
KMAS9AA1 – Algebraic Topology

Exercise Sheet 4

1) Homological algebra

1. Let
0 → A → C → F → 0

be a short exact sequence and assume that F is a free R-module.
Show that C ∼= A⊕ F .

Pick a section of C → F .

2. Find a counter example where F is non-free. This can be done over
R = Z with A = F = Z/2Z. Check that the counter example is no
longer a counter example if R is instead the ring Z/2Z.
0 → Z 2→ Z → Z/2Z → 0. Notice that the sequence does not split
seeing everything as Z-modules (there is no non-trivial map Z/2Z →
Z).
The second part of the question is deliberately vague, to make you
think of how to fix the problem. While Z/2Z is a free Z/2Z-module,
the same sequence would split in the world of Z/2Z, but there is no
Z/2Z-module structure on Z.
Here is another example: As we saw in class, there are two possible
ways to fill out the question mark in the category of Z-modules

0 → Z/2Z →? → Z/2Z → 0

On the other hand, by the preceding question, over Z/2Z there is only
one way to fill the question mark, which is with Z/2Z⊕Z/2Z. Indeed,
Z/4Z is not a Z/2Z-module

2) Mayer–Vietoris

Let R = Z.

1) Suppose that a topological space is written as a union of two open
subspaces X = U ∪ V and consider the associated Mayer–Vietoris
long exact sequence. Assuming that U ∩ V is path connected, use
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the explicit construction of the connecting morphism δ : H1(X) →
H0(U ∩ V ) to show that is the zero map.

This can be easily shown with the exactness of the LES, but let us use
the explicit formula of the connecting morphism. The result actually
holds over a general ring R.

Let us consider [c] ∈ H1(X), c =
∑k

i=1 riσi. First, we claim that c
is a sum of elements of the form r(

∑
j γj), where γj are 1-simplices

forming a loop, i.e. γj(1) = γj+1(0). Indeed, we start by building
r(
∑

j γj) by setting r = r1 and γ1 = σ1. If rγ1 is already closed,
we’re done by induction, as k is lowered. Otherwise, if rγ1 is not
closed (i.e. if γ1(1) ̸= γ1(0)), since c itself is closed, these boundaries
must cancel out in ∂c. Therefore there must be an element γ2 among
the other σi such that γ2(0) = γ1(1). We add it to our recursive
construction to get r(γ1 + γ2) (notice that the coefficient of γ2 in c
might not be r, but this does not matter). Since there is only a finite
number of σi, this procedure must finish and it must finish with the
last γfinal closing the loop, i.e. γfinal(1) = γ1(0), otherwise c would
not be a cycle.

We now proceed by removing r(
∑

j γj) from c, which gives us a sum of
at most k−1 elements, so recursively we write c as a sum of elements
of the form r(

∑
j γj).

To prove the result, it therefore suffices to show that the image of
such a chain

∑
j γj such that γj(1) = γj+1(0) under the connecting

morphism δ is zero. By further decomposing the loop (using the
compactness of I), we can assume that the image of each γj is fully
contained in either U or V .

Let us write c =
∑
u∈U

γu︸ ︷︷ ︸
cU

+
∑
v∈V

γv︸ ︷︷ ︸
cV

∈ C{U,V }(X) = C(U) +C(V ), where

U and V are chosen such that γu(I) ⊂ U and γv(I) ⊂ V . Notice that
there is a choice due to 1-simplices contained in the intersection. We
can choose to send them all to the U summand.

Following the construction of the connecting morphism, pick as a pre-
image of c in C(U)⊕C(V ) the chains (cU , cV ). We take its boundary
to get a collection of 0-simplices (∂cU , ∂cV ) ∈ C0(U)⊕C0(V ). Notice
that ∂cU only contains points living in U ∩ V , as the points living in
U − U ∩ V must cancel out in ∂c and they can’t cancel out with the
terms in cV . Similarly, ∂cV only contains points living in U ∩ V and
indeed they are the exact same points, but with the opposite signs.

Following the construction of the connecting morphism we now take
∂cU as the pre-image in C0(U ∩ V ). We now need to show that
[∂cU ] = 0 ∈ H0(U ∩ V ). But all points showing up in ∂cU appear in
pairs and each pair contributes with a + point and a − point. Since
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U∩V is path connected, all points represent the same homology class,
so they all cancel out.

2) Let (M,m) and (N,n) be two pointed spaces with open neighbour-
hoods deformation retracting to the respective points. Show that
Hd(M ∨N, ∗) = Hd(M,n)⊕Hd(N,n).

Use the Mayer–Vietoris sequence, as for the similar result for π1.

3) Relative Homology

Let (X,A) be a topological pair.

1) Show that H0(X,A) = 0 if and only if A intersects every path-
connected component of X.

2) Let Zp(X,A) = {σ ∈ Cp(X) | ∂σ ∈ Cp−1(A)}. Show that there is an
isomorphism of modules

Hp(X,A) ∼=
Zp(X,A)

Bp(X) + Cp(A)
.

3) Provide an alternative proof of 1) using 2).

4) Show that H1(X,A) = 0 if and only if the map H1(A) → H1(X)
is surjective and every path-connected component of X contains at
most one path-connected component of A.

4) Retract

1) Show that if X is a topological space and A ⊂ X is a retract of
X, then for all n, the map induced by inclusion Hn(A) → Hn(X) is
injective.

Does this remain true if A is just a subspace of X?

For the first part just use that A ↪→→ X → A is the identity and
take the homology functor.

For the second one, consider S1 ⊂ R2.

2) Show that if A is a deformation retract of X, then Hn(X,A) = 0 for
all n.

We can observe that a deformation retract gives a homotopy from
(X,A) to (A,A) and conclude using that Hn(A,A) = 0. Alterna-
tively, the long exact sequence of a pair also works.

5) Surjective in Homology

Show that a surjective morphism f : A → B of chain complexes is not
necessarily surjective in homology, but this is the case if ker f is acyclic.

The projection [Z → Z] → Z is surjective but its homology is 0 → Z.
The other statement follows from the long exact sequence of 0 → ker f →
A → B → 0.
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6) Homological Calculations

1) Use the Mayer–Vietoris sequence to compute the homology of the
sphere Sn.

2) Compute the homology of Sn × Sm.

Use Mayer–Vietoris removing one point from each factor.

3) Show that the homology of a wedge of spheres X =
∨n

i=1 S
k is R⊕n

in degree k and 0 in degrees different from {0, k}.
4) Compute the homology of Σ2 (the closed orientable surface of genus

2).

Can use Mayer–Vietoris splitting Σ2 into two opens that are each
homotopy equivalent to the torus minus one point, which in turn is
homotopy equivalent to a wedge of two circles.

Alternatively, cellular homology works.

5) Compute the homology H(Σ2, A) and H(Σ2, B), where A and B are
the following circles1:

[H, Exercise 2.1.17]

7) Excision Fails

Find A ⊂ Rn − 0 such that

H•(Rn,Rn − {0}) ̸= H•(Rn −A, (Rn − {0})−A).

Take A = Rn − {0}

8) Cone and Suspension of a Topological Space

Let X be a topological space. The suspension of X is the topological
space

SX = X × [−1, 1]/(x,−1) ∼ (x′,−1); (x, 1) ∼ (x′, 1) ∀x, y ∈ X.

The cone of X is the subspace of SX

CX = X × [0, 1]/(x, 1) ∼ (x′, 1).

1Drawing from [H, Exercise 2.1.17]
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1) Compute H(CX).

The cone is contractible.

2) Show that Hn+1(SX) ≃ Hn(X) for n ≥ 1 and that if X is path-
connected, H1(SX) = 0.

Mayer–Vietoris splitting the suspension into two cones.

9) Homology of Manifolds with Points Removed

Let M be a topological manifold of dimension n, ∗ ∈ M , and R a field.
Compare dimHd(M) with Hd(M − ∗) for d ̸= n, n− 1.

Mayer–Vietoris on M , with opens M − ∗ and a small disc around the
point Dn ∋ ∗. Notice that M −Dn ∼ M − ∗.

10) Brouwer Fixed-Point Theorem

Show that the boundary of the disk ∂Dn is not a deformation retract of
Dn. Deduce that every continuous map Dn → Dn has a fixed point.

Hint: Adapt the proof for the case n = 2.

Hint.

11) Homology is not a Complete Invariant

(a) Show that S1 × S1 and S1 ∨ S1 ∨ S2 have the same homology (for
any ring R).

(b) Show that S1 × S1 and S1 ∨ S1 ∨ S2 are not homotopy equivalent.

Non-isomorphic fundamental groups.
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