
KMAS9AA1 – Algebraic Topology

Exercise Sheet 2

1. Products, coproducts, pullbacks and pushouts

Let C be a category.

1) Recall the notions in the title of this exercise and show that if they
exist they are unique up to unique isomorphism.

2) Show that the category of fields does not have coproducts.

There are no maps between fields of different characteristic so a co-
product of two such fields cannot exist.

3) Show that in the category of unital commutative rings, the coproduct
of R and S is given by R ⊗ S with the maps R → R ⊗ S, r 7→ r ⊗ 1
and S → R⊗ S, s 7→ 1⊗ s.

4) We say that I ∈ C is an initial object if for any object X ∈ C, there
is a unique morphism I → X. Similarly, T ∈ C is terminal if there is
a unique morphism from any X → T .

a. Show that if such objects exist, they are unique.

b. Show that if an initial object exists, any coproduct can be written
as a pushout. Similarly, if a terminal object exists, a product is a
pullback.
The pushout of X ← I → Y is the same as X ⊔ Y . Similarly, the
pullback of X → T ← Y is the product X × Y .

c. Determine the initial and terminal object in the categories
Top,Top∗,Groups, R−Mod.
(∅, ∗), (∗, ∗), ({e}, {e}), (0, 0)

5) In Set, show that the pullback of f : X → Z and g : Y → Z is given
by the set of pairs X ×Z Y = {(x, y)|x ∈ X, y ∈ Y, f(x) = g(y)}.

2. CW Complexes

1) Show that a single cell attachment is a pushout along the attachment
map.
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2) Let X,Y be CW complexes containing finitely many cells. Show that
X×Y is a CW complex with d-cells given by products of k and d−k
cells.

We use that Dn × Dm is homeomorphic to Dn+m and under this
identification the boundary is given by ∂Dn×Dm∪Dn×∂Dm. Then,
the “inclusion” of the cell in the productX×Y is given by the product
of the two maps ϕ1 × ϕ2 : D

n ×Dm → X × Y . See [H, Theorem A.6]
for a solution with no finiteness assumptions.

3) Let X,Y be CW complexes, A a subcomplex of X and f : A →
Y a cellular map. Show that the pushout of f along the inclusion
A ↪→ X is a CW complex with the cells of Y and of X − A as cells.
You can assume for convenience that all CW complexes have finitely
many (and therefore it is enough to consider the case of a single cell
attachment)

See Theorem 4.14 of https://www.mat.univie.ac.at/~kriegl/Skripten/
2011WS.pdf for a solution with no finiteness assumptions

4) Use the cellular structure on RP2 to show that its fundamental group
is a cyclic group with two elements.

3. Fundamental Group of a Punctured Surface

In this exercise, we will compute the fundamental group of oriented sur-
faces with boundary. Up to homotopy, we can assume that each con-
nected boundary component is a point, reducing the problem to comput-
ing the fundamental group of Σg,n := Σg −{x1, . . . , xn}, where Σg is the
oriented surface of genus g (g ≥ 0, n ≥ 1).

We will use the fact that Σg admits a CW-complex structure with 2g
1-cells induced by the quotient of a polygon with 4g edges.
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1) Compute π1(Σg,1). You may construct a deformation retraction of
Σg,1 onto a wedge product of circles.
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Σg,1 deformation retracts to the 1-skeleton of Σg, which is a wedge
product of 2g circles. It follows that π1(Σg,1) is the free group on 2g
generators (a1, ..., bg).

2) Compute π1(Σ0,n). Similarly, you may construct a deformation re-
traction of Σ0,n onto a wedge product of circles.

Σ0,1 is a sphere with 1 point removed and therefore is homeomorphic
to R2. Similarly, by picking a any point (say xn) Σ0,n is homeomorphic
to R2 − {x1, . . . , xn−1}. Via a homeomorphism, we can assume xi =
(i, 0) ∈ R2.

Let X ⊂ R2 be the union of the n−1 circles with center xi and radius
1/2 (these circles are tangent at (i + 1

2 , 0) for i = 1, . . . n − 2). A
good drawing makes it obvious that R2−{x1, . . . , xn−1} deformation
retracts to X, but its good to convince yourself that you can write
down the explicit formulas!

Finally, by contracting the lower hemisphere of every circle (which is
a homotopy equivalence, since it is a contractible sub-CW-complex),
we get a wedge of n − 1 circles. The fundamental group is therefore
free on n− 1 generators.

3) Use the previous results and the van Kampen theorem to compute
the fundamental group of Σg,n.

Pick an open disc fully contained in the interior of the 2-cell and
containing all the xi’s as U and pick V to be a slight open enlargement
of the complement.

V is homotopy equivalent to Σg,1, U is homeomorphic to R2−{x1, . . . , xn}
and U ∩ V ∼ S1.

The inclusion of U∩V ∼ S1 in V sends the generator to a1b1a
−1
1 b−1

1 a2...b
−1
g ,

while the inclusion of U ∩ V ∼ S1 in U sends the generator to
c1c2 . . . cn, where ci is the generator of the fundamental group of the
ith circle as per the previous question.

Finally, van Kampen tells us that

Σg,n = ⟨a1, . . . ag, b1, . . . , bg, c1, . . . cn|a1b1a−1
1 b−1

1 a2...b
−1
g = c1, . . . cn⟩.

4. Hawaiian Earrings

The Hawaiian rings is the subspace X of R2 obtained by the union of
a sequence of circles Cn where Cn is the circle centered at (1/n, 0) with
radius 1/n.

X =
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1) Justify, by elementary methods, that X is not homeomorphic to an
infinite wedge product of circles.

Let n ∈ N, and C̃n be the n-th circle, which we identify with R/Z, in
the wedge product

∨
i∈N(0, C̃i) (where 0 is the class of 0 in R/Z).

If we had a homeomorphism φ : X →
∨

i∈N(0, C̃i), then it must send
(0, 0) ∈ X to the base point of the wedge product (since in each space
these are the only points that when removed disconnect the space).
By injectivity of φ, there exists k ∈ N such that φ(Cn) ⊆ C̃k and
by surjectivity C̃k ⊆ φ(Cn). Thus, C̃k = φ(Cn). By reordering the
circles in the wedge product, we can assume that C̃k = φ(Cn)

Setting xi = 1
2 ∈ C̃i, it is easy to see that the set {xi}i∈N has no

accumulation point. On the other hand, since ϕ−1(xi) ∈ Ci, the
sequence (ϕ−1(xi))i∈N converges to (0, 0), which contradicts that ϕ is
a homeomorphism.

2) Prove that X is not locally simply connected : the point (0, 0) ∈ X
does not have a simply connected neighborhood.

For any i there is a map fi : S
1 → X mapping S1 to Ci in the obvious

way. It is enough to show that π1(fi) is injective. This follows by
defining a left inverse to fi and then taking the fundamental groups.
This is given by the continuous map ri : X → S1 sending Ci to S1

and every other point in X to 0.

3) Construct a surjective homomorphism π1(X)→
∏∞

n=1 Z.
Deduce that the fundamental group ofX is not the same as the infinite
wedge product of circles.

Taking the product of all π1(ri) we get a homomorphism r : π1(X)→∏
N Z.

To show that this is surjective, take a sequence (a1, a2, . . . ) ∈
∏

N Z.
We define a loop γ : I → X by mapping [0, 12 ] to a loop wrapping
around C1 a1 times, then mapping [12 ,

1
3 ] wrapping around C2 a2 times,

etc. This is obviously continuous for t < 1 and continuity on t = 1
is given by the fact that every neighbourhood of (0, 0) containing all
circles after some point. It is now clear that γ 7→ (a1, a2, ...)

5. Chain Complexes

1) Show that the kernel, image, and cokernel of a chain complex mor-
phism f : C → D are chain complexes. Show that if H(ker f) = 0 =
H(cokerf), then f induces an isomorphism in homology.

2) Show that the direct sum of chain complexes is a chain complex, and
compare H(A⊕B) with H(A)⊕H(B).

We use that ker(f ⊕ g) = ker f ⊕ ker g and the same for the image.
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3) Show that the dual of a chain complex C∨ = {HomR(Ci, R)}i∈Z is a
chain complex. Prove that over Z, the dual of the homology of C is
not isomorphic to the homology of the dual of C.

The complex given by the projection Z → Z/2Z has homology (iso-
morphic to) [Z | 0], whereas its dual has trivial differential and there-
fore its homology is itself.

4) Compute the homology of the complex

0→ R
×2→ R→ 0

for R = Z and R a field (pay attention to the characteristic). [Impor-
tant to retain from this: The ring we are working with changes a lot
the result. Hatcher only works with Z which does not allow us to see
such differences later on.]

Its homology is always [ker f | cokerf ], but for a field of characteristic
̸= 2 both are 0, whereas for F2 the homology is [F2 | F2]. Finally, for
Z, the homology is [0 | Z/2Z]

6. Leftovers from class

1) We saw in class that the fundamental group of a finite graph is a
free group on finitely many generators. How many generators? The
answer should depend only (linearly!) on the number of edges and
vertices.

Contracting an edge decreases the number of edges by 1 and the
number of vertices by 1, so the quantity e−v is preserved. At the end
we are left with a single vertex and n edges, so n − 1 = e − v. Each
of these edges represents a circle, so the fundamental group is free on
n = e− v + 1 generators.

2) Memorize the presentation of the dihedral group.
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