
KMAS9AA1 – Algebraic Topology

Exercise Sheet 1

1. Quotient topology, spheres, and discs

LetX be a topological space and A ⊂ X. We denote byX/A the quotient
of X by the equivalence relation

x ∼ y ⇐⇒ x = y or x, y ∈ A

equipped with the quotient topology.

1. Let Dn := {x ∈ Rn | ∥x∥ ≤ 1} be the closed n-dimensional disc, and
Sn−1 := {x ∈ Rn | ∥x∥ = 1} ⊂ Dn the (n − 1)-dimensional sphere.
Show that Dn/Sn−1 is homeomorphic to Sn.

This answer can come with a varied amount of details depending on
how many formulas we want to write down (also other definitions
of the sphere are reasonable..). A minimalistic acceptable argument
would be to claim that Sn minus a point is homeomorphic to Rn and so
is the interior of Dn. By the universal property of the quotient, this
homeomorphism extends to a continuous bijection Dn/Sn−1 → Sn.
Since both the source and target are compact Hausdorff, this is a
homeomorphism.

Rule of thumb: An argument with low levels of rigour is acceptable if
it is relatively clear that it could be given complete rigour if the writer
has enough patience.

2. Given a topological space X, the cone of X is the quotient topological
space C(X) := X × [0, 1]/X ×{0}. Show that C(Sn−1) is homeomor-
phic to Dn.

Using the presentation above, can construct the map Sn−1 × [0, 1] →
Dn sending (x, t) to tx. Check that this map passes to the quotient
and is a homeomorphism.

3. Show that the cone of a non-empty topological space is contractible.
An explicit deformation retract into the vertex of the cone can be
constructed ht(x, s) = (x, ts).

2. Path-connected components
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1. Reprove that, up to isomorphism, the fundamental group π1(X,x)
only depends on the path-connected component of x ∈ X. More
precisely, if γ is a path between x and y ∈ X, then

ϕγ : π1(X,x) → π1(X, y)

[α] 7→ [γ · α · γ]

is a group isomorphism.

2. If δ is another path joining x to y, then the isomorphisms ϕγ and ϕδ are
conjugate. Deduce that if π1(X,x) is abelian, then this isomorphism
is canonical.

3. Homotopy

1. Show that the homotopy equivalence relation is indeed an equivalence
relation. Convince yourself that the same is not true for deformation
retracts.

2. Show that f ∼ f ′ and g ∼ g′ imply f ◦ g ∼ f ′ ◦ g′.
3. Show with explicit formulas that any convex subset of Rn is con-

tractible.

Pick an arbitrary point x ∈ X. The homotopy ht(y) = x + t(y − x),
sending y linearly to x is continuous and is fully contained in X due
to convexity.

4. Fundamental Group

1. Simple connectedness: Let X be a path-connected topological
space. Show that the following assertions are equivalent:

a. π1(X,x) is trivial for any x ∈ X.

b. There exists x0 ∈ X such that π1(X,x0) is trivial.

c. Any map f : S1 → X extends to a map D2 → X. f is given
equivalently by a map I → X sending the endpoints to the same
point. If f is a contractible loop, there is a homotopy starting from
I × I... The key observation is that I × I ∼= D2.

d. There exist x0, x1 ∈ X such that all paths from x0 to x1 are homo-
topic.

e. For any x0, x1 ∈ X, all paths from x0 to x1 are homotopic.

2. An abelian π1: Let x, y be two points in a path-connected topological
space. Show that the following assertions are equivalent:

a. π1(X,x) is abelian.

b. For any paths α, β from x to y, the induced homomorphisms given
by Exercise 2 from π1(X,x) to π1(X, y) are the same.
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5. Borsuk–Ulam Theorem : For any f : Sn → Rn, there exists a pair of
antipodal points x and −x in Sn such that f(x) = f(−x).

Slogan: “There exist two antipodal points on Earth that have exactly
the same temperature and pressure.”

1. Prove the theorem in dimension n = 1 using elementary methods.

2. To prove the case n = 2, argue by contradiction and consider the
function g : S2 → S1, g(x) = f(x)−f(−x)

||f(x)−f(−x)|| . Use g to construct a non-

trivial loop in π1(S
1) and deduce a contradiction.

[H, Thm 1.10]

3. Suppose that S2 = A1∪A2∪A3 with Ai closed subsets. Show that at
least one of these three sets contains a pair of antipodal points. You
may use the functions S2 → R,

distancei(x) = inf
y∈Ai

|x− y|.

[H, Cor 1.11]

6. Van Kampen

1) The connected sum M#N of two connected manifolds M and N of
the same dimension n is obtained by removing a small neighborhood
of a point formed by an open disc from each, and gluing the resulting
manifolds along the two spheres Sn−1 that appear. For example,
Σg#Σg′ = Σg+g′ , where Σg is the oriented surface of genus g.

Assuming n > 2, compute π1(M#N) in terms of π1(M) and π1(N).

This is essentially the same strategy we used forM∨N . On a different
note, it is instructive to compute some examples when n = 2.

2) Let X ⊂ Rn be a union of convex open sets X1, . . . , Xn such that any
triple intersection is non-empty Xi ∩Xj ∩Xk ̸= ∅.
Prove that X is simply connected.

[H, Exercise 1.2-2]

3) Prove that the complement of a finite number of points in Rn, for
n ≥ 3, is simply connected.

[H, Exercise 1.2-3]

4) Compute the fundamental group of the complement of the unit circle
in R3.

[H, Example 1.23]

5) Compute the fundamental group of the quotient of the disjoint union
of two tori S1×S1 obtained by identifying the circle S1×{x0} of one
torus with the corresponding circle S1 × {x0} of the other torus.
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Similar strategy as for 1), but now there is an extra S1 around. All
these nice spaces have the property that we want to pick a closed
set (which we can’t) to apply van Kampen, but there is an open
neighbourhood deformation retracting into it.
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