2024-2025

Universitatea Tehnica Cluj-Napoca Pregatire de Olimpiada de matematica universitara

Siruri si serii numerice Radu Ignat

Exercise 1 Let $f: [1,\infty) \to \mathbb{R}$ be a nonincreasing function that is bounded from below. Show that the sequence $(a_n)_{n \ge 1}$ given by

$$a_n = f(1) + f(2) + \dots + f(n) - \int_1^n f(x) \, dx, \quad \forall n \ge 1,$$

is convergent. What do you deduce for $f(x) = \frac{1}{r}, \forall x \ge 1$?

Exercise 2 Let $(a_n)_{n \ge 1}$ be a sequence of real numbers such that $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$. Show that the set of limit points of $(a_n)_{n \ge 1}$ is a closed interval.

Exercise 3 Let (x_n) be a sequence of real numbers such that $\lim_{n\to\infty} (2x_{n+1} - x_n) = L$ for some $L \in \mathbb{R}$. Show that $\lim_{n \to \infty} x_n = L$.

Exercise 4 Let a and b be two positive numbers. Compute the limit of the sequence (x_n) defined by

$$x_1 = \sqrt{a}, \quad x_{n+1} = \sqrt{a + bx_n}, \forall n \ge 1.$$

In particular, compute

$$\lim_{n \to \infty} \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \sqrt{1}}}}, \quad (n \ square \ roots \).$$

Exercise 5 If the sequence $(a_n)_n$ is decreasing to zero and the series $\sum_{n=1}^{\infty} a_n$ converges, then show that

$$\lim_{n \to \infty} na_n = 0.$$

Exercise 6 We consider the sequence $(a_n)_n$ defined by

$$a_1 = 1, \quad a_{n+1} = \ln(1 + a_n), \forall n \ge 1.$$

- a) Show that $\lim_{n\to\infty} a_n = 0$.
- b) Show that the series $\sum_{n=1}^{\infty} a_n$ diverges. c) Show that the series $\sum_{n=1}^{\infty} a_n^2$ converges.

Exercise 7 Let $\sum_{n=1}^{\infty} a_n$ be a divergent series with positive terms and $(S_n)_n$ be the sequence of its partial sums $S_n = \sum_{k=1}^n a_k$. Prove that: a) The series $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ diverges. b) The series $\sum_{n=1}^{\infty} \frac{a_n}{S_n^{1+\alpha}}$ converges for $\alpha > 0$.

Exercise 8 Let $(\varepsilon_n)_n$ be a sequence with terms $\varepsilon_n \in \{-1, 1\}, \forall n \in \mathbb{N}$. Show that the series $\sum_{n=0}^{\infty} \frac{\varepsilon_n}{n!}$ converges to an irrational number.

Exercise 9 Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with positive terms. Show that the series $\sum_{n=1}^{\infty} \sqrt[n]{a_1 a_2 \dots a_n}$ is convergent and the following inequality holds true:

$$\sum_{n=1}^{\infty} \sqrt[n]{a_1 a_2 \dots a_n} < e \sum_{n=1}^{\infty} a_n.$$