MINIMALITY OF THE VORTEX SOLUTION FOR
GINZBURG-LANDAU SYSTEMS
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ABSTRACT. We consider the Ginzburg-Landau system for N-dimensional maps
defined in the unit ball for some parameter ¢ > 0. For a boundary data corre-
sponding to a vortex of topological degree one, the aim is to prove the symmetry
of the ground state of the system. We show this conjecture for every € > 0 in any
dimension N > 7, and then, we also prove it in dimension N = 4,5,6 provided
that the admissible maps are gradient fields.

This note represents the summary of the talk of the author given at the Workshop
“Calculus of Variations” in Oberwolfach, 11-16 August 2024. It is based on a series
of articles [8, 9, 5, 10, 6] in collaboration with Luc Nguyen (Oxford), Mickael Na-
hon (Grenoble), Mircea Rus (Cluj), Valeriy Slastikov (Bristol) and Arghir Zarnescu
(Bilbao). This report will be included in a volume Oberwolfach Reports (2024)
dedicated to that workshop.

The Ginzburg-Landau model. Let BY c RY be the unit ball, N > 2. For
uw: BN — RY, consider the Ginzburg-Landau functional for a parameter ¢ > 0:

1 1
Gtw) = [ 5IVul+ W~ uf) da,

where W : (—o0,1] = R, is C' convex, W(0) = 0, W(¢t) > 0 for ¢ # 0. Typically,
W(t) = % As ¢ — 0, the limit maps take values into the unit sphere S¥~1, so
the limit model is the S¥~!'-harmonic map problem (HMP). Thus, our results are
expected to be closely related with those obtained for HMP.

We focus on critical points u of G. for fixed € > 0:
(1) _Au= 6%W’(l —juP)u i BY
under the boundary condition
(2) u(z) =z onoBY =SV

Such critical points u (e.g., minimizers) exist. In particular, by the maximum prin-
ciple, |u| < 1 in BY and then, the standard elliptic theory yields u € WP N Ch
for every p < oo and « € (0,1). Moreover, the topological constraint in (2) implies
that u has a zero point inside BY that plays an important role in this theory. The
main question concerns the uniqueness of solutions in (1) & (2).

The vortex solution. For every € > 0, there exists a unique solution to (1) & (2)
that is invariant under the special orthogonal group SO(N), i.e., the group action

u — uft(x) = R71u(Rx) for every R € SO(N) that keeps invariant the functional G.
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and the boundary condition (2). This is the so-called vortezx solution (of topological
degree 1) given by

ue(z) = fsuxr),%, z € BV \ {0}.

The radial profile f. : [0, 1] — R is the unique solution to the singular ODE:

{ =N Nelp L= f2)f. in (0, 1),

(3)
f(0) =0, f(1) =1,

where r = |z| (see [3, 4, 7]). In particular, 1 > f. > 0 and f. > 0in (0,1). The aim
is to study the minimality of the vortex solution:

Question 1: Is u.(z) = f€(|x|)|§—| the (unique) minimiser of G, under the boundary

condition (2) for every € > 07

For large ¢, i.e., € > €.onw, the functional G is strictly convex yielding uniqueness
in (1) & (2) (in particular, the positive answer to Question 1), see [1, 9]. For
€ < Econw, there are only some partial results. In dimension N = 2, Bethuel-Brezis-
Hélein [1] proved in the regime ¢ — 0 that a minimizer v of G. under (2) has a
unique topological zero converging to the origin, while Pacard-Riviere [17] proved
that wu. is the unique solution to (1) & (2) for very small € > 0; we also mention the
work of Mironescu [16] for the corresponding blow-up problem in the domain R2. In
dimension N > 3, we quote the works of Millot-Pisante [14] and Pisante [18] for the
blow-up problem in the domain R¥. Finally, for the SV ~!-harmonic map problem,
uy(z) = a7 1s the unique minimizing harmonic map in BY under (2) if N > 3 (see
Jager-Kaul [11], Brezis-Coron-Lieb [2], Lin [13]).

Main results. Our first result gives a positive answer to Question 1 in dimension
N > 7 (see [8, 9]):

Theorem 2 If N > 7, then u.(z) = fa(|m|)|§—| is the unique minimiser of G. under
(2) for every € > 0.

Sketch of the proof. The idea is to linearize the potential energy in G.. More
precisely, the convexity of W yields for every v € H}(BY,RY):

(4) Gelue +0) — Gulws) > SF.(0)

where F.(v) = [pn [V = ZW/(1 = |uc]?)|v|* dz. To conclude, we need to prove

that for every e > 0, F.(v) = / Lov-vdr >0, Vo € H}(BY,RY), where
BN
L. = =A — SW'(1 — f2). Let £(e) = A\(Lc, BY) be the first eigenvalue of L.

in BY under zero Dirichlet condition. The conclusion follows by:
Lemma 3 If N > 7, then {(c) > ey = &22° — (N —1) > 0, Ve > 0.

Sketch of the proof. For v € C(BYN \ {0},R), we use the Hardy decomposition
v = f.s. Integration by parts combined with (3) imply

N —
)= [ Lovo= [ (PPl £ = [ (T )
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The limit case ¢ — 0 follows from the fact that f. — 1 in (0, 1] combined with
Hardy’s inequality:

N -1 N —2)? 2
/ L.ov-v— ]V3|2— 522/ (u—(]\f—l))s—zc]\;/ s2.
BN BN 7”2 BN 4 BN

r2

N—-2

For the general case ¢ > 0 (fixed), one decomposes s = ¢5 with ¢ = r~"2  and
2

obtains F.(v) > ¢y [ g~ -z yielding the conclusion of Lemma 3 together with the
uniqueness of the minimizer v, in Theorem 2. O

In dimension N € [2,6], the above argument does not yield the answer to Ques-
tion 1. Indeed, the first eigenvalue £(¢) of L. in BY becomes negative for small € > 0
if 2 < N < 6. However, the above argument improves the range of € where u, is the
unique minimizer of G, under (2) (with respect to €., above which G, is strictly
convex), see [5, 10]:

Lemma 4 If 2 < N < 6, then there is ey € (0, €cony) such that {(en) = 0 and
le) < 0if e < en (resp. L(e) > 0if ¢ > ey). In particular, if ¢ > ey, then the
vortex solution wu,. is the unique minimizer of G. under (2).

The minimality of w, is still an open question if € < ey and N € [2,6]. A partial
result is the local minimality of u. for every € > 0. This is known in dimension
N = 2 thanks to the works of Mironescu [15] and Lieb-Loss [12], while in dimension
N € [3,6], this is proved by Ignat-Nguyen [5]:

Theorem 5 If 3 < N <6, then u. = f8(|x|)‘%| is a local minimizer of G. under (2)
for every € > 0.

Sketch of the proof. The aim is to prove that for every € > 0, Gc(u: +v) — Ge(us) >
Cllvll3: if ||Jo]|gr < 0 for some 6 = d(¢) > 0 and C' = C(g) > 0 small. For that, we
analyse the second variation of G. at u. in direction v € H} (BN, RY):

d2
o de?,,

Gelue+t0) = F0)+ 5 [ W1 )20 oo

This is done by writing v(z) = s(z);+0(x) for some scalar function s and a tangent

Q:(v)

vector field 0(z) -z = 0 and then use the Hodge decomposition in the tangent space
for every z € B¥\ {0}: o(r,-) = v°(r,-) + Y¥(r,-) on SV where Y - v°(r,-) =0 in
SV=! and 9 is a scalar function. (Here, ¥ is the covariant derivative.) The spectral
decomposition of s(r,-) and ¥(r,-) in L2(SV~!) yields a decomposition of v — v° in
modes v, and furthermore, the following decomposition of the second variation

Q-(v) = Q-(*) + 3 Q-(wy).

k>0

Using Hardy decompositions for v° and each v, we obtain Q.(v) > C(¢)||v||3; for

every v € H}(BY,RY) and ¢ > 0. An extra argument yields local minimality of
U ]

The Aviles-Giga model. Note that the vortex solution is a gradient field, i.e.,
u. = V¢, for some radial function ¢. : BY — R determined by ¢. = f. in (0, 1).
Therefore, in dimension N € [2,6], it is natural to study the minimality of w.
restricted to the class of gradient fields.
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Question 2: Is u. the (unique) minimizer of G. for every € > 0 over gradient fields

V={u=Vo¢:¢c H*(B" R), Vé=1Id on 0B"}?

This is the so-called Aviles-Giga model corresponding to the functional

6.(v0) - [

B

1 1
N §|V2<Z5|2 + 2—€2W(1 — Vo) dx.

We are able to improve Theorem 2 to the dimensions N = 4,5,6 in this restricted
class V, see Ignat-Nahon-Nguyen [6].

Theorem 6 If N > 4, then u. is the unique global minimizer of G over V for every
e > 0.

Sketch of the first proof. As before, for every Vi € H}(BY,RY), we have G_(u. +
V) — Ge(ue) > 3F.(Vip). As Vip =0 on dBY, we have

r(ve) = [

BN

In the limit case € — 0, we expect that F.(Vy) = [y (A¢)? — 251 V| and the
conclusion would follow by the Hardy inequality in V:

(Ayp)? - 6—12W’(1 — )|V da.

N2/4 if N>5
with Ky ={ N—1 if N=4.
25/36 if N =3

Ve[

BN T2

/B (&)= Ky

For the general case ¢ > 0, we use the spherical harmonic decomposition for
and based again on some Hardy decompositions, we get F.(V) > 0 provided that
N > 4.

Sketch of the second proof if N > 5: This second proof is based on the fol-
lowing symmetrization of gradient fields. More precisely, for the stream function
¢ € HY(BY,R), we associate the radial function ¢, = ¢,(r) defined by

1/2
$L(r) = (][ [Vo(r0)Pdo(8)) =0, 7€ (0,1).
SN-1
As W is convex, Jensen’s inequality yields
W(l - |Vo?) da 2/ W(l = |Vo.|?) da.
BN BN
Moreover, if V¢ = Id on 9BY and N > 5 then

/ \v2¢\2dx2/ V2. |* da
BN BN

with equality if and only if ¢ is radial. Thus, for every N > 5 and any ¢ > 0,

RN¥*!l-valued vortex solutions. We can solve completely Question 1 when we add
one target dimension, i.e., the admissible maps are U = (u,Uyy1) : BY — RN*!
satisfying the boundary condition

(5) U(z) = (x,0) € S x {0} on 0BY.
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We prove that for every € > 0, minimizers of G under (5) are vortex type solutions
that are either non-escaping (i.e., their (N + 1)-component vanishes in BY), or
they are escaping, i.e., their (N + 1)-component is positive (or negative) in B, see
Ignat-Rus [10].

Theorem 7 Every minimizer of G, under (5) is symmetric of vortex type and the
following dichotomy holds in dimension 2 < N < 6:

a) if € > ey, then the non-escaping vortex solution U, = (f6(|x|)%,0) is the
unique minimizer of G. under (5).

b) if ¢ < ey, then the two escaping vortex solutions (f5(|x])%,:|:ge(|x|)) with

g > 0 are the only minimizers of G. under (5). In this case, the non-escaping
solution U, is unstable.

The idea of the proof is the following: point a) is implied by the proof of Theorem 2.
For point b), if an escaping critical point U = (u,Uxny1) of G exists under (5),
then it is a minimizer and the set of minimizers is given by {(u,£Uxn1)} (this
phenomenon is explained in [9]). Restricting to the class of symmetric vortex type
maps, Lemma 4 implies that the non-escaping vortex solution U, is unstable if ¢ < ey
and therefore, an escaping symmetric vortex solution exists, which determines the
set of minimizers. Of course, by the proof of Theorem 2, the non-escaping vortex
solution U, is the unique minimizer of G under (5) in dimension N > 7.

Acknowledgement. The author is partially supported by the ANR projects ANR-
21-CE40-0004 and ANR-22-CE40-0006-01.
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