n-twisted commutation relations, we get the following
analogue of Proposition 3.6.

Proposition 4.4 Let (X, w) be a complex Hermitian manifold with dimcX =n > 2.
For any C® function n on X such thatn > 0 orn < 0 and any k € {0, ..., 2n}, the
following rough n-Bochner-Kodaira-Nakano (n-BKN) identity holds on the C*
forms of any degree on X :

Ap=Ap+i [[D?,*l, Dy, A] + )T - [DO L ]
+n|:D0’1 i[a A A]i|
n 9 )7 r’ 9

+n [Dg’ ! %[én A A]}. (69)
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Proof Using the expression for (Dg’ 1)* givenin (a”) of (68), we get the second equality
below:

"o 0,1 0, I\*x7 __ . 0,1 0,1 0,1 0, I\*
Ay =[DY!, (D) )]——z[D,, . [A, D—n]j|_[Dn (@]
+n [D‘“ i[a A - A]} (70)

no o PTA .

Now, the Jacobi identity yields the former equality below (expressing the first term
on the r.h.s. of (70)), while the n-twisted commutation relation (b”) of (68) yields the
latter equality:

—i|:DS'1, (A, D‘},}]}:[ ,-i[A, DY 1]]+i|:[ o) Do, A]

=i [[ngl, %1, A]

—i—[DO’nl, p"l 400 4 % [idn A -, A]:|. (71)

-n

Plugging into (70) the expression given for —i |:D9)* LA, Do_‘ﬂl]:| in (71) and using

the equality [D7 ] =A_ p as well as (66), we get (69). m]

n° ,,,
The first step towards refining the above n-BKN identity by incorporating some of

the first-order terms on the right into a twisted Laplacian is the following analogue of
Lemma 3.7.

Lemma4.5 Let (X, w) be a complex Hermitian manifold with dimcX = n > 2. For
any C® function n on X such that n > 0 or n < 0 and any bidegree (p, q), the
following identities hold:

— Y *

(i) [L.t0"1=3D0'wn-, (ii) (A, w0 =2i%
(iii) (001, D% = — D1, 01 - [Dg’l, %(anw)*},
(iv)

0,1 0, 1\% 0,1 0,1 % o, 1”
(D, (Dy )1+ 1[Dy 7, (7 )]—[ _n,f_,, :|
:[Dgsl_F.L,’(]),l7 (Dg,l)*_l_(.[r(’),l)*]_i_sc(on)”

n. 01 3 *

+_[Tn’ ’(an/\) ]7

n

where

s = [A [A, D0 DM oA N= DY oA (DI oA ).
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Proof The computations are the exact analogues of those forming the proof of Lemma
3.7 when D,, is replaced by Dg’ ! 7, is replaced by t,?’ I etc. The details will not be
repeated. O

The main result of this section is the following analogue of Theorem 3.8.

Theorem 4.6 Let (X, w) be a complex Hermitian manifold with dimcX = n > 2.
For any C® function n on X such thatn > 0 orn < 0 and any k € {0, ..., 2n}, the
following refined n-Bochner-Kodaira-Nakano (n-BKN) identity holds on the C*
forms on X:

Al = |:D2’1 +01 DI 40! }x—l—Ta()")” +i [[DS*‘, pY ", A]
o1 o1 ! 1 -
+n [DS‘HS*I, —(8n/\~)*} —n[DS’l, —(377A-)*} (72)
n n
where Ta()")// is the zero-th order operator defined by
10" = 5" = =S (A (A DYDY o A= (D) o A (D) o n ),

Proof 1t is the exact analogue of the proof of Theorem 3.8, based on the use of Propo-
sition 4.4 instead of Proposition 3.6 and the use of Lemma 4.5 instead of Lemma 3.7.
We have also replaced —7 by 7 in the subscripts of the statement thanks to the already
noticed equalities Dg' I = DO,’U1 and r,?* I = rg’nl. O

We now compute the operator i [Dg' L Dg’ l], A | that plays in (72) the role of the

curvature operator of the classical Bochner-Kodaira-Nakano identity and the (1, 1)-

form DY DY 16 that features in the definition of T, . The following statement is
the analogue of Proposition 3.9.

Proposition 4.7 Let (X, w) be a complex Hermitian manifold with dimcX =n > 2.
Fix any C* function n on X such thatn > 0 orn < 0.
(i) For any bidegree (p, q), the following identities hold:

[ 1 B _
(D0, Dy ) = —— (ian AduP 9 +idn A aul’~‘1>
n
_ 2 _ B
T (—ian A By — i38n> AuP,
n o \n
and
: 0,1 p0,1 P q _1 9 P9 ! ; 5..D.q
i|[(DY1, DY ' A | @) =~ [A, g A-10uP T+~ [A, 9 A-]10u
n n

1 - 1 -
+ —idn A[A, JuP 9 4+ —idn A[A, A]uP?
n n
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2 = 1, -
+(P—q)[<—218r1/\8n——188n)/\-, A:|u1”q
n n
(73)

for any C* (p, q)-formu? 1 on X.
(ii) The following identities hold:

1 (1 1
Dg’ ng’ lo = 772 8(— 8<— a)))
n n

- 1 - - 1/ - 3 -
=—88w——<28r}/\8a)—8n/\8w>+—<88n——8n/\3n>/\w.
n n U]
(74)

Proof (i) We compute separately the two terms in the sum [Dg’ r Dg’ ]] u? 1) =

(DYDY Yy @P ) + (Dy DY) P 9).
e We use (61) to get the first line and then (10) to get the next line below:

(DYDY @7y = DY <auM ~ T onn MM)
n

= 5<8u”’q — g817/\u"”")
n

1
_pt! in A <3upqq _ ‘_Ian/\up,q)
n n

This leads to
[ _ 1 _ _
(DYDY @) = —93uP 9 + — (q I AduPd—(p+1)anA au"~‘I>
n
_ 2 _
+ 2 (aan Pt A an> Aull. (T5)
n n
e Meanwhile, we use (10) to get the first line and then (61) to get the next line
below:

(nglDS,l)(uﬁ,Q) — D?” 1<5u1”q _ Eén/\MPJI)
n

_ _ 1 _ _
= 8<3up'q - Ban/\up‘q> —&am@ﬂ"q - Ean/\up‘q)
n n n

This leads to

—_— _ 1 _ _
(Dy ' DY) @) = 83uP 9 + ~ (p an AouP?— (g +1)0n A aul’»q)
1
2 L
+£<iaman—aan>ml’vq. (76)
n n
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Adding up (75) and (76) yields the first equality claimed under (i).
Now, starting from i |:[D2* L D?,’ 1], Ai| wP1 = i [Dg’ 1 Dg’ 1] (Aub- 1) —

A <i [DS* I D(,),’ " u? q)) and using the first equality under (i), we get

1 .- 1 -
i [[Dg'l, DY, A] P9y = ( — —idn A AUl T + — A(idn A auM)>
n n
1. = L. =
+ | ——idnAdAu? T+ — A@dIn A duP9)
n n
— 2 _ _
" [(— ian A 3n — i88n> A A] uha.
n n
(77
It remains to notice that the first parenthesis on the right of (77) equals
1 = 1 .-
—[A, idnp A -10u? 9 4+ —idn A[A, O]uP 1,
n n
while the second parenthesis on the right on the right of (77) equals
1 . - 1. -
—[A, idn A-10u? 9 4+ —idn A[A, 3]u? 9,
n n

to get (73).
(i1) Using (63), we get:

pO'pJ Ty = 9n59—1%8(1w> = (9n59_1)<’7 a<1w>> - (9"5)<l a(la)>>
0 7 n ! 7 T
ool
n n

which is the former identity in (74).

The latter identity in (74) can be proved by a direct computation. We get D?,’ lo=
Jdw — % an A w, hence

01701 _ = 1 2 - 1
Dy "Dy w=00w——-nAw]|——-nA|do——-0nAw
n n n
- 1 - 1=
=—88a)+—23n/\8n/\w——88n/\a)
n n
1 - 2 - 2 -
+—nAdw——InAdw+ = InAINAw.
n n n

Collecting terms, we get the latter identity in (74). O
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If ¢ is the real-valued C* function on X defined by n = e~%, the quantities
depending on 7 featuring in (73) read:

1 1 .- - 1. .- - _
—idn = —idy; —idn = —idy; —i00n =idp A dp — i00¢;
n n n

2 S _ _
=00 A3y — ~iddn = idg A dg +iddg. (78)
1 n

5 Vanishing of certain L2 AZ-harmonic spaces on certain
non-compact complete complex manifolds

Let X be a complex manifold with dimc X = n. With every C* function n : X —>
(0, 00), we associate the C* real (1, 1)-form

2 - 1 -
Yp = 5 10N A9 — —iddn
n n
featuring in the “curvature” term (73) of the refined n-BKN identity (72). Note that
the former term in y,, is > 0 on X, while the latter term may be signless in general

and, by the maximum principle, is signless or vanishes identically if X is compact.

Lemma5.1 Dy 'y, = 0. Hence, d(} v,) = 0.

Proof Straightforward calculations yield:
1 o= 1 1 o=
dyy = —— In Aiddn and =AYy =——0dnAiddn.
n n n

Hence, using (61) for the former equality below, we get:

0T, _ 1 _
D, yn_ay,,—gan/\yn—o.
This proves the former claimed equality, which in turn implies the latter one thanks
to (63). O
Henceforth, we will make the assumption that y;, is positive definite at every point
of X:
2, - 1., -
Vi :=?18n/\8n—51880>0. (79)

This assumption is made necessary by the need to create positivity in the refined
n-BKN identity (72), specifically in its “curvature” term (73).

Assumption (79) means that y, defines a Hermitian metric on X. Together with
Lemma 5.1, this further implies that % yy defines a Kdihler metric on X. Meanwhile,
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assumption (79) is never satisfied on a compact manifold X since, otherwise, the
maximum principle would imply that 7 is constant, hence y;, would vanish identically,
contradicting the strict positivity assumption (79).

Summing up, assumption (79) implies that X is a non-compact Kdéhler complex
manifold. We now choose the Hermitian metric @ on X to be yy, i.e. = y,. Itis
with respect to this metric that all the norms, inner products, formal adjoints and other
objects will be considered in this §5. Note that w = y;, is not Kéhler, only 1 yy 1s.

We can now state the main result of this section, an application of Theorem 4.6.

Theorem 5.2 Let X be a (non-compact) complex manifold with dimc X = n. Suppose
there exists a C* functionn : X —> (0, o0) satisfying the following three conditions:

(i) the C* (1, 1)-form y, == 77% idn A — % 131 is positive definite at every point
of X;
(ii) the Hermitian metric yy defined on X under (i) is complete;
(iii) the pointwise yy-norm |dn| = |9nl, of the (1, 0)-form 91 is small relative 1o n
in that

Ci(n) = sup@< ! ,
x N 10n + 4n /n + 8n C(p)

(80)

where ¢ := —logn and C(¢) := sup |i85<p|yn.

X
Then, for any bidegree (p, q) such that either <p >qand p+q >n+ 1)
or <p <qand p+q <n-— 1>, the space of A;;-harmonic L?,n -forms on X of
bidegree (p, g) vanishes:

HZ’,U?(X, C) := ker (A/n’ : Domy, 4 (A7) — L%,q(X, <C)> ={0}, (81

where A:” is the closed and densely defined unbounded extension to the space of

L%,n -forms of bidegree (p, q) of the operator A;; previously defined on C* forms
w.r.t. the metric w = y;,.

Note that the metric y;; and the positive real C;(n) are invariant under rescalings
of n by positive constants A:

Yoy = Vi Ci(An) = Ci(m).

Proof of Theorem 5.2 With the choice of metric w = y;,, Lemma 5.1 implies that

DY'w = 0, hence also D" DY 'w = 0. Consequently, we get:

= DV'oA-1=0 and T

= —%[A, (A, DYDY oA = [DY oA~ (D)o A-)T=0,
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aswellas 0 = [A, D,?’ 1a)/\~] =[A, dwA-]—[A, %an/\w/\o].This last equality
translates to

1
T=[A, —dA®A-] (82)
n

These equalities reduce (59) and (62) to the following formulae holding in any
bidegree (p, q):

Similarly, our refined n-BKN identity (72) reduces to
1 o1 o1 |
A=A +i [[D?,~1, Dy, A] +n [D,%‘ +oy L @nn -)*}
—alpot L * 4
n| Dyl @At @)
where, in bidegree (p, g), the curvature term is given by

i[[DSJ,W], A]=A+(p—q>[ynA-, Al=A+(p—q)(p+q—m]ld,

(85)

while the first-order operator A is given by

1 - 1 S 1 -
A= —[AianA-10+ —[A,idnA-]10+ —idn A[A, 9]+ —idn A[A, 0]
n n n n

1 - 1 . = b L ok %
=—[A,ionA-]o+—[A,ionA-]d+ —idnAi(@"+T7)— —idnAi(d + 1)
n n n

=

1 T 1 _
—[A, ianA.]<D?,’1+zan/\->+—[A, ian/\~]<D9)’1+£8n/\~)
n n

n n
1~ 0, 1\ * P 3 * —%
— A Dy )T+ = @A) +7T
n n
l — %
+; A (D?,’] +%(8nA~)*+r*), (86)

where we have used the standard Hermitian commutation relations (95) to get the
second equality and (83) to get the third one.
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Now, the pointwise operator norm of A = A, induced by the pointwise norm
| | =| |o defined by any metric w on X satisfies

|[A| = |L| = sup | A u| §ﬁ
lul=1

since |w|, = /7 at every point of X, where L = L, =w A -.
Consequently, the pointwise operator norm of T = t,, induced by the pointwise

norm | | = | |, satisfies

|t| = sup |tu| < sup |[A(dw A u)| + sup [dw A Au| < 24/n|dw|.

lu|=1 Ju|=1 lu|=1
Since in our case @ = y;, we have dw = dy; = —(2/1%) dn A i39n. Hence, if we
put Ca(n) = sup lda"' , we get:
Ianl |3377|
<4Vn— < 4/n Ci(n) C2(n)

at every point of X.

We will now estimate each of the last three terms on the r.h.s. of (84).

e Estimating A.

From (86) combined with these remarks, we deduce that, for every (p, g)-form u,
we have:

[((Au, up)| < Vi C1 () |lull ( 1Dyl + g €1 ful |+ [1DY ull + p C1 (o) [l
HIDY ) *ull + p Crn llull 4 4+/n €y (m) Co(n) [ul

— %
FIUDY Y ) + g C1(p) [ull + 4/n C1 () Co(n) Hu||>-

means that
0, *
[((Au, u))| < /nCi(n) (||Dn Ll el |+ DY Ml ] + 11D %l

HIDY ' ull 1l + 2(p + q) Cr(p) ul* + 8/n Ci () C2() ||u||2>-

Applying the elementary inequality ab < (a? + b*)/2 with b = |u| and a each of

the norms of DO r u, D0 Lu, (D0 1 *u and D u, we further get the inequality:

n *
|((Au, u))| < %cl(m (||D$,”1u||2+ Dy " ul?

DY ul* + [1(DY ) *ul® + Cra(p. q. n) ||u||2)
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for every (p, g)-form u on X, where we put

Ci,2(p, q, n) =4 (1 +(p+q)Ci(n) +4/nCi(n) Cz(ﬂ))~

Thus, we get:

[({(Au, u))| < gCl(n) (((A;u, u)) + ((Aqu, ) +C1,2(p, q, n) IIMII2>

87)
for every (p, g)-form u on X in the relevant domains.

Note that we have used the completeness of the metric w = y;, (hypothesis (ii)) in
order to have

0 0.1" *
1Dy ul® + 11Dy ul? = ((Aju, w))  and 1D w4 1D 1) *ul
= ((Aju, u))

for every form u € Dom A} N Dom A;.
e Estimating the last but one term on the r.h.s. of (84).
Recall that r,(])’ ' = 0. Thus, w.r.t. the Li-inner product, for every (p, g)-formu we

get:
—o1 . o1 !
(287 Goonn o)

(7 vl ffns )

n
Sncl(n)<HD2’lu ||u||)

2
+2||u||2>.

<n

0,1
[lul| + || Dy u

2 2 4
< Cl(n)<HD2’1M +HDS’1M

NSRS

After using the completeness of w = y;;, we get:

‘<<n [WJFT %(&7/\ )}u u>> < aim (<<A:,u, u>>+2||u||2)

(88)
for every (p, g)-form u on X in the relevant domains.
e Estimating the last term on the r.h.s. of (84).
W.r.t. the Lz)—inner product, for every (p, q)-form u we get:

(o1 o) = (o8 L)
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<<1 @n A )*u, (DY) u>>
n

=nCi(n) (‘

+n

0,1
D,7 u

lual| + H(DB* H*u

HMII)

2 2
n
SECl(n)qu’lu +H<D$">*u +2|\u\|2).

After using the completeness of w = y;;, we get:

(HERNTELR R

for every (p, g)-form u on X in the relevant domains.
e Putting together (84)—(89), we get:

<3G (<<A:;u, u)) +2 ||u||2) (89)

(Apu, 1)) = ((Au, )+ (p— @) (p+q —n) | lull?

- % Ci(n) («A;u, u)) + (Alu, u)) + C1.2(p. 4. n) ||u||2)

n / 2 n " 2
- ECl(n) (((Anu, u)) + 2 |full ) - ECl(n) (((A,]u, u)) + 2 |full )

which amounts to

(1 L0 +2ﬁ

n+n
2

C1(n)> ((Aju, u)) > (1 - C1(?7)> ({(Aju, u))

+[(17 —q@)(p+q—n)—Ci(n) (2n + g Ci2(p. ¢, n))} [lull* (90)

for every (p, g)-form u on X in the relevant domains.

Since ((A%’u, u)), ((A;u, u)) > 0, (90) shows that the vanishing of ((A;;u, u))
(which is equivalent to u € ker A/,;) implies the vanishing of ((A;]u, u)) (which is
irrelevant to us here) and the vanishing of u whenever the coefficients of ((A%u, u))
and [|u||? are positive. For this to happen, we need

(@ Ci(n < and

2
n+.n
Jn
() Ci(n) (2n + 5 Cralp. g n)> <p-9(p+qg—n).

Since p, g are integers and we require that either (p > g and p +¢g > n + 1) or
(p < gand p+q < n—1),therh.s. of (b) is a positive integer. Hence, (b) is satisfied
whenever the inequality

®) Ci(n) <2n + 4 Ci1,2(p, q, n)) <1
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is satisfied. Meanwhile, p + g < 2n, so

Ci,2(p, g, n) < 4(1 +2nC1(n) + 4/n C1(n) C2('7)>~

Thus, for (b’) to hold, it suffices to have

Ci(n) [2n + \/7%4 (1 +2n Ci(n) +4v/n Ci(n) Cz(n))] <1,
which is equivalent to

Ci(n)?4n (ﬁ +2 C2(n)> +2nCi(n) < 1.

Since C;(n)? < Ci(n) (indeed, (a) implies C(n) < 1), for this to happen it suffices
that

@®" Ci(n) |:4n <ﬁ +2 Cz(n)) + Zn] <1.

Now, recall that ¢ is the function such that n = e~%. Thus, C1(n) = sup(|an|/n) =
X
sup |0¢| and
X

89|

C>(n) = sup = sup [dp A dp — 3| < sup [dp|* + sup [3dg| < C1(n)* + C(9).
X X X X

This upper estimate for C, (1) shows that (b)) holds whenever

2nCi(n) [1 +2 <ﬁ+ 2C1(n)?* + 2C(<p))] <1

This is equivalent to
21 C1(n) +4n/n C1(n) + 81 C1(n)* + 8n C1() C () < 1.

Since C1(n)® < Ci(n), for this to happen it suffices that

Ci(n) (1011 +4n/n + 8n C(go)) < 1.

This holds thanks to hypothesis (80), which also implies (a). The proof of Theorem
5.2 is complete. O
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We now discuss two variants of Theorem 5.2. As noticed in (78), if we writen = ¢~¢
we have

1 - 1 - | - = = =
Yn = — 10N A+ (—21'87;/\817— —iaan) =i0p AN0p +100¢ > iddg,
n n n

the last inequality being a consequence of the standard inequality i« A @ > 0 for any
(1, 0)-form «. In particular, if we assume iaé_)(p > 0 on X, we also have y,, > O on X.
Moreover, if we further assume the metric i 85(/) to be complete on X, the metric y, is
complete as well.

Thus, if idd¢ is supposed to be a complete metric on X, hypotheses (i) and (ii) of
Theorem 5.2 are satisfied, while |97],, < |8n|i35w and

i00¢ly, < [i9d¢l;3, = v/n

at every point of X. In particular, C(¢) = sup [i 85(p|yn < 4/n, so we get the following
X

consequence of Theorem 5.2.

Corollary 5.3 Let X be a (non-compact) complex manifold with dimc X = n. Suppose

there exists a C* functionn = e~ % : X —> (0, 00) such that the (1, 1)-formiddg is

positive definite at every point and the Hermitian metric it defines on X is complete.
Suppose, moreover, that

1

S — 91
10n + 12n /n oD

sup [9¢l;55, <
X

Then, for any bidegree (p, q) such that either (p >qgand p+q > n+ 1) or

<p <qand p+qg <n-— 1), the space ofA;;-harmonic L}z,]7 -forms on X of bidegree
(p, q) vanishes:

Hiy (X, C) := ker <A;; : Dom, 4(A7) —> L3 (X, «:)) ={0}, (92

where A/,” is the closed and densely defined unbounded extension to the space of sz,” -
forms of bidegree_(p, q) f)f the operator A:)’ defined on C* forms w.r.t. the metric
W=y, =00 ANdp +id0e.

The next observation is that the upper bound in hypothesis (91) can be made as
small as we wish after possibly replacing ¢ with e¢ and choosing the constant ¢ > 0
small enough. Indeed,

I
|a(5§0)|,‘a{)(w) =¢& |3§0|5,‘35¢ = ﬁ |8(p|i35¢ = «/E|3(P|i35(p-
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Thus, the following consequence of Corollary 5.3 is a manifestation of the twisted
adiabatic limit (as ¢ | 0 in this case) introduced in this paper.

Corollary 5.4 Let X be a (non-compact) complex manifold with dimc X = n. Suppose
there exists a C*® functionn = e~ : X —> (0, 00) such that the (1, 1)-form i3y is
positive definite at every point and the Hermitian metric it defines on X is complete.
Suppose, moreover, that

s1}1(p|890|i35w < 00. (93)

For every constant ¢ > 0, let n, = e~ %%,

Then, for any bidegree (p, q) such that either (p >qgand p+q >n+ 1) or

<p <qand p+q < n— 1) and for every ¢ > 0 small enough, the space of

Ay, -harmonic L;Z/ng -forms on X of bidegree (p, q) vanishes:

Hg’z (X, C) :=ker (AZE : Domy, 4 (A} ) —> Lf,’ (X, (C)) ={0}, (94)
where A;;’g is the closed and densely defined unbounded extension to the space of L)z/nF -

forms of bidegree (p, _q) of the operator A;;g defined on C* forms w.r.t. the metric
W =Yy, = €2idp A dp +£iddgp.

Proof The positive definiteness and the completeness of i 9 A d¢ are preserved when
¢ is replaced by e@. Thus, the claim follows at once from Corollary 5.3 and from the
short discussion that preceded the statement. O

6 Vanishing of certain Dolbeault cohomology groups on certain
compact complex manifolds

The discussion in this section is the analogue in the compact setting of the one we had
in §5.

Let (X, w) be a compact Hermitian manifold with dim¢ X = n. Fix an arbitrary
C function n : X —> (0, o0). For any (p, q), we consider the curvature-like (1-st
order differential) operator

Fpi=i [[02»1, DY, A} O (X, ©) — CP (X, ).

We will use the following standard terminology: if A and B are linear operators
acting on the differential forms on X, we will say that A > B (resp. A > B) if
({(Au, u)) > ({(Bu, u)) for every u (resp. if ((Au, u)) > ((Bu, u)) for every u # 0).
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As in §5, we consider the constant C1(n) = sup =" |3"| < 00. Unlike in §5, the

pointwise norm |d7], like all the norms and all the inner products in this section, is the
one induced by w and, due to the compactness of X, the constant C1(n) is finite. We
start by noticing that the pointwise operator norm of r,?’ L =1a, Dg’ o A-Twrt. ®
satisfies

'l:,?’1 = sup |t! lw‘ =
|lul=1
1- _
- INAw| <2n (Iawl + Ci(n) ﬁ) = C3(n).

Theorem 6.1 Let (X, w) be a compact complex Hermitian manifold with dimc X = n.
If there exists a C* function n : X —> (0, 00) such that:

(i) C3(m) +nynCi(n) <2
(ii) for some bidegree (p, q), F;; > 2 <C3(n) +n/n Cl(n)) Id in bidegree (p, q),

then H(,.j"‘f(x, C) = {0}.

Proof The rough n-BKN identity (69) will suffice for our purposes. We will esti-
mate the last four terms on its r.h.s. by using the Cauchy-Schwarz inequality and the
elementary inequality ab < (a® 4 b)/2 for non-negative reals a, b.

Letu e C;? (X, C). For the L?-inner products w.r.t. w, we get:

—_— ——% —_— —_— —_—% —_—k
e
—_— — %
§C3(77)(HD21M ||u||+HDS1 u )
2 2
C3(77) 0.1 0,1
== Dy tul| 4 [|Dy " ul| +20ul?).
Similarly, we get:
2 2
‘<<[D°‘, 0 1)*}4’ u>> - C32(77) (‘ PO ||+ |00 u +2”u”2>’
2 2
<<n[02‘,i[am A]}u u>>’sm<‘ Do +H<D§,’">*u +2||u|\2>,
n 2
. - 2 2
(e e < 200 (o 57 )

From these four inequalities and the rough n-BKN identity (69), we get:

C
(g, 1) = (A, ) + (g, ) — 7 <<<A;u, u) +2 ||u||2>
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c
_ 32(”) (((A;;u, u)) +2||u|I2>
c C
_@ <<<A;;u, u)) +2||u||2) - @ <<<A%u» uh +2 "“”2)

for every u € C;f’q(X, C).
This amounts to

(1 n C3(n) +’12x/ﬁC1(77)> (AT, u)

. (1 B C3(7’/)+’12\/EC1(7’/)> G, w)) + (Fyt, )

—2 <C3(n) +n«/5C1(n)) ol

for every u € C;’,f’q(X, ©).

This inequality, together with the hypotheses (i) and (ii), implies that whenever
A;;u = 0 we must have u = 0. The result follows from this, from the Hodge
isomorphism (67) and from the cohomology isomorphism (65). O

7 Appendix: review of standard commutation relations

We briefly recall here some standard formulae that were used throughout the paper.

Lemma?7.1 Let (X, w) be a compact complex Hermitian manifold. The following
standard Hermitian commutation relations ( [3], see also [Dem97, VII, §.1]) hold:

() @+ =i[A, 0], (i) @+7T) =—i[A, d];

(iii) 94+ 1=—i[3*, L]; (v)d+7=ild* L], (95)
where the upper symbol x stands for the formal adjoint w.rt. the L* inner product
induced by w, L = L, := w A - is the Lefschetz operator of multiplication by w,

A=Ay, :=L*"and t :=[A, dw A -] is the torsion operator (of order zero and type
(1, 0)) associated with the metric w.

Again following [Dem97, VII, §.1], recall that the commutation relations (1)
immediately induce via the Jacobi identity the Bochner-Kodaira-Nakano-type identity

A" = A +1[d, ] -9, 7*] (96)
relating the d-Laplacian A” = [d, 8*] = 99* + 3*9 and the d-Laplacian A’ =
[0, 0*] = 9™ + 0*0. This, in turn, induces the following Bochner-Kodaira-Nakano-

type identity (cf. [3]) in which the first-order terms have been absorbed in the twisted
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Laplace-type operator A’ :=[d + 7, (3 + 7)*]:

A= AL+ T, 97)

where T, := | A, [A, L 85w]i| — [0w A -, (w A -)*] is a zeroth order operator of

type (0, 0) associated with the torsion of w. Formula (97) is obtained from (96) via
the following identities (cf. [3] or [Dem97, VII, §.1]) which have an interest of their
own:

() [L, T]=30w A~ (i) [A, T] = =2i T*,
Gii) [0, T* 1= —[0, *1 =11, %], (iv) —[0, T*1=1[1, @+ T)* ]+ T,.
(98)

Note that (iii) yields, in particular, that d and 9* + 7* anti-commute, hence by
conjugation, d and 9* 4+ t* anti-commute, i.e.

[0,3*4+7*]1=0 and [d, 8*+1*]=0. (99)

The following formulae can be viewed as commutation relations for zeroth-order
operators (see [ [13], §.1.0.2] or [Pop23, Appendix]).

Lemma7.2 Let (X, w) be a complex Hermitian manifold and 1 a real-valued C*
function on X.
The following identities hold pointwise for arbitrary differential forms of any degree
on X.
(@)[on A+, Al=i@nA)%, [On A+ Al=—i(@nA-)*
[L, OnA)]1=—idnA- [OnA)*, L1=—idn A -

B lidnAndnA-, Al= @A) @A) —@nA) @A)
=@ A)@NA = @A) @A),

Corollary 7.3 In the setting of Lemma 7.2, the next pointwise identities hold:
(@) [A, idgm A -] =—(d_yn N7, (b) A, id—yn N -] = (dyn A ).

Proof This follows right away from Lemma 7.2 after we use the identities:

dyn = non + dn and annz an — n on.
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