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A SHORT PROOF OF THE C1,1 REGULARITY FOR THE

EIKONAL EQUATION

RADU IGNAT

Abstract. We give a short and self-contained proof of the interior C1,1 regularity
of solutions ϕ : Ω → R to the eikonal equation |∇ϕ| = 1 in an open set Ω ⊂ R

N

in dimension N ≥ 1 under the assumption that ϕ is pointwise differentiable in Ω.

1. Introduction

The aim of this note is to give a short and self-contained proof of the following
result known in the theory of Hamilton-Jacobi equations:

Theorem 1. Let Ω ⊂ R
N be an open set in dimension N ≥ 1 and ϕ : Ω → R be a

pointwise differentiable solution to the eikonal equation |∇ϕ| = 1 in Ω. Then ∇ϕ is

locally Lipschitz in Ω.

The usual (standard) proof of this result is based on the following steps (see e.g.
Lions [7], Cannarsa-Sinestrari [2]): first, one checks that ϕ (and −ϕ) is a viscosity
solution to the eikonal equation (see [2, Definition 5.2.1]); second, one proves that ϕ
is both semiconcave and semiconvex with linear modulus (see [2, Theorem 5.3.7]).
Third, one proves that ϕ is C1 (see [2, Theorem 3.3.7]) and finally, that ϕ is locally
C1,1 in Ω (see [2, Corollary 3.3.8]).

Our approach is based on the geometry of characteristics associated to the eikonal
equation. More precisely, if x0 ∈ Ω, we say that X := Xx0

is a characteristic of a
solution ϕ passing through x0 in some time interval t ∈ [−T, T ] if

(1)

{

Ẋ(t) = ∇ϕ(X(t)) for t ∈ [−T, T ],
X(0) = x0.

Then the beautiful proof of Caffarelli-Crandall [1, Lemma 2.2] shows in a short
and self-contained manner that every point x0 ∈ Ω has a characteristic Xx0

that is a
straight line along which ∇ϕ is constant and ϕ is affine. Finally, we give a geometric
argument on the structure of characteristics yielding the locally Lipschitz regularity
of ∇ϕ in Ω.

The regularity result in Theorem 1 is optimal: such solution ϕ of the eikonal
equation is not C2 in general (see e.g. [5, Proposition 1]). We mention that a
more general regularizing effect (i.e., ∇ϕ is locally Lipschitz away from vortex point
singularities) is proved under a weaker assumption ∇ϕ ∈ W 1/p,p for p ∈ [1, 3], see
[5, 3]. Similar results are obtained in the context of the Aviles-Giga model which
can be seen as a regularization of the eikonal equation (see [6, 4]).

2. Proof of the main result

The first step is to show that each point x0 ∈ Ω has a characteristic X := Xx0
that

is a straight line in direction∇ϕ(x0). Moreover, ∇ϕ is constant while ϕ is affine along
this characteristic. This fact yields ϕ ∈ C1(Ω). In order to have a self-contained
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proof of Theorem 1, we repeat here the very nice argument of Caffarelli-Crandall [1,
Lemma 2.2] based on a maximum type principle for the eikonal equation.

Lemma 2. Let Ω ⊂ R
N be an open set and ϕ : Ω → R be a pointwise differentiable

solution of the eikonal equation |∇ϕ| = 1 in Ω. Then for every x0 ∈ Ω, X(t) =
x0 + t∇ϕ(x0) is a characteristic of (1) and

∇ϕ(X(t)) = ∇ϕ (x0) , ϕ(X(t)) = ϕ(x0) + t, ∀t ∈ [−T, T ]

for some T > 0. As a consequence, ϕ ∈ C1(Ω).

Proof. This proof follows the lines in [1, Lemma 2.2]. Let R > 0 be such that
B̄R(x0) ⊂ Ω and consider

Mr = max
B̄r(x0)

ϕ, mr = min
B̄r(x0)

ϕ, ∀r ∈ [0, R].

Claim 3. Mr = ϕ(x0) + r and mr = ϕ(x0)− r for every r ∈ [0, R].

Proof. For r ∈ [0, R], we pick some maximum point x+
r ∈ B̄r(x0) such that ϕ(x+

r ) =
Mr. First, we show that r ∈ [0, R] 7→ Mr is a nondecreasing 1-Lipschitz function.
Indeed, for R ≥ r > r̃, as |x+

r − x0| ≤ r, we can find a vector e ∈ R
N such that

|e| ≤ r − r̃ and |x+
r + e− x0| ≤ r̃, i.e., x+

r + e ∈ B̄r̃(x0); this yields

0 ≤ Mr −Mr̃ ≤ ϕ(x+
r )− ϕ(x+

r + e) ≤ |e| ≤ r − r̃

because ϕ is 1-Lipschitz. Second, we prove that dMr

dr
= 1 a.e. in (0, R) because for

r ∈ (0, R) and for small h > 0, as x+
r + h∇ϕ(x+

r ) ∈ B̄r+h(x0), we have

lim inf
h→0

Mr+h −Mr

h
≥ lim inf

h→0

ϕ(x+
r + h∇ϕ(x+

r ))− ϕ(x+
r )

h
= |∇ϕ(x+

r )|2 = 1.

As M0 = ϕ(x0), we conclude Mr = ϕ(x0) + r. Up to changing ϕ in −ϕ, one also
gets mr = ϕ(x0)− r for r ∈ [0, R]. �

To conclude the proof of Lemma 2, pick some minimum point x−

R ∈ B̄R(x0) such
that ϕ(x−

R) = mR = ϕ(x0)−R (by Claim 3). As ϕ is 1-Lipschitz, we have, again by
Claim 3:

2R = ϕ(x+
R)− ϕ(x−

R) ≤ |x+
R − x−

R| ≤ 2R,

which means that [x+
R, x

−

R] is a diameter in B̄R(x0). Note that x+
R (resp. x−

R) is
the unique maximum (resp. minimum) of ϕ in B̄R(x0) because if x̃+

R is another
maximum, then it has to be antipodal to x−

R, that is, x̃+
R = x+

R (the same for the

uniqueness of x−

R). In particular, e∗ =
x+

R
−x0

R
∈ S

N−1. Define g : [−R,R] → R by
g(r) = ϕ(x0+re∗)−ϕ(x0). Then g is 1-Lipschitz and g(±R) = ϕ(x±

R)−ϕ(x0) = ±R

(by Claim 3). So g(r) = r for every r ∈ (−R,R) yielding 1 = g′(r) = e∗ ·∇ϕ(x0+re∗)
for every r. Thus, ∇ϕ(x0 + re∗) = e∗ for every r ∈ [−R,R], in particular, e∗ =
∇ϕ(x0), i.e., X(r) = x0 + r∇ϕ(x0) is a characteristic of (1) and

∇ϕ(X(r)) = ∇ϕ (x0) , ϕ(x0 + r∇ϕ(x0)) = ϕ(x0) + r, ∀r ∈ [−R,R].

In particular, the (unique) maximum and minimum of ϕ in B̄R(x0) are achieved at
the points x±

R = x0 ± R∇ϕ(x0).
It remains to prove that ∇ϕ is continuous in Ω. Indeed, let xn → x0 in Ω and

B̄R(xn) ⊂ Ω for large n. Up to a subsequence, we may assume that ∇ϕ(xn) → e ∈
S
N−1. By above, we know that ϕ(xn+R∇ϕ(xn)) = ϕ(xn)+R. Passing to the limit,

we obtain ϕ(x0 + Re) = ϕ(x0) +R, meaning that x0 + Re is the maximum of ϕ in
B̄R(x0). By uniqueness of the maximum point x+

R, we conclude that e = ∇ϕ(x0).
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The uniqueness of the limit e for such subsequences yield the convergence of the
whole sequence (∇ϕ(xn))n to ∇ϕ(x0). �

Proof of Theorem 1. Let B be a ball, B̄ ⊂ Ω and we consider d ∈ (0, dist(B,∂Ω)
5

). We
will prove the following:

Claim 4. There exists a universal constant C > 0 such that

|∇ϕ(x)−∇ϕ(y)| 6 C

d
|x− y|, ∀x, y ∈ B with |x− y| < d

10
.

Proof. Let Xx and Xy be the characteristics passing through x and y constructed
in Lemma 2 (that are lines in direction ∇ϕ(x) and ∇ϕ(y)). If Xx and Xy coincide
inside B (in particular, ∇ϕ(x) = ±∇ϕ(y) by Lemma 2), then Lemma 2 implies that
∇ϕ(x) = ∇ϕ(y) and the claim is trivial in that case. Otherwise, ∇ϕ(x) 6= ±∇ϕ(y)
and Xx and Xy cannot intersect inside Ω (as ∇ϕ is continuous in Ω by Lemma 2).
Let |x− y| < d

10
and x′ be the projection of y on Xx. Clearly,

ℓ = |x′ − y| ≤ |x− y| < d

10
,

dist(x′, ∂Ω) > 5d − ℓ and ∇ϕ(x′) = ∇ϕ(x). Up to changing ϕ in −ϕ, we may
assume that ϕ(x′) ≤ ϕ(y) and up to an additive constant, we also may assume
that 0 = ϕ(x′) ≤ ϕ(y) = a. As |∇ϕ| = 1 on the segment [x′y], we deduce that
0 ≤ a = ϕ(y) − ϕ(x′) ≤ |x′ − y| = ℓ. Let z be the point on the characteristic
Xy reached at time t = d in direction ∇ϕ(y), i.e., |z − y| = d, ∇ϕ(y) = z−y

d
and

ϕ(z) = a + d; in particular, z ∈ Ω. Let w be the point on the characteristic Xx′

reached at time t = −d in direction ∇ϕ(x′), i.e., |x′ − w| = d, ∇ϕ(x′) = x′
−w
d

and
ϕ(w) = −d; in particular, w ∈ Ω. We deduce that

|z − w| =
∫

[zw]

|∇ϕ| dH1 ≥
∣

∣

∣

∣

∫

[zw]

∇ϕ · z − w

|z − w| dH
1

∣

∣

∣

∣

= |ϕ(z)− ϕ(w)| = 2d+ a ≥ 2d.

By Pitagora’s formula in the triangle x′yw we have |y − w|2 = ℓ2 + d2. Denoting α

the angle between ~wy and ∇ϕ(y), the cosine formula in the triangle wyz yields

− cosα =
|y − w|2 + |y − z|2 − |z − w|2

2|y − z| · |y − w|

=
2d2 + ℓ2 − |z − w|2

2d
√
d2 + ℓ2

≤ − 2d2 − ℓ2

2d
√
d2 + ℓ2

= −1 +O(
ℓ2

d2
).

As α ∈ (0, π
2
), it yields sin2 α = 1− cos2 α ≤ 2(1− cosα) = O( ℓ

2

d2
). So, sinα = O( ℓ

d
).

Denoting β ∈ (0, π
2
) the angle between ~wy and ∇ϕ(x), we compute in the triangle

x′yw:

sin β ≤ tanβ =
|y − x′|
|x′ − w| =

ℓ

d
.

In particular, 0 ≤ α+β ≤ π
2
if ℓ < d

10
. Finally, denoting γ the angle between ∇ϕ(x)

and ∇ϕ(y), the triangle inequality yields

sin γ ≤ sin(α + β) ≤ sinα+ sin β = O(
ℓ

d
).

We conclude

|∇ϕ(x)−∇ϕ(y)| = 2 sin
γ

2
= O(sin γ) = O(

ℓ

d
) ≤ C

d
|x− y|
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for some universal C > 0. �

The conclusion of Theorem 1 follows. �
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