KMAS9AA1 – Algebraic Topology

Exercise Sheet 2

1. Products, coproducts, pullbacks and pushouts

Let \mathcal{C} be a category.

- 1) Recall the notions in the title of this exercise and show that if they exist they are unique up to unique isomorphism.
- 2) Show that the category of fields does not have coproducts.
- 3) Show that in the category of unital commutative rings, the coproduct of R and S is given by $R \otimes S$ with the maps $R \to R \otimes S, r \mapsto r \otimes 1$ and $S \to R \otimes S, s \mapsto 1 \otimes s$.
- 4) We say that $I \in \mathcal{C}$ is an *initial* object if for any object $X \in \mathcal{C}$, there is a unique morphism $I \to X$. Similarly, $T \in \mathcal{C}$ is *terminal* if there is a unique morphism from any $X \to T$.
 - a. Show that if such objects exist, they are unique.
 - b. Show that if an initial object exists, any coproduct can be written as a pushout. Similarly, if a terminal object exists, a product is a pullback.
 - c. Determine the initial and terminal object in the categories $\mathbf{Top}, \mathbf{Top}_*, \mathbf{Groups}, R \mathbf{Mod}.$
- 5) In **Set**, show that the pullback of $f: X \to Z$ and $g: Y \to Z$ is given by the set of pairs $X \times_Z Y = \{(x, y) | x \in X, y \in Y, f(x) = g(y)\}.$

2. CW Complexes

- 1) Show that a single cell attachment is a pushout along the attachment map.
- 2) Let X, Y be CW complexes containing finitely many cells. Show that $X \times Y$ is a CW complex with *d*-cells given by products of k and d-k cells.
- 3) Let X, Y be CW complexes, A a subcomplex of X and $f : A \to Y$ a cellular map. Show that the pushout of f along the inclusion

 $A \hookrightarrow X$ is a CW complex with the cells of Y and of X - A as cells. You can assume for convenience that all CW complexes have finitely many (and therefore it is enough to consider the case of a single cell attachment)

4) Use the cellular structure on \mathbb{RP}^2 to show that its fundamental group is a cyclic group with two elements.

3. Fundamental Group of a Punctured Surface

In this exercise, we will compute the fundamental group of oriented surfaces with boundary. Up to homotopy, we can assume that each connected boundary component is a point, reducing the problem to computing the fundamental group of $\Sigma_{g,n} := \Sigma_g - \{x_1, \ldots, x_n\}$, where Σ_g is the oriented surface of genus g ($g \ge 0, n \ge 1$).

We will use the fact that Σ_g admits a CW-complex structure with 2g 1-cells induced by the quotient of a polygon with 4g edges.

- 1) Compute $\pi_1(\Sigma_{g,1})$. You may construct a deformation retraction of $\Sigma_{g,1}$ onto a wedge product of circles.
- 2) Compute $\pi_1(\Sigma_{0,n})$. Similarly, you may construct a deformation retraction of $\Sigma_{0,n}$ onto a wedge product of circles.
- 3) Use the previous results and the van Kampen theorem to compute the fundamental group of $\Sigma_{g,n}$.

4. Hawaiian Earrings

The Hawaiian rings is the subspace X of \mathbb{R}^2 obtained by the union of a sequence of circles C_n where C_n is the circle centered at (1/n, 0) with radius 1/n.

- 1) Justify, by elementary methods, that X is not homeomorphic to an infinite wedge product of circles.
- 2) Prove that X is not *locally simply connected*: the point $(0,0) \in X$ does not have a simply connected neighborhood.
- Construct a surjective homomorphism π₁(X) → Π[∞]_{n=1} Z.
 Deduce that the fundamental group of X is not the same as the infinite wedge product of circles.

5. Chain Complexes

- 1) Show that the kernel, image, and cokernel of a chain complex morphism $f: C \to D$ are chain complexes. Show that if $H(\ker f) = 0 = H(\operatorname{coker} f)$, then f induces an isomorphism in homology.
- 2) Show that the direct sum of chain complexes is a chain complex, and compare $H(A \oplus B)$ with $H(A) \oplus H(B)$.
- 3) Show that the dual of a chain complex $C^{\vee} = \{ \operatorname{Hom}_R(C_i, R) \}_{i \in \mathbb{Z}}$ is a chain complex. Prove that over \mathbb{Z} , the dual of the homology of C is not isomorphic to the homology of the dual of C.
- 4) Compute the homology of the complex

$$0 \to R \stackrel{\times 2}{\to} R \to 0$$

for $R = \mathbb{Z}$ and R a field (pay attention to the characteristic). [Important to retain from this: The ring we are working with changes a lot the result. Hatcher only works with \mathbb{Z} which does not allow us to see such differences later on.]

6. Leftovers from class

- 1) We saw in class that the fundamental group of a finite graph is a free group on finitely many generators. How many generators? The answer should depend only (linearly!) on the number of edges and vertices.
- 2) Use van Kampen to compute the fundamental group of a finite graph.
- 3) Memorize the presentation of the dihedral group.