KMAS9AA1 – Algebraic Topology

Exercise Sheet 5

1. Degree of a map $S^n \to S^n$ See [Hatcher, Beginning of Section 2.2]

Given a continuous map $f: S^n \to S^n$, we consider the induced map $H_n(f): \mathbb{Z} \to \mathbb{Z}$. The *degree* of f, deg f is defined to be $H_n(f)(1)$. In other words, $H_n(f)$ is multiplication by deg f. In this exercise we will prove some properties of the degree of a map.

- 1) Show that if f is not surjective, then deg f = 0.
- 2) Given $f': S^n \to S^n$, show that deg $f \circ f' = \deg f \cdot \deg f'$. Conclude that if f is a homotopy equivalence, then deg $f = \pm 1$.
- 3) Let $r^1: S^1 \to S^1$ be the reflection along the vertical axis, i.e. $r^1(x_0, x_1) = (-x_0, x_1)$. Show that deg $r^1 = -1$.
- 4) Let $r: S^n \to S^n$ be a reflection along some hyperplane. Show that $\deg r = -1$.

<u>Hint</u>: By change of coordinates we can suppose $r = r^n(x_0, \ldots, x_n) = (-x_0, \ldots, x_n)$. One can use Mayer–Vietoris to show that deg $r^n = \deg r^{n-1}$.

- 5) Show that the degree of the antipodal map $x \mapsto -x$ is $(-1)^{n+1}$.
- 6) Suppose that f has no fixed points. Construct a homotopy between f and the antipodal map and conclude that deg f = (−1)ⁿ⁺¹.
 <u>Hint</u>: A formula such as (1 − t)f(x) − tx almost does the trick, but this does not land in the Sⁿ...

2. Actions on spheres

- Let n be an even number. Suppose that a group G acts freely on the sphere Sⁿ. Use the previous exercise to deduce that either G = {e} or G = Z/2Z.
 See [Hatcher, 2.29]
- 2) Find one infinite group that acts freely on all spheres of odd dimension.

Identify $S^{2n-1} = \{(z_1, \ldots, z_n) \in \mathbb{C}^n | |(z_1, \ldots, z_n)| = 1\}$. The circle acts freely by rotating every coordinate: $e^{i\pi\theta} \cdot (z_1, \ldots, z_n) = (e^{i\pi\theta}z_1, \ldots, e^{i\pi\theta}z_n)$.

3. Homology of projective space

Recall that \mathbb{RP}^n has a cellular structure with one cell in each dimension up to n and its k skeleton is \mathbb{RP}^k .

1) Show that there exists a commutative diagram as follows

$$\begin{array}{ccc} H_n(\mathbb{R}\mathbb{P}^n,\mathbb{R}\mathbb{P}^{n-1}) & \stackrel{\delta}{\longrightarrow} & H_{n-1}(\mathbb{R}\mathbb{P}^{n-1}) & \longrightarrow & H_{n-1}(\mathbb{R}\mathbb{P}^{n-1},\mathbb{R}\mathbb{P}^{n-2}) \\ & \cong \uparrow & & \uparrow & & \downarrow \cong \\ & H_n(D^n,S^{n-1}) & \stackrel{\cong}{\longrightarrow} & H_{n-1}(S^{n-1}) & \stackrel{f_*}{\longrightarrow} & H_{n-1}(D^{n-1}/S^{n-2},*) \end{array}$$

2) Check that f_* is the map induced by the composite of the commuting diagram

$$S^{n-1} \xrightarrow{\text{quotient}} \mathbb{RP}^{n-1} \xrightarrow{\text{pinch } \mathbb{RP}^2} D^{n-1}/S^{n-2} \cong S^{n-1}$$

where one of the maps from the wedge is the identity and the other is the antipodal map.

3) Conclude that the cellular complex of \mathbb{RP}^n is

 $\deg \quad -1 \qquad 0 \qquad 1 \qquad \cdots \qquad n \qquad n+1\cdots$

 $0 \longleftarrow R \longleftarrow R \longleftarrow x_2 \cdots \longleftarrow R \longleftarrow 0 \cdots$

- 4) Compute explicitly (for both parities of n) and check that the homology gives very different results for
 - a. $R = \mathbb{Z}$.
 - b. A field of characteristic 2 (or in fact any ring in which 2 = 0).
 - c. A field of characteristic $\neq 2$ (or in fact any ring in which the endomorphism $\times 2$ is invertible.)
 - d. $R = \mathbb{Z}/8\mathbb{Z}$.

See https://topospaces.subwiki.org/wiki/Homology_of_real_projective_ space