Calcul diferential Radu Ignat

Exercise 1 Determine all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for every $x, y \in \mathbb{R}$ with $x - y \in \mathbb{Q}$, one has $f(x) - f(y) \in \mathbb{Q}$.

Exercise 2 We say that $C \subset \mathbb{R}$ is a closed set if its complementary $\mathbb{R} \setminus C$ is a union of open intervals. Let $C \subset \mathbb{R}$ be a non-empty, closed and bounded set and $f : C \to C$ be a nondecreasing function. Show that there is a point $p \in C$ such that f(p) = p.

Exercise 3 If $I \subset \mathbb{R}$ is an interval, we say that $f : I \to \mathbb{R}$ is a convex function if $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$ for every $x, y \in I$ and every $t \in [0, 1]$. If f is differentiable, then show that f is convex if and only if f' is nondecreasing.

Exercise 4 Let $P_n(x)$ be a polynomial of even degree n > 1 such that its dominant coefficient is positive and $P_n(x) > P''_n(x), \forall x \in \mathbb{R}$. Show that $P_n(x) > 0, \forall x \in \mathbb{R}$.

Exercise 5 Show that for any polynomial p(x) of degree n > 1 and any point Q, the number of tangents to the graph of p(x) passing at Q are not more than n.

Exercise 6 Let $f : [0,1] \to \mathbb{R}$ be a differentiable function with f(0) = 0. If there is some $M \ge 0$ such that $|f'(x)| \le M|f(x)|$ for every $x \in [0,1]$, then f vanishes everywhere.

Exercise 7 Is there any continuous differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f(x) > 0and f'(x) = f(f(x)) for any $x \in \mathbb{R}$?

Exercise 8 Let $f: (0, \infty) \longrightarrow \mathbb{R}$ be a twice differentiable function on $(0, \infty)$. If $|f(x)| \leq A$ and $|f''(x)| \leq B$ for every $x \in (0, \infty)$, then $|f'(x)| \leq 2\sqrt{AB}$ for any $x \in (0, \infty)$.

Exercise 9 Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that f(0) = 2, f'(0) = -2and f(1) = 1. Show that there is some $\xi \in (0, 1)$ such that

$$f(\xi)f'(\xi) + f''(\xi) = 0.$$

Exercise 10 Let $f: (-1,1) \to \mathbb{R}$ be a continuous function such that f(0) = 0 and f is differentiable in 0. Show that

$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^2}\right) = \frac{1}{2}f'(0).$$

As an application, compute

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sqrt{1 + \frac{k}{n^2}} - 1 \right).$$

Exercise 11 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable function. If $f(x) \ge 0$ and $f''(x) \le 0$ for every $x \in \mathbb{R}$, then f is a constant function.