KMAS9AA1 – Algebraic Topology

Exercise Sheet 1

1. Quotient topology, spheres, and discs

Let X be a topological space and $A \subset X$. We denote by X/A the quotient of X by the equivalence relation

 $x \sim y \iff x = y \text{ or } x, y \in A$

equipped with the quotient topology.

- 1. Let $D^n := \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ be the closed *n*-dimensional disc, and $S^{n-1} := \{x \in \mathbb{R}^n \mid ||x|| = 1\} \subset D^n$ the (n-1)-dimensional sphere. Show that D^n/S^{n-1} is homeomorphic to S^n .
- 2. Given a topological space X, the cone of X is the quotient topological space $C(X) := X \times [0,1]/X \times \{0\}$. Show that $C(S^{n-1})$ is homeomorphic to D^n .
- 3. Show that the cone of a non-empty topological space is contractible.

2. Path-connected components

1. Reprove that, up to isomorphism, the fundamental group $\pi_1(X, x)$ only depends on the path-connected component of $x \in X$. More precisely, if γ is a path between x and $y \in X$, then

$$\phi_{\gamma} \colon \pi_1(X, x) \to \pi_1(X, y)$$
$$[\alpha] \mapsto [\overline{\gamma} \cdot \alpha \cdot \gamma]$$

is a group isomorphism.

- 2. If δ is another path joining x to y, then the isomorphisms ϕ_{γ} and ϕ_{δ} are conjugate. Deduce that if $\pi_1(X, x)$ is abelian, then this isomorphism is canonical.
- 3. Homotopy

- 1. Show that the homotopy equivalence relation is indeed an equivalence relation. Convince yourself that the same is not true for deformation retracts.
- 2. Show that $f \sim f'$ and $g \sim g'$ imply $f \circ g \sim f' \circ g'$.
- 3. Show with explicit formulas that any convex subset of \mathbb{R}^n is contractible.

4. Fundamental Group

- 1. Simple connectedness: Let X be a path-connected topological space. Show that the following assertions are equivalent:
 - a. $\pi_1(X, x)$ is trivial for any $x \in X$.
 - b. There exists $x_0 \in X$ such that $\pi_1(X, x_0)$ is trivial.
 - c. Any map $f: S^1 \to X$ extends to a map $D^2 \to X$.
 - d. There exist $x_0, x_1 \in X$ such that all paths from x_0 to x_1 are homotopic.
 - e. For any $x_0, x_1 \in X$, all paths from x_0 to x_1 are homotopic.
- 2. An abelian π_1 : Let x, y be two points in a path-connected topological space. Show that the following assertions are equivalent:
 - a. $\pi_1(X, x)$ is abelian.
 - b. For any paths α, β from x to y, the induced homomorphisms given by Exercise 2 from $\pi_1(X, x)$ to $\pi_1(X, y)$ are the same.
- **5.** Borsuk–Ulam Theorem : For any $f: S^n \to \mathbb{R}^n$, there exists a pair of antipodal points x and -x in S^n such that f(x) = f(-x).

Slogan: "There exist two antipodal points on Earth that have exactly the same temperature and pressure."

- 1. Prove the theorem in dimension n = 1 using elementary methods.
- 2. To prove the case n = 2, argue by contradiction and consider the function $g: S^2 \to S^1$, $g(x) = \frac{f(x) f(-x)}{||f(x) f(-x)||}$. Use g to construct a non-trivial loop in $\pi_1(S^1)$ and deduce a contradiction.
- 3. Suppose that $S^2 = A_1 \cup A_2 \cup A_3$ with A_i closed subsets. Show that at least one of these three sets contains a pair of antipodal points. You may use the functions $S^2 \to \mathbb{R}$,

distance_i(x) =
$$\inf_{y \in A_i} |x - y|$$
.

6. Van Kampen

- The connected sum M#N of two connected manifolds M and N of the same dimension n is obtained by removing a small neighborhood of a point formed by an open disc from each, and gluing the resulting manifolds along the two spheres Sⁿ⁻¹ that appear. For example, Σ_g#Σ_{g'} = Σ_{g+g'}, where Σ_g is the oriented surface of genus g. Assuming n > 2, compute π₁(M#N) in terms of π₁(M) and π₁(N).
- 2) Let $X \subset \mathbb{R}^n$ be a union of convex sets X_1, \ldots, X_n such that any triple intersection is non-empty $X_i \cap X_j \cap X_k \neq \emptyset$. Prove that X is simply connected.
- 3) Prove that the complement of a finite number of points in \mathbb{R}^n , for $n \geq 3$, is simply connected.
- Compute the fundamental group of the complement of the unit circle in R³.
- 5) Compute the fundamental group of the quotient of the disjoint union of two tori $S^1 \times S^1$ obtained by identifying the circle $S^1 \times \{x_0\}$ of one torus with the corresponding circle $S^1 \times \{x_0\}$ of the other torus.