SERIES GENERATRICES

Fonctions arithmétiques et séries de Dirichlet

Examen Avril 2013

Correction

Exercice 1. Montrez que pour n naturel n > 1

$$\sum_{d:\ d|n} \mu(d) = 0$$

Donnez des examples pour n petits de la forme $n = p_1^a p_2^b p_3^c$ où p_i sont premiers, $a, b, c \ge 0$.

Que vaut cette somme pour n = 1?

Soit

$$n = \prod_{i=1}^{r} p_i^{a_i}$$

la décomposition de n en facteurs premiers, où tous $a_i > 0$ si n > 1 et $p_i \neq p_j$ si $i \neq j$.

Si d|n et $\mu(d) \neq 0$ alors

$$d = \prod_{j \in J} p_j$$

où $J \subset I_r := \{1, \dots, r\}$ est un sous-ensemble, et $\mu(d) = (-1)^s$ où $s = \operatorname{Card} J$.

Le nombre de sous-ensembles de I_r de cardinal s est égal à $\binom{r}{s}$. Il s'en suit que

$$\sum_{d: d|n} \mu(d) = \sum_{s=0}^{r} (-1)^s \binom{r}{s} = (1-1)^r = 0$$

si r > 0. Si r = 0, i.e. n = 1, cette somme est égale à 1.

Exercice 2. Calcules $\phi(n), d_k(n), \mu(n) \text{ pour } k = 0, 1, 2 \text{ et } n = 12, 60, 75.$

On utilisera les formules du cours: si $n = \prod_{i=1}^r p_i^{a_i}$ est la décomposition de n en facteurs premiers, alors

$$\phi(n) = n \prod_{i=1}^{r} \frac{p-1}{p},$$

$$\sigma_0(n) = d(n) = \prod_{i=1}^r (a_i + 1),$$

 et

$$\sigma_k(n) = \prod_{i=1}^r \frac{p^{k(a_i+1)} - 1}{p_i^k - 1}$$

Il s'en suit: pour $n = 12 = 2^2 \cdot 3$, $\mu(12) = 0$,

$$\phi(12) = 12 \cdot \frac{2-1}{2} \cdot \frac{3-1}{3} = 4,$$

$$d(12) = (2+1) \cdot 2 = 6,$$

$$\sigma_k(12) = \frac{2^{3k} - 1}{2^k - 1} \cdot \frac{3^{2k} - 1}{3^k - 1}, \ k > 0.$$

Donc

$$\sigma_1(12) = \frac{2^3 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} = 28,$$

$$\sigma_1(12) = \frac{2^6 - 1}{2 - 1} \cdot \frac{3^4 - 1}{3 - 1} = 210.$$

Pour $n = 60 = 12 \cdot 5 = 2^2 \cdot 3 \cdot 5$, $\mu(60) = 0$,

$$\phi(60) = \phi(12)\phi(5) = 16$$

$$d(60) = d(12)d(5) = d(12) \cdot 2,$$

$$\sigma_1(60) = \sigma_1(12)\sigma_1(5) = \sigma_1(12) \cdot \frac{5^2 - 1}{5 - 1} = \sigma_1(12) \cdot 6,$$

$$\sigma_2(60) = \sigma_2(12)\sigma_2(5) = \sigma_2(12) \cdot \frac{5^4 - 1}{5^2 - 1} = \sigma_1(12) \cdot 26,$$

puisque (12, 5) = 1.

Enfin,
$$75 = 3 \cdot 5^2$$
, d'où $\mu(75) = 0$,

$$\phi(75) = 75 \cdot \frac{3-1}{3} \cdot \frac{5-1}{5} = 40,$$

$$d(75) = (1+1)(2+1) = 6,$$

$$\sigma_1(75) = \frac{3^2-1}{3-1} \cdot \frac{5^3-1}{5-1} = 124,$$

$$\sigma_2(75) = \frac{3^4-1}{3^2-1} \cdot \frac{5^6-1}{5^2-1} = (3^2+1)(5^4+5^2+1)$$

Exercice 3. Soient $f, g : \mathbb{N}^* \longrightarrow \mathbb{C}$ deux fonctions.

(i) Montrez que leur produit de convolution f * g = g * f.

On a

$$f * g(n) = \sum_{a,b \in \mathbb{N}^*: ab = n} f(a)g(b) = \sum_{a,b \in \mathbb{N}^*: ba = n} g(a)f(b) = g * f(n).$$

(ii) Montrez que D(f*g) = D(f)D(g) où on rapelle que

$$D(f) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

En effet,

$$D(f)D(g) = \sum_{a=1}^{\infty} \frac{f(a)}{a^s} \cdot \sum_{b=1}^{\infty} \frac{g(b)}{b^s} = \sum_{a,b=1}^{\infty} \frac{f(a)g(b)}{(ab)^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \cdot \left(\sum_{a,b \in \mathbb{N}^*: ab=n} f(a)g(b)\right) = D(f * g)$$