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A SHORT PROOF OF THE C'! REGULARITY FOR THE
EIKONAL EQUATION

RADU IGNAT

ABSTRACT. We give a short and self-contained proof of the interior C1! regularity
of solutions ¢ : 2 — R to the eikonal equation [V¢| = 1 in an open set Q C RY
in dimension N > 1 under the assumption that ¢ is pointwise differentiable in 2.

1. INTRODUCTION

The aim of this note is to give a short and self-contained proof of the following
result known in the theory of Hamilton-Jacobi equations:

Theorem 1. Let Q C RY be an open set in dimension N > 1 and ¢ : Q — R be a
pointwise differentiable solution to the eikonal equation |Vp| =1 in Q. Then Vo is
locally Lipschitz in €.

The usual (standard) proof of this result is based on the following steps (see e.g.
Lions [7], Cannarsa-Sinestrari [2]): first, one checks that ¢ (and —¢) is a viscosity
solution to the eikonal equation (see [2, Definition 5.2.1]); second, one proves that ¢
is both semiconcave and semiconvex with linear modulus (see [2l Theorem 5.3.7]).
Third, one proves that ¢ is C! (see [2, Theorem 3.3.7]) and finally, that ¢ is locally
CHlin Q (see [2, Corollary 3.3.8]).

Our approach is based on the geometry of characteristics associated to the eikonal
equation. More precisely, if xq € 2, we say that X := X, is a characteristic of a
solution ¢ passing through z( in some time interval t € [T, T if

X(t) = V(X (t)) for t € [T, T],
" { o= vetxw) for e -2

Then the beautiful proof of Caffarelli-Crandall [I, Lemma 2.2] shows in a short
and self-contained manner that every point xy € €2 has a characteristic X,, that is a
straight line along which Vi is constant and ¢ is affine. Finally, we give a geometric
argument on the structure of characteristics yielding the locally Lipschitz regularity
of Vi in €.

The regularity result in Theorem [ is optimal: such solution ¢ of the eikonal
equation is not C* in general (see e.g. [B, Proposition 1]). We mention that a
more general regularizing effect (i.e., Vi is locally Lipschitz away from vortex point
singularities) is proved under a weaker assumption V¢ € WYPP for p € [1,3], see
[0, B]. Similar results are obtained in the context of the Aviles-Giga model which
can be seen as a regularization of the eikonal equation (see [0, 4]).

2. PROOF OF THE MAIN RESULT

The first step is to show that each point zy € 2 has a characteristic X := X, that
is a straight line in direction V(). Moreover, V¢ is constant while ¢ is affine along
this characteristic. This fact yields ¢ € C*(Q2). In order to have a self-contained
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proof of Theorem [T we repeat here the very nice argument of Caffarelli-Crandall [T,
Lemma 2.2] based on a maximum type principle for the eikonal equation.

Lemma 2. Let Q C RY be an open set and ¢ : Q — R be a pointwise differentiable
solution of the eikonal equation |V| = 1 in Q. Then for every xy € Q, X(t) =
xo + tVp(xg) is a characteristic of ([Il) and

V(X (1) = Vi (z0) , (X (1)) = ¢(w0) +t, VE € [T, T]
for some T > 0. As a consequence, p € C*(Q).

Proof. This proof follows the lines in [I Lemma 2.2]. Let R > 0 be such that
Br(zo) C £ and consider

M, = max ¢, m, = min ¢, Vr € |0,R].
By (zo) By (z0)

Claim 3. M, = p(xo) + 1 and m, = p(xg) — 1 for every r € [0, R].

Proof. For r € [0, R], we pick some maximum point ;" € B, (z) such that p(z}) =
M,.. First, we show that r € [0, R| — M, is a nondecreasing 1-Lipschitz function.
Indeed, for R > r > 7, as |z;7 — 29| < r, we can find a vector e € RY such that
le| <r—7 and |x++e—x0| <7 ie. x++e€B (x0); this yields

0< M, — M <o(z) — oz +e)<l|e|<r—7
d;

because ¢ is 1-Lipschitz. Second, we prove that =1 a.e. in (0, R) because for
r € (0, R) and for small h > 0, as z,7 + hVp(z}) € Br+h(x0) we have

A r .. P
>
= T h
As My = ¢(xg), we conclude M, = ¢(x9) + r. Up to changing ¢ in —¢p, one also
gets m, = p(xg) — r for r € [0, R]. O

To conclude the proof of Lemma 2, pick some minimum point x5 € Bg(zo) such
that p(zy) = mp = ¢(x9) — R (by Claim[B]). As ¢ is 1-Lipschitz, we have, again by
Claim [3

2R = p(xy;) — ¢p(r) < |og — og| <28,
which means that [z}, 23] is a diameter in Bg(z). Note that x}, (resp. z3) is
the unique maximum (resp. minimum) of ¢ in Bg(zy) because if 7}, is another

maximum, then it has to be antipodal to xy, that is, 5:;5 = :UE (the same for the

uniqueness of x). In particular, e, = NR—;BO € SV Define g : [-R,R] — R by
g(r) = @(zo+re.) — (). Then g is 1-Lipschitz and g(+R) = (%) —¢(w0) = £R
(by Claim 3). So g(r) = r for every r € (=R, R) yielding 1 = ¢/(r) = e.-Vp(zo+re.)
for every r. Thus, Vy(xg + re.) = e, for every r € [—R, R], in particular, e, =
V(xg), ie., X(r) =xo+ rVy(zg) is a characteristic of (Il) and

V(X (r)) = Ve (20), p(xo + V(o)) = ¢(x0) + 7, Vr € [-R, R].

In particular, the (unique) maximum and minimum of ¢ in Br(z() are achieved at
the points 27 = x9 = RVp(20).

It remains to prove that V is continuous in €. Indeed, let z, — xq in  and
Br(x,) C Q for large n. Up to a subsequence, we may assume that Vi(z,) — e €
SV~ By above, we know that p(x, + RVp(x,)) = ¢(z,)+ R. Passing to the limit,
we obtain ¢(xy + Re) = ¢(zo) + R, meaning that zo + Re is the maximum of ¢ in
Br(zp). By uniqueness of the maximum point z};, we conclude that e = Vip(zy).
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The uniqueness of the limit e for such subsequences yield the convergence of the
whole sequence (Vo(x,)), to Vo(x). O

Proof of Theorem[d Let B be a ball, B C Q and we consider d € (0, w). We
will prove the following:

Claim 4. There exists a universal constant C' > 0 such that

Vola) = Vol € Sl —l, Ve,y € Buithlr —y| < .
Proof. Let X, and X, be the characteristics passing through x and y constructed
in Lemma [ (that are lines in direction Vp(x) and Ve(y)). If X, and X, coincide
inside B (in particular, Vo(x) = £V¢(y) by Lemmal2), then Lemma 2] implies that
Ve(x) = Vp(y) and the claim is trivial in that case. Otherwise, Vi (z) # £Vp(y)
and X, and X, cannot intersect inside {2 (as Vi is continuous in © by Lemma [2).
Let |z — y| < <& and 2’ be the projection of y on X,. Clearly,

d
/
b=l =yl < le =yl < 35

dist(2’,0Q) > bd — ¢ and Ve(2') = Ve(x). Up to changing ¢ in —¢, we may
assume that o(z') < ¢(y) and up to an additive constant, we also may assume
that 0 = ¢(2') < ¢(y) = a. As |Vy| = 1 on the segment [2y], we deduce that
0 <a=ply —ea) < |2’ —yl =L Let z be the point on the characteristic
X, reached at time ¢ = d in direction V(y), i.e., |z —y| = d, Vo(y) = =¥ and
©(z) = a+ d; in particular, z € Q. Let w be the point on the characteristic X,
reached at time ¢t = —d in direction Vy(2'), ie., |2/ —w| = d, Vo(2') = ﬁ%
o(w) = —d; in particular, w € 2. We deduce that

and

Z—w

\z—wwz/ \wcmlz\/ Vo EmdH| = lole) - plw)] = 2+ a > 20
[zw] [zw] -

By Pitagora’s formula in the triangle z'yw we have |y — w|* = (2 + d?. Denoting «
the angle between wy and Vp(y), the cosine formula in the triangle wyz yields

ly—wp?+ 1y — 2 — |z —w]?

— COS O =
2ly — 2] |y — w

242 + 07 — |z — w]? 2d? — (2 72
2d\/d? + (2 2d/d? + 02 d
Asa € (0,%), it yields sin® = 1 —cos> < 2(1 —cosa) = O(ﬁ—z). So, sina = O(%).
Denoting 3 € (0, %) the angle between wy and V(z), we compute in the triangle
x'yw:

ly—a| /

i <t = = —.
sin § < tan 3 = d

In particular, 0 < a+ 3 < Jif £ < %. Finally, denoting « the angle between V(z)
and Vp(y), the triangle inequality yields

siny <sin(a+ f) <sina+sinf = O(g)

We conclude

Vip(a) = Vip(y)| = 2sin 3 = Olsing) = O(=) < —[z —y
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for some universal C' > 0. ]

The conclusion of Theorem [I] follows. O
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