KMAS9AA1 – Algebraic Topology

Exercise Sheet 1

1. Quotient topology, spheres, and discs

Let X be a topological space and $A \subset X$. We denote by X/A the quotient of X by the equivalence relation

$$
x \sim y \iff x = y \text{ or } x, y \in A
$$

equipped with the quotient topology.

1. Let $D^n := \{x \in \mathbb{R}^n \mid ||x|| \leq 1\}$ be the closed *n*-dimensional disc, and $S^{n-1} := \{x \in \mathbb{R}^n \mid ||x|| = 1\} \subset D^n$ the $(n-1)$ -dimensional sphere. Show that D^{n}/S^{n-1} is homeomorphic to S^{n} .

This answer can come with a varied amount of details depending on how many formulas we want to write down (also other definitions of the sphere are reasonable..). A minimalistic acceptable argument would be to claim that $Sⁿ$ minus a point is homeomorphic to $Rⁿ$ and so is the interior of D^n . By the universal property of the quotient, this homeomorphism extends to a continuous bijection $D^{n}/S^{n-1} \to S^{n}$. Since both the source and target are compact Hausdorff, this is a homeomorphism.

Rule of thumb: An argument with low levels of rigour is acceptable if it is relatively clear that it could be given complete rigour if the writer has enough patience.

2. Given a topological space X , the cone of X is the quotient topological space $C(X) := X \times [0,1]/X \times \{0\}$. Show that $C(S^{n-1})$ is homeomorphic to D^n .

Using the presentation above, can construct the map $S^{n-1} \times [0,1] \rightarrow$ D^n sending (x, t) to tx. Check that this map passes to the quotient and is a homeomorphism.

3. Show that the cone of a non-empty topological space is contractible. An explicit deformation retract into the vertex of the cone can be constructed $h_t(x, s) = (x, ts)$.

2. Path-connected components

1. Reprove that, up to isomorphism, the fundamental group $\pi_1(X, x)$ only depends on the path-connected component of $x \in X$. More precisely, if γ is a path between x and $y \in X$, then

$$
\phi_{\gamma} \colon \pi_1(X, x) \to \pi_1(X, y)
$$

$$
[\alpha] \mapsto [\overline{\gamma} \cdot \alpha \cdot \gamma]
$$

is a group isomorphism.

2. If δ is another path joining x to y, then the isomorphisms ϕ_{γ} and ϕ_{δ} are conjugate. Deduce that if $\pi_1(X, x)$ is abelian, then this isomorphism is canonical.

3. Homotopy

- 1. Show that the homotopy equivalence relation is indeed an equivalence relation. Convince yourself that the same is not true for deformation retracts.
- 2. Show that $f \sim f'$ and $g \sim g'$ imply $f \circ g \sim f' \circ g'$.
- 3. Show with explicit formulas that any convex subset of \mathbb{R}^n is contractible.

Pick an arbitrary point $x \in X$. The homotopy $h_t(y) = x + t(y - x)$, sending y linearly to x is continuous and is fully contained in X due to convexity.

4. Fundamental Group

- 1. Simple connectedness: Let X be a path-connected topological space. Show that the following assertions are equivalent:
	- a. $\pi_1(X, x)$ is trivial for any $x \in X$.
	- b. There exists $x_0 \in X$ such that $\pi_1(X, x_0)$ is trivial.
	- c. Any map $f: S^1 \to X$ extends to a map $D^2 \to X$. f is given equivalently by a map $I \to X$ sending the endpoints to the same point. If f is a contractible loop, there is a homotopy starting from $\overline{I} \times I...$ The key observation is that $\overline{I} \times I \cong D^2$.
	- d. There exist $x_0, x_1 \in X$ such that all paths from x_0 to x_1 are homotopic.
	- e. For any $x_0, x_1 \in X$, all paths from x_0 to x_1 are homotopic.
- 2. An abelian π_1 : Let x, y be two points in a path-connected topological space. Show that the following assertions are equivalent:
	- a. $\pi_1(X, x)$ is abelian.
	- b. For any paths α , β from x to y, the induced homomorphisms given by Exercise 2 from $\pi_1(X, x)$ to $\pi_1(X, y)$ are the same.

5. Borsuk–Ulam Theorem : For any $f: S^n \to \mathbb{R}^n$, there exists a pair of antipodal points x and $-x$ in $Sⁿ$ such that $f(x) = f(-x)$.

Slogan: "There exist two antipodal points on Earth that have exactly the same temperature and pressure."

- 1. Prove the theorem in dimension $n = 1$ using elementary methods.
- 2. To prove the case $n = 2$, argue by contradiction and consider the function $g: S^2 \to S^1$, $g(x) = \frac{f(x)-f(-x)}{||f(x)-f(-x)||}$. Use g to construct a nontrivial loop in $\pi_1(S^1)$ and deduce a contradiction. [H, Thm 1.10]
- 3. Suppose that $S^2 = A_1 \cup A_2 \cup A_3$ with A_i closed subsets. Show that at least one of these three sets contains a pair of antipodal points. You may use the functions $S^2 \to \mathbb{R}$,

$$
distance_i(x) = \inf_{y \in A_i} |x - y|.
$$

[H, Cor 1.11]

6. Van Kampen

- 1) The connected sum $M \# N$ of two connected manifolds M and N of the same dimension n is obtained by removing a small neighborhood of a point formed by an open disc from each, and gluing the resulting manifolds along the two spheres S^{n-1} that appear. For example, $\Sigma_g \# \Sigma_{g'} = \Sigma_{g+g'}$, where Σ_g is the oriented surface of genus g. Assuming $n > 2$, compute $\pi_1(M \# N)$ in terms of $\pi_1(M)$ and $\pi_1(N)$. This is essentially the same strategy we used for $M\vee N$. On a different note, it is instructive to compute some examples when $n = 2$.
- 2) Let $X \subset \mathbb{R}^n$ be a union of convex open sets X_1, \ldots, X_n such that any triple intersection is non-empty $X_i \cap X_j \cap X_k \neq \emptyset$. Prove that X is simply connected. [H, Exercise 1.2-2]
- 3) Prove that the complement of a finite number of points in \mathbb{R}^n , for $n \geq 3$, is simply connected. [H, Exercise 1.2-3]
- 4) Compute the fundamental group of the complement of the unit circle in \mathbb{R}^3 .

[H, Example 1.23]

5) Compute the fundamental group of the quotient of the disjoint union of two tori $S^1 \times S^1$ obtained by identifying the circle $S^1 \times \{x_0\}$ of one torus with the corresponding circle $S^1 \times \{x_0\}$ of the other torus.

Similar strategy as for 1), but now there is an extra $S¹$ around. All these nice spaces have the property that we want to pick a closed set (which we can't) to apply van Kampen, but there is an open neighbourhood deformation retracting into it.