
KMAS9AA1 – Algebraic Topology

Exercise Sheet 7

1. Eckmann–Hilton argument https://en.wikipedia.org/wiki/Eckmann%
E2%80%93Hilton_argument

The way I presented the group structure on higher homotopy groups, it
seems that the first coordinate plays a privileged role, when compared to
the other ones. In fact, with an argument not so different from the proof
of commutativity, one can show that the product defined similarly but
with other coordinates ends up giving the same result. Here, we present
a purely algebraic proof of a much more general result.

1) Let × and • be two unital binary operations on a set X. Suppose

(a× b) • (c× d) = (a • c)× (b • d)

for all a, b, c, d ∈ X. Then × and • are in fact the same operation,
and are commutative and associative.

2) Consider the usual product on higher homotopy groups

(f × g)(t1, . . . , tn) =

{
f(2t1, t2, . . . , tn) t1 ∈ [0, 1/2]

g(2t1 − 1, t2, . . . , tn) t1 ∈ [1/2, 1].

and define as well

(f • g)(t1, . . . , tn) =

{
f(t1, 2t2, . . . , tn) t1 ∈ [0, 1/2]

g(t1, 2t2 − 1, . . . , tn) t1 ∈ [1/2, 1].

Show that these operations satisfy the conditions from the previous
exercise.

2. Homotopy equivalence

Adapt the proof that π1 is invariant under homotopy equivalence to show
the same for πn. To be precise, show that if f : X → Y is a homotopy
equivalence, f : πn(X,x0) → πn(Y, f(x0)) is an isomorphism.
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3. Relative homotopy groups

1) Check that the relative homotopy groups πn(X,A, x0) can have equiv-
alently been defined as homotopy classes of maps (In, ∂In, J

n−1) →
(X,A, x0), where Jn−1 is the union of all but one face of In, i.e.
Jn−1 = δIn − In−1. What is the group structure?

In and ∂In are homeomorphic to the disc and sphere respectively.
For the rest, we use as always that a map Sn ∼= ∂In/Jn−1 → A is
equivalent to a map ∂In → A sending Jn−1 to a point.

The group structure is defined exactly the same way. However, notice
that there is a problem when n = 1. In fact, the definition we gave in
class also does not define a group structure when n = 1, I invite you
to try to see why.

2) Show that the end of the long exact sequence of relative homotopy
groups is indeed exact:

π1(X,x0) → π1(X,A, x0)
∂−→ π0(A, x0) → π0(X,x0)

3) Let CX be the cone ofX ∋ x0. Show that πn(CX,X, x0) = πn−1(X,x0).
Deduce that a relative π2 need not be abelian.

Use the long exact sequence and contractibility of the cone. Notice
that from here we also see that a relative π1 cannot have a canonical
group structure.

4. Whitehead theorem

1) Show that S∞ is contractible using the Whitehead theorem. (It can be
useful to use that a compact subspace of a CW complex is contained
in a finite sub-complex [H, Prop A.1].)

We show that πn(S
∞) = 0. Take a map f : SntoS∞. By compactness,

f factors through fk : S
n → Sk, where k is bigger than n. It follows

that πn(f) = πn(i) ◦ πn(fk) = πn(i) ◦ 0 = 0, where i : Sk ↪→ S∞.

2) Consider the Warsaw circle W , which is given by the graph of y =
sin(1/x) for x ∈ (0, 1], then we add the vertical segment between (0, 1)
and (0,−1) and finally we connect this segment to the point (1, sin(1))
via some disjoint curve.

See [H, Exercise 4.1.10]
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Show that πn(W ) = 0, but W is not contractible.

5. Hurewicz theorem for π1 This is the proof strategy from [Bredon, IV
Theorem 3.4].

Recall that we have a map A : π1(X,x0) → H1(X;Z), [γ]π 7→ [γ]H which
induces an isormophism between H1(X) and the abelianization of π1(X)
when X is path-connected. Most of the proof of this theorem is quite
doable as an exercise, as you will show next:

1) Show that the constant loop is sent to 0 under A.

2) Show that A is a well defined map. This can be done by collapsing
one of the edges of the square which is the domain of the homotopy
h : I × I → X such that γ ∼h γ

′.

3) Show that A is a homomorphism by finding an explicit simplex σ
such that ∂σ = γ + γ′ − γ ⋆ γ′. Conclude that A factors through the
abelianization A∗ : π1/[π1, π1] → A.

4) Show that A is surjective by finding an explicit pre-image of a cycle
in Z1(X).

In fact the conclusion of the proof does not need showing surjectivity
beforehand (it is just easier in case you struggle with the following
exercise). We can provide the explicit inverse as follows:

5) For every point x ∈ X, let λx : I → X be a path from x0 to x (take
the constant one if x = x0). Define ψ : C1(X) → π1/[π1, π1], mapping
a 1-simplex σ : I → X to λσ(0) ⋆ σ ⋆ λ

−1
σ(1).

Check that ψ induces a well defined map ψ∗ : H1(X) → π1/[π1, π1]
and show that it is a left and right inverse to A∗.
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