
INTRODUCTION TO REPRESENTATIONS

OF LIE GROUPS AND LIE ALGEBRAS

Course M2 Fall 2013

Vadim Schechtman

CONTENTS

Names 2

Chapter 1. Lie groups and Lie algebras. Main examples 3

Fields: F1,Fq,R,C, p-adic. GLn(F ).

Lie groups and their Lie algebras.

Main examples of Lie groups and their Lie algebras.

Haar measure. Examples.

Exercise. The Haar measure on Qp and on GL2(Qp).

Chapter 2. Representations of compact Lie groups 12

Schur lemma. Complete reducibility.

Schur orthogonality relations.

Chapter 3. Structure and representations of complex semisimple Lie
algebras 16

Example: sl(n)

Root systems. The Weyl groups.

Verma modules and finite-domensional representations.

BGG resolution and the Weyl character formula.

References 27
1



2

NAMES

Wilhelm KILLING 1847 - 1923

Elie CARTAN 1869 - 1951

Hermann WEYL 1885 - 1955

Harold Scott MacDonald COXETER 1907 - 2003

Israel GELFAND 1913 - 2009

Eugene DYNKIN b. 1924

Joseph BERNSTEIN b. 1945



3

Chapter 1. Lie groups and Lie algebras. Main examples.

A. Lie groups

1.1. Haar measure. Topological groups. All our toplogies will be Hausdorff.

A topological group G is called locally compact if for every open neighbourhood
U � e there exist an open U ′ and a compact K such that e ∈ U ′ ⊂ K ⊂ U .

Let G be a locally compact group.

Theorem. (A. Haar and Von Neumann) There exists a unique up to a multi-
plicative constant Borel measure µL on G which is left invariant and regular.

Alfréd Haar (1885, Budapest, - 1933 Szeged) a Hungarian mathematician.

John von Neumann (1903, Budapest - 1955, Princeton) a famous Hungarian
born American mathematician.

Left invariance: for each measurable X ⊂ G

µl(X) = µl(gX)

Regularity:
µ(X) = inf{µ(U)|U ⊃ X,U open } =

sup{µ(K)|K ⊂ X,K compact }

The same for a right invariant measure, µR.

Define δ : G −→ R×
+ by

∫

G

f(g−1hg)dµL(h) = δ(g)

∫

G

f(h)dµL(h).

Proposition. (i) δ is a quasicharacter, i.e. a continuous homomorphism.

(ii) The measure δ(h)µL(h) is right invariant.

Corollary. A compact group is unimodular, i.e. a left invariant Haar measure
is right invariant.

1.2. Local fields. Let F be a field (all fields will be commutative). An
absolute value on F is a map

|.| : F −→ R≥0

such that (i) |x| = 0 iff x = 0; (ii) |xy| = |x||y|; (iii) |x+ y| ≤ |x|+ |y|.

Example: all absolute values on Q.

An absolute value defines a metrics, d(x, y) = |x, y| on F and hence a topology.
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We say that |.| is non-trivial if there exists x with |x| 6= 0, 1. In that case the
topology is not discrete.

A field with a non-trivial absolute value, complete wrt the corresponding met-
rics and locally compact is called a local field.

Examples: R,C,Qp,Fq((t)) and their finite extensions. That is all in fact.

1.2.1. The Haar measure on Qp.

Explicitly,

Qp = {

∞
∑

i=n

aip
i, n ∈ Z, ai ∈ {0, 1, . . . , p− 1}} ⊃

Zp = {

∞
∑

i=0

aip
i, n ∈ Z, ai ∈ {0, 1, . . . , p− 1}}.

By definition, µ(Zp) = 1 it follows from Qp-invariance that µ(pnZp) = p−n (ex-
plain this).

1.2.1.1. Exercice. (a) Show that da/|a|p is a Haar measure on the multi-
plicative group Q×

p .

(b) Show that for a linear map f : Qn
p −→ Qn

p , f∗µ = | det(f)|−n
p µ.

1.3. Lie groups. Let F be a local field. Then a notion of an analytic variety
over F is defined.

A Lie group over F is a group and an analytic variety G with both structures
compatible.

This means that the the multiplication and taking the inverse maps

m : G×G −→ G, Inverse : G −→ G, Inverse(x) = x−1

are morphisms of analytic varieties.

Examples. Classical groups. ”Die Königin” (Her Majesty). Let V be a finite
dimensional vector space over F . GL(V ).

GLn(F ) = GL(F n). All other Lie groups are its subgroups.

Suppose the F is equipped by a symmetric (resp. antisymmetric) bilinear form
(x, y). Then the group G = {g ∈ GL(V )| (gx, gy) = (x, y)} is called orthogonal
O(V ) (resp. symplectic Sp(V )).

The classical series:

An = SLn+1, n ≥ 1.

Bn = SO(2n+ 1), n ≥ 2,
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Cn = Sp(2n), n ≥ 2,

Dn = SO(2n), n ≥ 3, D3 = A3.

Here ”S” means ”with det = 1”.

In this course, if not specified otherwise, the base field F = R. In exercises we
will probably discuss a little the p-adic case which is important for the number
theory.

Compact and non-compact Lie groups.

Exercice. (i) Let F = R,C, Zp or Qp. Show that

dg =
|
∏n

i,j=1 dgij|

| det(g)|n

is a left- and right invariant measure on GLn(F ).

Cf. [A. Knightly, Ch. Li, Traces of Hecke operators], 7.6.

(ii) Consider the group

G = SL2(F ) = {

(

a b
c d

)

}

Consider a three form

ω =
dbdcdd

d
=

dadcdd

c
= −

dadbdd

b
= −

dadbdc

a
∈ Ω3(G)

Show that

dadbdcdd = d(ab− cd)ω.

Show that ω is left and right G-invariant. Deduce that dg = (i/2)3ωω̄ is a Haar
measure on G(C).

Cf. [I.M.Gelfand, M.I.Graev, A.N.Vilenkin, Integral geometry and representa-
tion theory, Generalized functions, v. 5], Ch. IV, Appendix.

B. Lie algebras

1.4. Lie algebras. Motivation: let X, Y ∈ End(V ). For small ǫ 1 + ǫX ∈
GL(V ).

(1 +Xǫ)(1 + Y ǫ)(1 +Xǫ)−1 = 1 + [X, Y ]ǫ+O(ǫ2)

where [X, Y ] = XY − Y X .

Definition. A Lie algebra over a field F is a vector space g equipped with a
bilinear pairing [., ] : g× g −→ F satisfying two axioms:
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(i) skew symmetry:

[x, y] = −[y, x];

(ii) the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Example. A an associative ring; [x, y] = xy − yx. This Lie algebra will be
denoted ALie.

In this course, unless specified otherwise, ”a Lie algebra” will mean ”a finite
dimensional Lie algebra”.

Example: gl(V ).

1.5. The Lie algebra of a Lie group. Exponential map. Let X be a
smooth variety (over R); C(X): the algebra of smooth functions X −→ R.

The Lie algebra of vector fields:

T(X) = Der(C(X)),

Lie bracket = the commutator (check that a commutator of two derivations is a
derivation).

Local form.

Each vector field τ ∈ T(X) gives rise to a tangent vector τ(x) in the tangent
space TxX at each point x ∈ X (explain in the exercises).

Let G be a Lie group. For each g ∈ G let

Lg : G
∼

−→ G, Lg(h) = gh,

whence

Lg∗ : T(G)
∼

−→ T(G)

A vector field τ ∈ T(G) is called left invariant if for each g ∈ G, Lg∗(τ) = τ .

By definition, Lie(G) ⊂ T(G) is the Lie subalgebra of left invariant vector
fields (one has to verify that it is closed wrt to the commutator).

As a vector space,

g = Lie(G) = TeG

For g ∈ G define

Adg : G −→ G, Adg(h) = ghg−1.

Let X ∈ g. There exists a unique curve g(t) = exp(tX) ∈ G such that the
tangent vector to g(t) at t = t0 is equal to X(g(t0)).
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Thus we get a map

exp : g −→ G, exp(X) = eX := g(1).

1.6. The classical Lie algebras.

Let V be a finite-dimensional vector space with a non-degenerate bilinear form
(., .) : V × V −→ F . Consider the following subspace

{g ∈ gl(V )| ∀x, y ∈ V (gx, y) + (x, gy) = 0} ⊂ gl(V ).

Exercise: show that it is a Lie subalgebra.

When the form is symmetric (resp. antisymmetric), this Lie subalgebra is
denoted by o(V ) (resp. sp(V )).

An = sln+1, n ≥ 1.

Bn = so(2n+ 1), n ≥ 2,

Cn = sp(2n), n ≥ 2, B2 = C2.

Dn = so(2n), n ≥ 3, D3 = A3.

Here ”s” means ”with tr = 0”.

1.6.1. Language of categories.

Categories, functors, natural transformations.

Exercise: Ioneda’s lemma.

Adjoint functors.

1.7. Enveloping algebras.

Abstract definition. Let g be a Lie algebra over a field F . Its envelopping
algebra Ug is an associative algebra Ug over F together with a map of Lie
algebras

iU : g −→ UgLie

having the following universal property:

for any associative F -algebra A and a map of Lie algebras iA : g −→ ALie

there exists a unique morphism of associative algebras f : Ug −→ A such that
iA = f ◦ iU .

A concrete definition.

Let V be a vector space. Its tensor algebra:

T ·V = ⊕∞
n=0V

⊗n = T n ⊕∞
n=0 T

nV.
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Its symmetric algebra:

S ·V = T ·V/I

where I is the two-sided (homogeneous) ideal generated by all elements xy −
yx, x, y ∈ V .

The enveloping algebra Ug of a Lie algebra g:

Ug = T ·g/I

where I is the two-sided ideal in T ·g generated by all elements xy − yx− [x, y].

Canonical filtration.

Let

FnUg = Im(T≥ng −→ Ug) ⊂ Ug, n ≥ 0.

The associated graded

grUg :=
∞
∑

n=0

FnUg/Fn−1Ug, n ≥ 0

(where F−1g := 0) is commutative, whence the morphism of alegebras

S ·g −→ grUg (1.7.1)

extending the identity on g.

The Poincaré - Birkhoff - Witt theorem. The map (1.7.1) is an isomor-
phism.

1.7.1. Exercise. The Poisson structure on S ·g.

1.7.1. Exercise. The Casimir element. Let g be a finite dimensonal Lie
algebra, and (, ) : g ⊗ g −→ C a nondegenerate symmetric bilinear form. Let
{xi}, {yi} be the dual bases of g, (xi, yj) = δij . Define

c =
∑

xiyi ∈ Ug.

Show that c does not depend on the choice of a base. Show that c ∈ Z(Ug).

Idea. Show that a natural map

g⊗ g −→ Ug

is g-equivariant and remark that c is an image of some element C ∈ (g⊗ g)g.

C. Representations of Lie groups and Lie algebras

1.8. Group representations. Let G be a topological group. A (complex)
representaion of G is a pair (π, V ) where V is a complex Banach vector space
and π : G −→ GL(V ) a continuous homomorphism.
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Terminology: we say also that V is a representation of G, and that V is a
G-module. Instead of π(g)x we shall write sometimes simply gx.

Notation. V G = {x ∈ V | ∀g ∈ G gx = x} ⊂ V .

We will be mainly concerned with finite dimensional V .

Subreps, irreducible reps.

Standard operations.

Morphisms (intertwining operators). Notation: HomG(V, V
′).

The direct sum and the tensor product of reps. Trivial representation: 1.

Dual, or contragradient rep. If (π, V ) is a finite dimensional rep, we define its
dual (π∨, V ∨) as follows: V ∨ = HomC(V,C),

〈v, π∨(g)w〉 = 〈π(g−1)v, w〉, v ∈ V, w ∈ V ∨.

More generally, given two finite dimensional reps (πi, Vi), i = 1, 2, there is a
natural structure of a G-module on the space Hom(V1, V2) given by

(gf)(x) = g(f(g−1x)).

It follows at once that

Hom(V1, V2)
G = HomG(V1, V2).

Exercise. 1. Find a natural isomorphism of G modules

Hom(V1, V2)
∼
= V ∨

1 ⊗ V2.

The finite dimensional reps form a abelian C-linear monoidal category to be
denoted Rep(G). The unit: the trivial rep 1.

Exercise. 2. G = GLn(C), V = Cn, with the natural action It is called the
fundamental representaton.

(a) Show that V is irreducible.

(b) Show that

V ⊗ V = S2V ⊕ Λ2V

is a decompostion of V ⊗ V into irreducibles.

(c) For n = 2 show that SkV are irreducible for all k ≥ 0.

1.9. Representations of a Lie algebra g over a field F : a homomorphism
of Lie algebras g −→ gl(V ) where V is a F -vector space.

Basic operations: ⊗,M∗, Hom.
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1.10. Example. g = sl(2), λ ∈ C. The generators e, h, f act on V (λ) = F [x]
by the differential operators:

f = ∂x, h = 2x∂x − λ, e = −x2∂x + λx

1.11. From a representation of a Lie group G to the representation
of g = Lie(G).

A morphism of Lie groups f : G −→ G′ induces the morphism of their Lie
algebras Lie(f) : Lie(G) −→ Lie(G′).

In particular, a representation

π : G −→ GL(V )

gives rise to the representation

Lie(π) : g := Lie(G) −→ gl(V ).

In practical terms: for X ∈ g

Lie(π)(X) = lim
t=0

etX − IdV

t
.

1.12. Example. In the example 1.10, if λ ∈ N, the action of g on V (Λ) may
be integrated to an action of G = SL(2).

1.13. Exercise. Irreducible finite dimensional representations of g =
sl(2). g is defined by generators e, f, h subject to relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The Verma module M(λ), λ ∈ C: one generator v = v(λ), he = λv, ev = 0. It
admits a base {f iv}, i ∈ N

(a) Prove that

hf iv = (λ− 2i)f iv, ef iv = i(λ− i+ 1)f iv.

(b) Prove that if λ /∈ N then M(λ) is irreducible.

(c) Suppose that λ = m ∈ N. Then x = fm+1v is a singular vector, which

means ex = 0. Let M ′ = ⊕i≥m+1Cf
iv. Show that M ′ ∼

= M(−m − 2). By
definition, L(m) = M(m)/M ′. It is a g-module of dimension m+ 1.

Show that L(1) is the fundamental representation, L(2) is the adjoint repre-
sentation, L(m)

∼
= SmL(1).

(d) Show that L(m) is irreducible.

Idea. Let 0 6= L′ ⊂ L(m). There exists an eigenvector x ∈ L′ of the operator
h.
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(e) Let L be a finite dimensional g-module. Show that L
∼
= L(m) for some

m ∈ N.

Idea. There exists an eigenvector y ∈ L of the operator h. By considering the
elements eiy show that there exists x ∈ L, such that ex = 0, hx = λx, λ ∈ C.
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Chapter 2. Representations of compact Lie groups

2.0. Cf. [B].

In this Chapter G will be a compact topological group. All representations
will be complex and finite dimensional. We fix a Haar measure dg on G (recall
that it is left and right invariant) normalized by

∫

G

dg = 1.

Notation: Rep(G) the abelian monoidal category of finite dimensional reps.

C(G): the commutative algebra of continuous functions f : G −→ C.

It is equipped with an Hermitian scalar product

(f, g) =

∫

G

f(x)g(x)dx. (2.0.1)

2.1. Let π : G −→ GL(V ) be a representation. The character of π is a map
χπ : G −→ C given by χπ(g) = tr π(g).

We have
χπ(hgh

−1) = χ(g)

(one says that χπ is a class function).

2.2. Harmonic (Fourier) analysis on a compact abelian group. Let G
be abelian.

Examples. Connected: T n = U(1)n; disconnected: a finite abelian group.

A character of G is a continuos homomorphism

χ : G −→ U(1)

The characters form a discrete abelian group G∨ (the Pontryagin dual).

They form a basis of the Hilbert space L2(G). Each f ∈ L2(G) admits the
Fourier expansion

f(g) =
∑

χ∈G∨

aχχ(g), aχ =

∫

G

f(g)χ(g)dg.

The Plancherel formula
∫

G

|f(g)|2dg =
∑

χ∈G∨

|aχ|
2.

All this may be generalized to locally compact abelian groups, cf. [W].
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2.3. Let (π, V ) be a rep. An invariant inner product on V is a positive (hence
nondegenerate) Hermitian form (x, y) on V such that for all g ∈ G (gx, gy) =
(x, y).

Starting from an arbitrary Hermitian positive nondegenerate form (x, y)′ and
setting

(x, y) =

∫

G

(gx, gy)′dg,

one gets an invariant inner product.

Theorem. Let (π, V ) be a rep. equipped with an invariant inner product; let
W ⊂ V be a subrep. Then there exists a complement: a subrep W ′ ⊂ V such
that

W ⊕W ′ ∼
−→ V.

One says that Rep(G) is semisimple.

Corollary. Each representation V is a finite direct sum of irreducibles.

Exercise. Show that if G is abelian then every irrep of G is one-dimensional.

2.4. Schur lemma. Theorem. Let f : V −→ V ′ be an intertwining operator
between irreps. Then f is either 0 or an isomorphism.

2.5. Matrix elements. Definition. A matrix element of a rep (V, π) is a
finite sum of functions f ∈ C(G) of the form

f(g) = 〈gv, w〉

where v ∈ V, w ∈ V ∨.

Equivalent definition. Fix an invariant hermitian inner product on V . A
matrix element of π is a finite sum of functions of the form

f(g) = (π(g)v, w), v, w ∈ V.

It is clear that matrix elements of π form a linear subspace Mπ ⊂ C(G) of
dimension

dimMπ ≤ (dimV )2.

If fi is a matrix element of Vi, i = 1, 2, f1+ f2 (resp. f1f2) is a matrix element
of V1 ⊕ V2 (resp. of V1 ⊗ V2).

If f(g) is a matrix element of V , f∨(g) := f(g−1) is a matrix element of V ∨.

It follows that matrix elements of all finite dimensional reps form a commuta-
tive subalgebra (with unit)

Cmat(G) ⊂ C(G).
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It is clear that Mπ ⊂ Cmat(G).

Exercice. Let (π, V ) be a rep. Show that its character χπ ∈ Mπ.

Theorem. (i) If G is finite, Cmat(G) = C(G).

(ii) (Peter - Weyl). For an arbitrary compact G Cmat(G) is dense in G.

For a proof of the (ii) see [B], Chapter 3.

2.6. Regular representation. The group G acts on C(G) in two ways: for
f ∈ C(G) we set

(λ(g)f)(x) = f(g−1x), (ρ(g)f)(x) = f(xg)

Exercise. Show that the following conditions on a function f ∈ C(G) are
equivalent:

(i) The functions λ(g)f, g ∈ G, span a finite dimensional subspace of C(G).
(ii) The functions ρ(g)f, g ∈ G, span a finite dimensional subspace of C(G). (iii)
f ∈ Cmat(G).

2.7. Schur orthogonality. Theorem. (i) Let Vi, i = 1, 2 be two irreps. If Vi

are non-isomorphic then every matrix element of V1 is orthogonal to every matrix
element of V2.

(ii) Let V be an irrep with an invariant inner product (x, y), n = dimV . Then
∫

G

(gx1, y1)(gx2, y2)dg =
1

n
(x1, x2)(y1, y2).

for all xi, yi ∈ V .

Proof. (i) Fix invariant inner products on Vi. Let fi(g) = (πi(g)vi, wi), i =
1, 2. Suppose that (f1, f2) 6= 0.

Define a linear operator T : V1 −→ V2 by

T (v) =

∫

G

(π1(g)v, v1)π2(g)v2dg.

It is an intertwining operator (check it!). On the other hand,

(w2, T (w1)) = (f1, f2) 6= 0

(check it!). Hence T 6= 0 hence T is an isomorphism since Vi are irreducible.

2.8. Characters.

2.8.1. Exercise. Show that

χπ∨ = χ̄π.
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2.8.2. Proposition. If (π, V ) is an irrep,
∫

G

χπ(g)dg =

{

1 if π = 1,
0 otherwise

Proof. We have
∫

G

χπ(g)dg = (χπ, χ1) = 0

if π 6= 1 by Thm. 2.7. �

2.8.3. Corollary. If (π, V ) ∈ Rep(G),
∫

G

χπ(g) = dimV G.

Proof. Decompose V into a sum of irreducibles. �

2.9. Schur orthogonality for characters. Theorem. Let (πi, Vi) ∈
Rep(G), i = 1, 2.

(i)
(χπ1

, χπ2
) = dimHomG(V1, V2).

(ii) If πi, i = 1, 2 are irreducible,

(χπ1
, χπ2

) =

{

1 if π1
∼
= π2

0 otherwise

Proof. (i) Apply 2.8.3 to V = HomC(V1, V2). �
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Chapter 3. Complex semisimple Lie algebras:

structure and representations.

Cf. [S], [Ber].

3.0. In this Chapter, unless specified otherwise, all Lie algebras will be over
C and finite dimensional.

The Killing form:

(x, y) = Tr(AdxAd y).

Exercice. Prove that (x, y) is g-invariant, i.e.

([x, y], z) + (y, [x, z]) = 0.

3.1. Definitions. A simple Lie algebra is a Lie algebra g which does not
contain proper ideals.

Examples: sl(n), so(n), sp(2n).

A semisimple Lie algebra: a finite direct sum of simple ones.

Other equivalent definitions of semisimple Lie algebras:

(i) g does not contain abelian ideals.

(ii) (Killing - Cartan criterion) The Killing form is non-degenerate.

3.2. Cartan subalgebras. Root space decomposition. Let g be a Lie
algebra.

The lower central series: a series of ideals

C1g = g ⊃ C2g = [g, g] ⊃ . . . ⊃ C ig ⊃ . . .

where

C i+1g = [g, C ig].

g is called nilpotent if there exists i such that C ig = 0.

If g ⊂ g be a subalgebra. Its normalizer N(g′) = {x ∈ g| [x, g′] ⊂ g′]; It is the
largest ideal containg g′.

A Cartan subalgebra h ⊂ g is a subalgebra such that (i) h is nilpotent, and
(ii) h = N(h).

Every Lie algebra contains a Cartan subalgebra.

If g is semisimple then all Cartan subalgebras are abelian and they are all
conjugated.
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Example. Let g = sl(n), h ⊂ g — the abelian Lie subalgebra of diagonal
matrices, it is a Cartan subalgebra; n± ⊂ g — the subalgebra of upper (resp.
lower) triangular matrices with zeros on the diagonal, they are nilpotent.

Then
g = n− ⊕ g⊕ n+.

Moreover,
n+ = ⊕i<jC · Eij , n− = ⊕i>jC ·Eij .

From now on g will be semisimple. Fix a Cartan subalgebra h ⊂ g. For a
character

λ ∈ h∗ = HomC(h,C)

we denote
gχ = {x ∈ g| ∀h ∈ h [h, x] = χ(h)x}

Obviously h ⊂ g0.

An element α ∈ h∗, α 6= 0 such that gα 6= 0 is called a root, and gα is called
the root subspace.

All roots form a finite subset R ⊂ h∗.

Theorem. g0 = h and
g = h⊕⊕α∈R gα.

All root subspaces gα are one-dimensional.

The finite subset R ⊂ h∗ is remarkable.

3.3. Root systems; Weyl group. Cf. [S], [Bour], [H].

Let V be a real or complex vector space equipped with a symmetric nondegen-
erate bilinear form (., .).

For α ∈ V define sα : V
∼
= V by

sα(x) = x− 2
(x, α)

(α, α)
α

It is the orthogonal reflection wrt hyperplane α⊥ = {x ∈ V | (x, α) = 0}.

A root system in V is a finite subset R ⊂ V \ {0} which spans V as a vector
space and such that

(a) for each α ∈ R, sα(R) ⊂ R.

(b) for each α, β ∈ R,
sα(β)− β = nα

with n ∈ Z.

Irreducible and reduced root systems.
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Remark. Given a real root system R ⊂ V , R ⊂ V ⊂ VC is a complex root
system, and vice versa, any complex root system is a complexification of a unique
real root system.

The Weyl groupW of R is the subgroup of O(W ) generated by all sα, α ∈ R.

Since R spans V , W is a subgroup of Aut(R), whence finite.

The bilinear form is W -invariant, i.e.

(wx,wy) = (x, y), w ∈ W.

Example. The root system of type An, n ≥ 1. W = Sn.

Positive and negative roots. Bases.

Now suppose V to be real, dimV = r.

Let t ∈ V ∗ be such that for all α ∈ R t(α) 6= 0.

Set

R+ = {α ∈ R| t(α) > 0}, R− = {α ∈ R| t(α) > 0}.

Then R = R+

∐

R−. Since for all α ∈ R −α = sα(α) ∈ R, R− = −R+.

There exists a unique subset {α1, . . . , αr} ⊂ R+, a base of R such that every
α ∈ R is equal to a linear combination

α =

r
∑

i=1

niαi, ni ∈ N.

Dual roots. For α ∈ R set

α∨ =
2α

(α, α)
.

The Cartan matrix A = (aij),

aij = (αi, α
∨
j ).

We have

aijaji = 4 cos2 φij := bij ,

where φij is the angle between αi and αj .

Since aij ∈ Z, bij ∈ {0, 1, 2, 3, 4}.

We have aii = 2 and aij ≤ 0 for i 6= j.

Possible cases for i 6= j:
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aij aji bij mij

0 0 0 2
−1 −1 1 3
−2 −1 2 4
−3 −1 3 6

Here mij is the order of sisj where si = sαi
.

Theorem. The Weyl group is defined by generators si, 1 ≤ i ≤ r, and relations
(sisj)

mij = 1.

Dynkin diagram. Vertices: in bijection with the sipmle roots.

Two vertices are joined by bij intervals.

If the lengths of αi and αj are different, (which is equivalent to bij > 1), one
draws the direction of the arrows from αi to αj if |αi| < |αj |.

List of irreducible reduced root systems:

An, Bn, Cn, Dn, E6, E7, E8, F4, G2

Example. An

3.4. The structure of a simple Lie algebra. Let g be a simple Lie algebra.
Choose a Cartan subalgebra h ⊂ g, whence the root decomposition

g = h⊕⊕α∈R gα.

We have the Killing form on g which gives by restriction a symmetric nondegen-
erate bilinear form on h, and as a consequence, on h∗.

Theorem. R is an irreducible reduced (complex) root system in h∗.

Choose a base {α1, . . . , αr} ⊂ R, whence the set of positive roots R+ ⊂ R.

Set
n+ = n = ⊕α>0gα, n− = ⊕α<0gα;

these are nilpotent subalgebras of g and

g = n− ⊕ h⊕ n+

Denote
b = h⊕ n ⊂ g

It is a Borel subalgebra.

Example. g = sl0 = Lie(SLn), b = Lie(B) where B ⊂ SLn is the subgroup
of upper triangular matrices, the same with b.

Set
hα = [gα, g−α], α > 0.
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The subspace
g−α ⊕ hα ⊕ gα ⊂ g

is a Lie subalgebra isomorphic to sl2.

Let Hα ∈ hα denote the unique element such that α(Hα) = 2.

Set Hi = Hαi
, i = 1, . . . r. Choose any nonzero Ei ∈ gαi

and then define
Fi ∈ g−αi

by the condition [Ei, Fi] = Hi.

Theorem (Serre). The Lie algebra g may be defined by generators Ei, Hi, Fi, 1 ≤
i ≤ r and relations

[Hi, Hj] = 0,

[Ei, Fj] = Hiδij ,

ad(Ei)
−aij+1(Ej) = 0, i 6= j,

ad(Fi)
−aij+1(Fj) = 0, i 6= j.

The last relations are called the Serre relations.

3.4. Center of the enveloping algebra. Harish-Chandra theorem. Cf.
[D], Chapitre 7, §7.4.

We fix a semisimple Lie algebra g and a Cartan subalgebra h ⊂ g; let Z(Ug)
be the center of Ug.

The Lie algebra g acts by the adjoint representation on Ug. Let

Ug0 = {x ∈ Ug| ∀h ∈ h ad(h)(x) = 0};

it is a subalgebra of Ug containing Z(Ug).

Fix a base ∆ ⊂ R, whence n± ⊂ g.

Lemma. (i) The subspace

L = Ug0 ∩ n+Ug = Ug0 ∩ n−Ug

is a two-sided ideal in Ug0.

(ii)
Ug0 = Uh⊕ L.

This lemme is an easy corollary of the PBW theorem, cf. [D], Lemma 7.4.2.

Let
j : Ug0 −→ Uh

denote the projection.

We can identify
Uh = Sh
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with the algebra C[h∗] of polynomial functions on h∗.

Let

d : C[h∗] −→ C[h∗]

(”décalage”, or shift) denote the homomorphism which takes p(λ) to p(λ− ρ).

Consider the composition

HC : Z(Ug) ⊂ Ug0 −→ Uh
d

−→ Uh

Theorem. The map HC does not depend on a choice of a base ∆ and induces
an algebra isomorphism

HC : Z(Ug)
∼
= UhW .

Example. sl2.

3.5. Verma modules. Irreducible representations.

Induced representations. Let a ⊂ b be a Lie algebra and a Lie subalgebra,
and M a representation of a.

Indb
a M = Ub⊗Ua M

Verma modules. We fix h ⊂ b ⊂ g, with g semisimple, b a Borel, h a Cartan.

Let λ : h −→ C be a character. It gives rise to a one-dimensional h-module
1λ, with

h · 1 = λ(h) · 1

and hence, by restriction, using the projection b −→ h, a b-module 1λ. By
definition,

M(λ) = Indg
b 1λ−ρ.

We shall denote 1λ the highest vector of M(λ). The map x 7→ x · 1λ idnuces an
ismorphism

Un−
∼

−→ M(λ).

3.5.1. Example. g = sl2, E, F,H the standard basis. R = {α,−α}, α(H) =
2, ω = α/2 = ρ. Let λ(H) = a ∈ N. Thus, H1λ = a− 1.

A base of M(λ): {F i1λ, i ≥ 0}, and F i1λ ∈ M(λ)λ−(2i+1)ω .

EF i1λ = i(???) · F i−11λ

Suppose a ∈ N∗, thus λ = aρ. The only nontrivial element of the Weil group
s(α) = −α, s(λ) = −λ.
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The vector

x = F a1λ ∈ M(λ)s(λ)−ω

is singular, which means by definition Ex = 0. Thus we can define an embedding

f : M(sλ) −→ M(λ), f(1sλ) = x.

The quotient

L(λ) := M(λ)/f(M(sλ))

is the irreducible representation of dimension a.

So we have an exact sequence of reps

0 −→ M(sλ)
f

−→ M(λ) −→ L(λ) −→ 0.

If a /∈ N, M(λ) does not contain singular vectors; it is irreducible. �

Let us pass to the general case.

Weight lattice:

P (R) = {λ ∈ h∗|∀α ∈ R (λ, α∨) ∈ Z},

it is a free abelian group of rank r.

Fix a base B = {α1, . . . , αr} ⊂ R}, denote si = sαi
(the simple reflections).

The base of P : {ω1, . . . , ωr},

(ωi, α
∨
j ) = δij .

ωi are called the fundamental weights.

Remark. Let Q(R) ⊂ h∗ (the root lattice) be the abelian generated by R. It
is also a free abelian group of rank r, and Q(R) ⊂ P (R).

The cone of dominant weights:

P++ = {λ ∈ P | ∀ i (α∨
i , λ) ∈ N} = ⊕r

i=1Nωi.

ρ =
1

2

∑

α∈ R+

α =
r

∑

i=1

ωi.

Let λ ∈ P++ + ρ. For each 1 ≤ i ≤ r there is an inclusion

fi : M(siλ) →֒ M(λ),

where

fi(1siλ) = F
(λ,αi)CHECK!
i 1λ,

We define

L(λ) = M(λ)/
∑

i

f(M(siλ)),
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so that we have an exact sequence

⊕r
i=1M(siλ) −→ M(λ) −→ L(λ) −→ 0 (3.5.1)

Theorem. L(λ) is a finite dimensional irreducible representation (of highest
weight λ− ρ).

All irreducible finite dimensional representations are of the form L(λ) for some
λ ∈ P++ + ρ; they are pairwise nonisomorphic.

Any finite dimensional representation of g is a direct sum of irreducibles.

3.6. BGG resolution.

Length on the Weyl group. For w ∈ W we write ℓ(w) for the minimal
number of simple reflections in a decomposition

w = si1 . . . sin.

The sign:
ǫ(w) = (−1)ℓ(w) = detw.

The maximal length is

N := max
w∈W

{ℓ(w)} = dim n = |R|/2.

Denote
Wi = {w ∈ W | ℓ(w) = i}, ni = |Wi|,

so that n0 = 1, n1 = r. We have the symmetry property

ni = nN−i.

Theorem (Chevalley)

N
∑

i=0

nit
i =

r
∏

j=1

tdj − 1

t− 1
.

The numbers d1, . . . , dr are called exposants.

Example. For W = Sr+1, dj = j + 1.

The exact sequence (3.5.1) may be prolonged.

Theorem, [BGG]. Let λ ∈ P++ + ρ. There is an exact sequence

0 −→ CN(λ) −→ . . . −→ C1(λ) −→ C0(λ) −→ L(λ) −→ 0 (3.6.1)

with
Ci(λ) = ⊕w∈Wi

M(wλ).
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Let us explain the differentials in this sequence. Let us write w −→ w′ if
ℓ(w′) = ℓ(w) + 1 and w′ = sw for some simple reflection s = si. In this case we
have a natural inclusion

fw,w′ = fs : M(swλ) →֒ M(wλ)

as in 3.5. If w −→ w′ −→ w′′ then

fw,w′fw′,w′′ = fw,w′′.

Lemma 1. If ℓ(w′′) = ℓ(w) + 2 then the number of w′ such w −→ w′ −→ w′′

is either 0 or 2.

In the last case let w −→ w′
i −→ w′′, i = 1, 2 be the two chains, let us call

such a situation a square. Then

fw,w′

1
fw′

1
,w′′ = fw,w′

2
fw′

2
,w′′.

Lemma 2. We can find signs

b(w,w′) = ±1, w −→ w′

in such a way that for each square as above

b(w,w′
1)b(w

′
1, w

′′) = −b(w,w′
2)b(w

′
2, w

′′).

We define the differentials

di : Ci(λ) −→ Ci−1(λ)

to have nonzero components

di;w,w′ = b(w,w′)fw,w′ : M(w′λ) −→ M(wλ)

for each w −→ w′. Lemma 2 implies that d2 = 0.

3.7. Hermann Weyl character formula. Cf. [Bour], Ch. VIII, §9.

Laurent series wrt positive weights. We consider the group ring Z[P ]
with the base eλ, λ ∈ P ,

eλ · eλ
′

= eλ+λ′

The elements of Z[P ] are finite sums
∑

µ∈P a(µ)eµ functions a : P −→ Z with
finite support, so

Z[P ] ⊂ ZP ⊂ Zh∗

where XY = {f : X −→ Y }; if X is an abelian group then XY is an abelian.

Let P−(h
∗) denote the set of subsets S ⊂ h∗ contained in a finite union of

subsets of the form µ− P++, µ ∈ h∗.

Let
Z[[P ]] ⊂ Zh∗
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denote the subgroup of functions a whose support Supp(a) ∈ P−(h
∗).

Define the multiplication in Z[[P ]] as the convolution

(ab)(µ) =
∑

ν

a(ν)b(µ − ν),

the sum being finite due to the condition on the support; this multiplication
extends the multiplication in Z[P ].

We can regard elements a ∈ Z[[P ]] as formal series

a =
∑

λ∈h∗

a(λ)eλ;

they are ”Laurent series” with finitely many positive terms but possibly infinitely
many egative ones.

Discrminant, or Weyl denominator.

D =
∏

α>0

(eα/2 − e−α/2) = eρ
∏

α>0

(1− e−α).

Theorem.

D =
∑

w∈W

ǫ(w)ewρ.

For R = An this is the Vandermonde determinant.

Kostant partition function.

Let

Q+ = P++ ∩Q = ⊕r
i=1Nαi.

For λ ∈ Q+ define

K(λ) = Card{(nα)α>0| λ =
∑

nαα}

and set

K =
∑

λ∈Q+

K(λ)e−λ ∈ Z[[P ]]

Category O. Characters.

We define the category O as the category of g-modules M which are

(a) h-diagonalizable, so

M = ⊕λ∈h∗Mλ

where

Mλ = {x ∈ M | ∀h ∈ h hx = λ(h)x}.
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(b)
∀λ ∈ h∗ dimMλ < ∞

Thus we get a function

ch(M) : h∗ −→ N, ch(M)(λ) = dimMλ.

The characters λ such that dimMλ 6= 0 are called the weights of M , and dimMλ

- the multiplicity of λ.

Example. The adjoint representation g, its weights = the roots, all multiplic-
ities = 1.

(c)
Supp ch(M) ∈ P−(h∗).

Thus we can consider chM as an element of Z[[P ]],

ch(M) =
∑

λ∈h∗

dimMλe
λ.

Examples: Verma modules, irreducible modules.

Examples. Let g = sl2, L(m) - the irreducible g-module with highest weight
mω, m ∈ N. We have dimL(m) = m+ 1 its nonzero weights are

mω, (m− 2)ω, . . . ,−mω,

each weight has multiplicity 1. Thus

ch(L(m)) =
m
∑

i=0

e(−m+2i)α/2 =
e(m+1)α/2 − e−(m+1)α/2

eα/2 − e−α/2

Theorem (Hermann Weyl character formula).

ch(L(λ)) =

∑

w∈W ǫ(w)ew(λ)

∑

w∈W ǫ(w)ew(ρ)
.

Attention: the highest weight of L(λ) is λ− ρ.

Theorem

dim(L(λ)) =
∏

α>0

(λ, α)

(ρ, α)
.
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[W] A.Weil, Intégration dans les groupes topologiques et applicaptions.

[Weyl] H.Weyl, The classical groups, their invariants and representations.


