A SHORT PROOF OF THE $\mathcal{C}^{1,1}$ REGULARITY FOR THE EIKONAL EQUATION

RADU IGNAT

ABSTRACT. We give a short and self-contained proof of the interior $C^{1,1}$ regularity of solutions $\varphi : \Omega \to \mathbb{R}$ to the eikonal equation $|\nabla \varphi| = 1$ in an open set $\Omega \subset \mathbb{R}^N$ in dimension $N \geq 1$ under the assumption that φ is pointwise differentiable in Ω .

1. INTRODUCTION

The aim of this note is to give a short and self-contained proof of the following result known in the theory of Hamilton-Jacobi equations:

Theorem 1. Let $\Omega \subset \mathbb{R}^N$ be an open set in dimension $N \geq 1$ and $\varphi : \Omega \to \mathbb{R}$ be a pointwise differentiable solution to the eikonal equation $|\nabla \varphi| = 1$ in Ω . Then $\nabla \varphi$ is locally Lipschitz in Ω .

The usual (standard) proof of this result is based on the following steps (see e.g. Lions [\[7\]](#page-3-0), Cannarsa-Sinestrari [\[2\]](#page-3-1)): first, one checks that φ (and $-\varphi$) is a viscosity solution to the eikonal equation (see [\[2,](#page-3-1) Definition 5.2.1]); second, one proves that φ is both semiconcave and semiconvex with linear modulus (see [\[2,](#page-3-1) Theorem 5.3.7]). Third, one proves that φ is C^1 (see [\[2,](#page-3-1) Theorem 3.3.7]) and finally, that φ is locally $C^{1,1}$ in Ω (see [\[2,](#page-3-1) Corollary 3.3.8]).

Our approach is based on the geometry of characteristics associated to the eikonal equation. More precisely, if $x_0 \in \Omega$, we say that $X := X_{x_0}$ is a characteristic of a solution φ passing through x_0 in some time interval $t \in [-T, T]$ if

(1)
$$
\begin{cases} \dot{X}(t) = \nabla \varphi(X(t)) \text{ for } t \in [-T, T], \\ X(0) = x_0. \end{cases}
$$

Then the beautiful proof of Caffarelli-Crandall [\[1,](#page-3-2) Lemma 2.2] shows in a short and self-contained manner that every point $x_0 \in \Omega$ has a characteristic X_{x_0} that is a straight line along which $\nabla \varphi$ is constant and φ is affine. Finally, we give a geometric argument on the structure of characteristics yielding the locally Lipschitz regularity of $\nabla\varphi$ in Ω .

The regularity result in Theorem [1](#page-0-0) is optimal: such solution φ of the eikonal equation is not C^2 in general (see e.g. [\[5,](#page-3-3) Proposition 1]). We mention that a more general regularizing effect (i.e., $\nabla\varphi$ is locally Lipschitz away from vortex point singularities) is proved under a weaker assumption $\nabla \varphi \in W^{1/p,p}$ for $p \in [1,3]$, see [\[5,](#page-3-3) [3\]](#page-3-4). Similar results are obtained in the context of the Aviles-Giga model which can be seen as a regularization of the eikonal equation (see [\[6,](#page-3-5) [4\]](#page-3-6)).

2. Proof of the main result

The first step is to show that each point $x_0 \in \Omega$ has a characteristic $X := X_{x_0}$ that is a straight line in direction $\nabla \varphi(x_0)$. Moreover, $\nabla \varphi$ is constant while φ is affine along this characteristic. This fact yields $\varphi \in C^1(\Omega)$. In order to have a self-contained

Date: September 10, 2024.

proof of Theorem [1,](#page-0-0) we repeat here the very nice argument of Caffarelli-Crandall [\[1,](#page-3-2) Lemma 2.2] based on a maximum type principle for the eikonal equation.

Lemma 2. Let $\Omega \subset \mathbb{R}^N$ be an open set and $\varphi : \Omega \to \mathbb{R}$ be a pointwise differentiable solution of the eikonal equation $|\nabla \varphi| = 1$ in Ω . Then for every $x_0 \in \Omega$, $X(t) =$ $x_0 + t\nabla\varphi(x_0)$ is a characteristic of [\(1\)](#page-0-1) and

$$
\nabla \varphi(X(t)) = \nabla \varphi(x_0), \varphi(X(t)) = \varphi(x_0) + t, \forall t \in [-T, T]
$$

for some $T > 0$. As a consequence, $\varphi \in C^1(\Omega)$.

Proof. This proof follows the lines in [\[1,](#page-3-2) Lemma 2.2]. Let $R > 0$ be such that $\bar{B}_R(x_0) \subset \Omega$ and consider

$$
M_r = \max_{\bar{B}_r(x_0)} \varphi, \quad m_r = \min_{\bar{B}_r(x_0)} \varphi, \quad \forall r \in [0, R].
$$

Claim 3. $M_r = \varphi(x_0) + r$ and $m_r = \varphi(x_0) - r$ for every $r \in [0, R]$.

Proof. For $r \in [0, R]$, we pick some maximum point $x_r^+ \in \overline{B}_r(x_0)$ such that $\varphi(x_r^+) =$ M_r . First, we show that $r \in [0, R] \mapsto M_r$ is a nondecreasing 1-Lipschitz function. Indeed, for $R \ge r > \tilde{r}$, as $|x_r^+ - x_0| \le r$, we can find a vector $e \in \mathbb{R}^N$ such that $|e| \leq r - \tilde{r}$ and $|x_r^+ + e - x_0| \leq \tilde{r}$, i.e., $x_r^+ + e \in \bar{B}_{\tilde{r}}(x_0)$; this yields

$$
0 \le M_r - M_{\tilde{r}} \le \varphi(x_r^+) - \varphi(x_r^+ + e) \le |e| \le r - \tilde{r}
$$

because φ is 1-Lipschitz. Second, we prove that $\frac{dM_r}{dr} = 1$ a.e. in $(0, R)$ because for $r \in (0, R)$ and for small $h > 0$, as $x_r^+ + h \nabla \varphi(x_r^+) \in \overline{B}_{r+h}(x_0)$, we have

$$
\liminf_{h \to 0} \frac{M_{r+h} - M_r}{h} \ge \liminf_{h \to 0} \frac{\varphi(x_r^+ + h \nabla \varphi(x_r^+)) - \varphi(x_r^+)}{h} = |\nabla \varphi(x_r^+)|^2 = 1.
$$

As $M_0 = \varphi(x_0)$, we conclude $M_r = \varphi(x_0) + r$. Up to changing φ in $-\varphi$, one also gets $m_r = \varphi(x_0) - r$ for $r \in [0, R]$.

To conclude the proof of Lemma [2,](#page-1-0) pick some minimum point $x_R^- \in \bar{B}_R(x_0)$ such that $\varphi(x_R^-)$ \overline{R}_R = m_R = $\varphi(x_0)$ – R (by Claim [3\)](#page-1-1). As φ is 1-Lipschitz, we have, again by Claim [3:](#page-1-1)

$$
2R=\varphi(x_R^+)-\varphi(x_R^-)\leq |x_R^+-x_R^-|\leq 2R,
$$

which means that $[x_R^+]$ \bar{R} , x_R^- is a diameter in $\bar{B}_R(x_0)$. Note that x_R^+ $_R^+$ (resp. $x_R^ \frac{1}{R}$) is the unique maximum (resp. minimum) of φ in $\overline{B}_R(x_0)$ because if \tilde{x}_R^+ $\frac{1}{R}$ is another maximum, then it has to be antipodal to $x_R^ \bar{R}$, that is, $\tilde{x}^+_R = x^+_R$ R^+ (the same for the uniqueness of $x_R^ \bar{R}$). In particular, $e_* = \frac{x_R^+ - x_0}{R}$ $\frac{-x_0}{R} \in \mathbb{S}^{N-1}$. Define $g: [-R, R] \to \mathbb{R}$ by $g(r) = \varphi(x_0 + re_*) - \varphi(x_0)$. Then g is 1-Lipschitz and $g(\pm R) = \varphi(x_R^{\pm}) - \varphi(x_0) = \pm R$. (by Claim 3). So $g(r) = r$ for every $r \in (-R, R)$ yielding $1 = g'(r) = e_* \cdot \nabla \varphi(x_0 + re_*)$ for every r. Thus, $\nabla \varphi(x_0 + re_*) = e_*$ for every $r \in [-R, R]$, in particular, $e_* =$ $\nabla \varphi(x_0)$, i.e., $X(r) = x_0 + r \nabla \varphi(x_0)$ is a characteristic of [\(1\)](#page-0-1) and

$$
\nabla \varphi(X(r)) = \nabla \varphi(x_0), \varphi(x_0 + r \nabla \varphi(x_0)) = \varphi(x_0) + r, \quad \forall r \in [-R, R].
$$

In particular, the (unique) maximum and minimum of φ in $\bar{B}_R(x_0)$ are achieved at the points $x_R^{\pm} = x_0 \pm R \nabla \varphi(x_0)$.

It remains to prove that $\nabla \varphi$ is continuous in Ω . Indeed, let $x_n \to x_0$ in Ω and $\bar{B}_R(x_n) \subset \Omega$ for large n. Up to a subsequence, we may assume that $\nabla \varphi(x_n) \to e \in$ \mathbb{S}^{N-1} . By above, we know that $\varphi(x_n + R\nabla \varphi(x_n)) = \varphi(x_n) + R$. Passing to the limit, we obtain $\varphi(x_0 + Re) = \varphi(x_0) + R$, meaning that $x_0 + Re$ is the maximum of φ in $\bar{B}_R(x_0)$. By uniqueness of the maximum point x_R^+ R_2^+ , we conclude that $e = \nabla \varphi(x_0)$. The uniqueness of the limit e for such subsequences yield the convergence of the whole sequence $(\nabla \varphi(x_n))_n$ to $\nabla \varphi(x_0)$.

Proof of Theorem [1.](#page-0-0) Let B be a ball, $\overline{B} \subset \Omega$ and we consider $d \in (0, \frac{\text{dist}(B, \partial \Omega)}{5})$ $\frac{B, \partial \Omega}{5}$). We will prove the following:

Claim 4. There exists a universal constant $C > 0$ such that

$$
|\nabla \varphi(x) - \nabla \varphi(y)| \leqslant \frac{C}{d}|x - y|, \quad \forall x, y \in B \text{ with } |x - y| < \frac{d}{10}.
$$

Proof. Let X_x and X_y be the characteristics passing through x and y constructed in Lemma [2](#page-1-0) (that are lines in direction $\nabla \varphi(x)$ and $\nabla \varphi(y)$). If X_x and X_y coincide inside B (in particular, $\nabla \varphi(x) = \pm \nabla \varphi(y)$ by Lemma [2\)](#page-1-0), then Lemma [2](#page-1-0) implies that $\nabla \varphi(x) = \nabla \varphi(y)$ and the claim is trivial in that case. Otherwise, $\nabla \varphi(x) \neq \pm \nabla \varphi(y)$ and X_x and X_y cannot intersect inside Ω (as $\nabla \varphi$ is continuous in Ω by Lemma [2\)](#page-1-0). Let $|x - y| < \frac{d}{10}$ and x' be the projection of y on X_x . Clearly,

$$
\ell = |x' - y| \le |x - y| < \frac{d}{10},
$$

 $dist(x', \partial \Omega) > 5d - \ell$ and $\nabla \varphi(x') = \nabla \varphi(x)$. Up to changing φ in $-\varphi$, we may assume that $\varphi(x') \leq \varphi(y)$ and up to an additive constant, we also may assume that $0 = \varphi(x') \leq \varphi(y) = a$. As $|\nabla \varphi| = 1$ on the segment $[x'y]$, we deduce that $0 \le a = \varphi(y) - \varphi(x') \le |x' - y| = \ell$. Let z be the point on the characteristic X_y reached at time $t = d$ in direction $\nabla \varphi(y)$, i.e., $|z - y| = d$, $\nabla \varphi(y) = \frac{z-y}{d}$ and $\varphi(z) = a + d$; in particular, $z \in \Omega$. Let w be the point on the characteristic $X_{x'}$ reached at time $t = -d$ in direction $\nabla \varphi(x')$, i.e., $|x'-w| = d$, $\nabla \varphi(x') = \frac{x'-w}{d}$ $\frac{-w}{d}$ and $\varphi(w) = -d$; in particular, $w \in \Omega$. We deduce that

$$
|z - w| = \int_{[zw]} |\nabla \varphi| d\mathcal{H}^{1} \ge \left| \int_{[zw]} \nabla \varphi \cdot \frac{z - w}{|z - w|} d\mathcal{H}^{1} \right| = |\varphi(z) - \varphi(w)| = 2d + a \ge 2d.
$$

By Pitagora's formula in the triangle $x'yw$ we have $|y - w|^2 = \ell^2 + d^2$. Denoting α the angle between \vec{wy} and $\nabla \varphi(y)$, the cosine formula in the triangle wyz yields

$$
-\cos\alpha = \frac{|y-w|^2 + |y-z|^2 - |z-w|^2}{2|y-z| \cdot |y-w|}
$$

=
$$
\frac{2d^2 + \ell^2 - |z-w|^2}{2d\sqrt{d^2 + \ell^2}} \le -\frac{2d^2 - \ell^2}{2d\sqrt{d^2 + \ell^2}} = -1 + O(\frac{\ell^2}{d^2}).
$$

As $\alpha \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$), it yields $\sin^2 \alpha = 1 - \cos^2 \alpha \leq 2(1 - \cos \alpha) = O(\frac{\ell^2}{d^2})$ $\frac{\ell^2}{d^2}$). So, sin $\alpha = O(\frac{\ell}{d})$ $\frac{\ell}{d}$. Denoting $\overline{\beta} \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$) the angle between \vec{wy} and $\nabla\varphi(x)$, we compute in the triangle $x'yw$

$$
\sin \beta \le \tan \beta = \frac{|y - x'|}{|x' - w|} = \frac{\ell}{d}.
$$

In particular, $0 \leq \alpha + \beta \leq \frac{\pi}{2}$ $\frac{\pi}{2}$ if $\ell < \frac{d}{10}$. Finally, denoting γ the angle between $\nabla \varphi(x)$ and $\nabla \varphi(y)$, the triangle inequality yields

$$
\sin \gamma \le \sin(\alpha + \beta) \le \sin \alpha + \sin \beta = O(\frac{\ell}{d}).
$$

We conclude

$$
|\nabla \varphi(x) - \nabla \varphi(y)| = 2\sin\frac{\gamma}{2} = O(\sin\gamma) = O(\frac{\ell}{d}) \le \frac{C}{d}|x - y|
$$

for some universal $C > 0$.

The conclusion of Theorem [1](#page-0-0) follows.

Acknowledgement. The author thanks Xavier Lamy for very useful discussions. The author is partially supported by the ANR projects ANR-21-CE40-0004 and ANR-22-CE40-0006-01.

REFERENCES

- [1] L.A. Caffarelli, M. G. Crandall, Distance functions and almost global solutions of eikonal equations, Comm. Partial Differential Equations 35 (2010), 391–414.
- [2] P. Cannarsa, C Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, Vol. 58. Berlin: Birkhäuser, 2004.
- [3] C. De Lellis, R. Ignat, A regularizing property of the 2D-eikonal equation, Comm. Partial Differential Equations 40 (2015), 1543-1557.
- [4] F. Ghiraldin, X. Lamy, Optimal Besov differentiability for entropy solutions of the eikonal equation, Comm. Pure Appl. Math. 73 (2020), 317-349.
- [5] R. Ignat, Two-dimensional unit-length vector fields of vanishing divergence, J. Funct. Anal. 262 (2012), 3465-3494.
- [6] P.-E. Jabin, F. Otto, B. Perthame, Line-energy Ginzburg-Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), 187-202.
- [7] P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics, Vol. 69. Boston: Pitman, 1982.

INSTITUT DE MATHÉMATIQUES DE TOULOUSE, UMR 5219, UNIVERSITÉ DE TOULOUSE, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France.

Email address: Radu.Ignat@math.univ-toulouse.fr