
KMAS9AA1 – Algebraic Topology

Exercise Sheet 2

1. Products, coproducts, pullbacks and pushouts

Let C be a category.

1) Recall the notions in the title of this exercise and show that if they
exist they are unique up to unique isomorphism.

2) Show that the category of fields does not have coproducts.

3) Show that in the category of unital commutative rings, the coproduct
of R and S is given by R ⊗ S with the maps R → R ⊗ S, r 7→ r ⊗ 1
and S → R⊗ S, s 7→ 1⊗ s.

4) We say that I ∈ C is an initial object if for any object X ∈ C, there
is a unique morphism I → X. Similarly, T ∈ C is terminal if there is
a unique morphism from any X → T .

a. Show that if such objects exist, they are unique.

b. Show that if an initial object exists, any coproduct can be written
as a pushout. Similarly, if a terminal object exists, a product is a
pullback.

c. Determine the initial and terminal object in the categories
Top,Top∗,Groups, R−Mod.

5) In Set, show that the pullback of f : X → Z and g : Y → Z is given
by the set of pairs X ×Z Y = {(x, y)|x ∈ X, y ∈ Y, f(x) = g(y)}.

2. CW Complexes

1) Show that a single cell attachment is a pushout along the attachment
map.

2) Let X,Y be CW complexes containing finitely many cells. Show that
X×Y is a CW complex with d-cells given by products of k and d−k
cells.

3) Let X,Y be CW complexes, A a subcomplex of X and f : A →
Y a cellular map. Show that the pushout of f along the inclusion
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A ↪→ X is a CW complex with the cells of Y and of X − A as cells.
You can assume for convenience that all CW complexes have finitely
many (and therefore it is enough to consider the case of a single cell
attachment)

4) Use the cellular structure on RP2 to show that its fundamental group
is a cyclic group with two elements.

3. Fundamental Group of a Punctured Surface

In this exercise, we will compute the fundamental group of oriented sur-
faces with boundary. Up to homotopy, we can assume that each con-
nected boundary component is a point, reducing the problem to comput-
ing the fundamental group of Σg,n := Σg −{x1, . . . , xn}, where Σg is the
oriented surface of genus g (g ≥ 0, n ≥ 1).

We will use the fact that Σg admits a CW-complex structure with 2g
1-cells induced by the quotient of a polygon with 4g edges.
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1) Compute π1(Σg,1). You may construct a deformation retraction of
Σg,1 onto a wedge product of circles.

2) Compute π1(Σ0,n). Similarly, you may construct a deformation re-
traction of Σ0,n onto a wedge product of circles.

3) Use the previous results and the van Kampen theorem to compute
the fundamental group of Σg,n.

4. Hawaiian Earrings

The Hawaiian rings is the subspace X of R2 obtained by the union of
a sequence of circles Cn where Cn is the circle centered at (1/n, 0) with
radius 1/n.

X =
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1) Justify, by elementary methods, that X is not homeomorphic to an
infinite wedge product of circles.

2) Prove that X is not locally simply connected : the point (0, 0) ∈ X
does not have a simply connected neighborhood.

3) Construct a surjective homomorphism π1(X) →
∏∞

n=1 Z.
Deduce that the fundamental group ofX is not the same as the infinite
wedge product of circles.

5. Chain Complexes

1) Show that the kernel, image, and cokernel of a chain complex mor-
phism f : C → D are chain complexes. Show that if H(ker f) = 0 =
H(cokerf), then f induces an isomorphism in homology.

2) Show that the direct sum of chain complexes is a chain complex, and
compare H(A⊕B) with H(A)⊕H(B).

3) Show that the dual of a chain complex C∨ = {HomR(Ci, R)}i∈Z is a
chain complex. Prove that over Z, the dual of the homology of C is
not isomorphic to the homology of the dual of C.

4) Compute the homology of the complex

0 → R
×2→ R → 0

for R = Z and R a field (pay attention to the characteristic). [Impor-
tant to retain from this: The ring we are working with changes a lot
the result. Hatcher only works with Z which does not allow us to see
such differences later on.]

6. Leftovers from class

1) We saw in class that the fundamental group of a finite graph is a
free group on finitely many generators. How many generators? The
answer should depend only (linearly!) on the number of edges and
vertices.

2) Use van Kampen to compute the fundamental group of a finite graph.

3) Memorize the presentation of the dihedral group.
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