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Abstract
We establish the nonlinear stability of N-soliton solutions of the modified
Korteweg–de Vries (mKdV) equation. The N-soliton solutions are global solu-
tions of mKdV behaving at (positive and negative) time infinity as sums of
one-solitons with speeds 0 < c1 < . . . < cN . The proof relies on the variational
characterization of N-solitons. We show that the N-solitons realize the local
minimum of the (N + 1)th mKdV conserved quantity subject to fixed con-
straints on the N first conserved quantities. To this aim, we construct a functional
for which N-solitons are critical points, we prove that the spectral properties of
the linearization of this functional around an N-soliton are preserved on the
extended timeline, and we analyze the spectrum at infinity of linearized oper-
ators around one-solitons. The main new ingredients in our analysis are a new
operator identity based on a generalized Sylvester law of inertia and recursion
operators for the mKdV equation.
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1. Introduction

We consider the modified Korteweg–de Vries equation

ut + (uxx + u3)x = 0, (mKdV)

where u : Rt × Rx → R. The modified Korteweg–de Vries equation (mKdV) is a well-known
completely integrable model [44, 50]. In particular, solutions might be constructed using the
inverse scattering transform and there exists an infinite sequence of conservations laws.

Among the possible solutions of (mKdV), some are of particular interest: the solitons and
multi-solitons. A soliton is a solution of the form

Uc1 (t, x) = Qc1 (x − c1t − x1),

where the profile Qc1 is fixed along the time evolution and is translated along R at speed c1 > 0
with initial position x1. A multi-soliton is a solution Uc1,...,cN of (mKdV) such that

Uc1,...,cN (t, x)∼t→±∞

N∑
j=1

Qc j(x − c jt − x±j ),

which means that Uc1,...,cN behaves at negative and positive time infinity as a sum of solitons.
Explicit formulas for solitons and multi-solitons are known and will be recalled in section 2.

It has long been known (see Schuur [49]) that a solution of the classical Korteweg–de Vries
equation (i.e. when the nonlinearity is quadratic instead of cubic) decomposes as a finite sum
of solitons and a dispersive remainder. This type of behaviour is expected to be generic for non-
linear dispersive equations, but it has seldom been rigorously established and remains known
most of the time under the name soliton resolution conjecture. In the case of the modified
Korteweg–de Vries equation, the conjecture has been established recently in weighted spaces
and for multi-solitons in [11]. However, whereas for the classical Korteweg–de Vries equation
the only nonlinear solutions obtained via inverse scattering are the multi-solitons, for the mod-
ified Korteweg–de Vries equation the inverse scattering also generates breathers and N-poles
(see [50, 51]), which are not yet taken into account by any soliton resolution statement. Observe
that (mKdV) possesses even more complicated solutions like self-similar solutions (see [13]
for their asymptotic behaviour in Fourier space).

One of the major questions related to multi-solitons is their stability with respect to the
dynamics of the equation. In the case of the classical Korteweg–de Vries equation, this question
was settled in 1993 by Maddocks and Sachs [38]: N-solitons are stable in HN(R). Our goal in
this paper is to establish the counter-part of this result in the case of the modified Korteweg–de
Vries equation.

Our main result is the following.

Theorem 1.1. Given N ∈ N, N � 1, a collection of speeds c = (c1, . . . , cN) with 0 < c1 <
. . . < cN and a collection of phases x = (x1, . . . , xN) ∈ RN, let U(N)

c (·, ·; x) be the correspond-
ing multi-soliton given by (8). For any ε > 0, there exists δ > 0 such that for any u0 ∈ HN(R),
the following stability property holds. If∥∥u0 − U(N)

c (0, ·, x)
∥∥

HN < δ,

then for any t ∈ R the corresponding solution u of (mKdV) verifies

inf
τ∈R,y∈RN

∥∥u(t) − U(N)
c (τ , ·, y)

∥∥
HN < ε.
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Some discussion of the notion of stability obtained in theorem 1.1 is in order, as many
possible notions of stability exist, already for single solitons, and even more in the case of multi-
solitons. Observe that for the comprehension we have neglected in the statement of theorem
1.1 a redundancy in the stability expression, as we in fact have

{U(N)
c (τ , ·, y) : τ ∈ R, y ∈ R

N} = {U(N)
c (0, ·, y) : y ∈ R

N}.

Our stability statement is valid for the whole timeline, from infinity in the past to infinity in
the future. This feature is usually specific to integrable equations, we should comment later
on stability statements obtained for only one end of the timeline in non-integrable models.
The stability statement could be reformulated in terms of stability of a set in the following
way. A set is said to be stable if any solution with initial data close to this set will remain
close to this set for all time. Different kind of sets can be considered, for example the time
orbit of the multi-soliton, the family of multi-soliton profiles (with same speeds), the set of
(local or global) minimizers of some variational problems. For solitons of (mKdV), it is known
that these three sets coincide. However, it is not always the case. In particular, the first two sets
are different as soon as we consider N-solitons with N � 2, and our stability result concerns
the second set. It is indeed not hard to verify using the explicit formula of the N-solitons that
the time orbit of the N-solitons cannot be stable (to make our result a time-orbit stability result,
one would need to include all possible time-orbits under the N first Hamiltonian flows of the
(mKdV) hierarchy, see e.g. the discussion in [38, p 869]). A typical result of stability of the
third kind of sets (i.e. sets of minimizers) is the seminal work of Cazenave and Lions [9]. The
flexibility and versatility of variational technics makes the stability of this kind of sets easier
to obtain, but leads to potentially weaker stability statements unless some uniqueness or non-
degeneracy of the minimizers is established. Unfortunately, uniqueness statements are most of
the time widely open problems (for more in this direction, see the recent work of Albert [1]
in the case of the classical Korteweg–de Vries equation for a uniqueness result for the two-
solitons). In our case, we are able to obtain the non-degeneracy property in the same process
as a local minimization property.

Observe here that, while solutions behaving at both ends of the time line as pure sums
of solitons are probably bound to exist only in integrable cases, it is nevertheless possible to
obtain multi-soliton solutions for non-integrable equations if the behaviour is expected only at
positive (or negative) large times. In the framework of the nonlinear Schrödinger equation, in
1990, Merle [43] obtained a first existence result for the mass-critical case. Since then, many
existence results for multi-solitons have been obtained in different settings (see [5, 14, 15, 32,
33, 40, 52, 53, 55, 56] among many others). In the framework of Korteweg–de Vries type
equations, existence (and uniqueness) of multi-solitons in non-integrable cases was first estab-
lished by Martel [39]. Stability of multi-solitons for generalized Korteweg–de Vries equations
was obtained by Martel et al in [41] (see also [2] for related developments). Using a similar
approach, some stability results have been obtained in the nonlinear Schrödinger case (see [42]
and more recently [34]), but the results are only partial and stability of multi-solitons remains
essentially an open problem in the Schrödinger case. In the case of the classical Korteweg–de
Vries equation, results combining the approaches of [38, 42] have been obtained by Alejo et al
[4], with in particular results of stability and asymptotic stability in L2(R) for multi-solitons.
A detailed overview of these results is offered by Muñoz in [45]. Let us also mention the
asymptotic stability results obtained for generalized Korteweg–de Vries equations in [17, 48].

The premises of the stability analysis of N-solitons may be found in the pioneering work
of Lax [30], in which in particular the variational principle satisfied by multi-solitons of the
Korteweg–de Vries equation is given. However, it is Maddocks and Sachs [38] who laid the
cornerstone for the stability analysis of multi-solitons in integrable equations. Their approach
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relies essentially on spectral and variational arguments, and makes no (direct) use of inverse
scattering. The integrable nature of the equation is used essentially in two aspects: first, for
the explicit formulas for multi-solitons, second for the construction of an infinite sequence of
conservation laws. Indeed, the central point of [38] is to show that N-solitons are local mini-
mizers of the (N + 1)th conserved quantity subject to fixed constraints on the N first conserved
quantities. In a way, this argument is to be related to the theories developed by Benjamin et al
[6, 7, 19, 20] for the stability of a single solitary wave.

The ideas developed by Maddocks and Sachs have been successfully implemented to obtain
stability results in various settings. Neves and Lopes [46] proved the stability of the two-
solitons of the Benjamin–Ono equation. Alejo and Muñoz [3] established the stability of
(mKdV) breathers (which can be formally seen as counterparts of two-solitons for complex
speeds). Spectral stability for multi-solitons in the KdV hierarchy was considered by Kodoma
and Pelinovsky [29]. We also mention the work of Kapitula [23], which is devoted to the stabil-
ity of N-solitons of a large class of integrable systems, including in particular the model cubic
nonlinear Schrödinger equation. Very recently, a variational approach was used by Killip and
Visan [26] to obtain the stability of multi-solitons of the classical Korteweg–de Vries equation
in weak regularity spaces (up to H−1(R) !). Finally, a stability result in low regularity Hs-spaces
was also obtained very recently by Koch and Tataru [27] for the multi-solitons of both mod-
ified Korteweg–de Vries equation and the cubic nonlinear Schrödinger equation. This result
contains ours, as it is valid in particular for s = N. The proof is however much more involved
and relies on an extensive analysis of an iterated Bäcklund transform.

The major difference between our approach and the approach of Maddocks and Sachs lies
in the analysis of spectral properties. In particular, we develop in the context of (mKdV), and
for N-solitons, ideas introduced by Neves and Lopes [46] for the analysis of the two-solitons of
the Benjamin–Ono equation. Indeed, the spectral analysis of Maddocks and Sachs and many
of their continuators relies on an extension of Sturm–Liouville theory to higher order differ-
ential equations (see [38, section 2.2] and [18]). As the Benjamin–Ono equation is non-local,
Neves and Lopes [46] were lead to introduce a new strategy relying on iso-inertial properties
of linearized operators. It turns out that this type of argument can also be implemented for
local problems such as (mKdV). Our first task was to extend the spectral theory of Neves and
Lopes [46] to an arbitrary number N of composing solitons. Apart from an increased technical
complexity (inherent to the fact that the number of composing solitons is now arbitrary), no
major difficulty arises here. Then our second task was to implement this spectral theory for
the multi-solitons of (mKdV). At that level, we had to overcome major obstacles. Most of the
existing works content themselves with the simpler analysis of two-solitons, for which many
informations can be obtained by brute force (it is said in [46]: ‘it is likely that our method
can be extended to multi-solitons of the BO equation and of its hierarchy but the algebra may
become prohibitive’). Hence, to deal with the arbitrary N case, it was necessary to acquire a
deeper understanding of the relationships between N-solitons, the variational principle that they
satisfy, and the spectral properties of the operators obtained by linearization of the conserved
quantities around them.

We now present the process leading to the proof of our main result theorem 1.1.
We first review in section 2 the results gravitating around our main topic of interest. We recall

the well-posedness of the Cauchy problem, and remind the reader that the conservation laws
for (mKdV) may be obtained from one another using a recursion formula (see (4)) involving
the first derivative of consecutive conservation laws and what we call the recursion operator
K (see (3)). We also recall the formulas for solitons and multi-solitons.

Section 3 is devoted to the next step: establishing the variational principle verified by the
multi-solitons, i.e. to construct a functional SN of which N-solitons are critical points. The form
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of the variational principle as well as some elements of proof were given by Lax [30]. Holmer
et al [22] later established a rigorous proof for the two-solitons, which we adapt here to the
case of N-solitons. The proof proceeds into two steps. First, as N-solitons are decomposing at
time infinity as decoupled solitons, the variational principle that they possibly satisfy should
also be verified by each of their composing solitons. As a consequence, the coefficients of the
variational principle are determined by the speeds of the composing solitons. Second, we prove
that the N-solitons indeed verify the conjectured variational principle by a rigidity argument
on the differential equation verified by a remainder term. The proof given here is analytic in
spirit and makes little use of the algebraic structure of the problem. Alternative strategies to
obtain a similar result using the inverse scattering approach are possible, see e.g. [23, 36].

Given the functional SN admitting an N-soliton as critical point, we hold a natural candidate
for a Lyapunov functional allowing to prove stability. Indeed, it was proved by Maddocks and
Sachs that if one can equate the number of negative eigenvalues of the operator correspond-
ing to the Hessian with the number of positive principal curvatures of the solution surface
(see proposition 6.1 or [38, lemma 2.3]), then a Lyapunov functional based on an augmented
Lagrangian may be constructed and stability follows (the reader familiar with the stability the-
ory of single solitons will recognize in these two criteria the equivalent for multi-solitons of the
spectral and slope conditions rendered famous by Grillakis et al [19]). The spectral analysis
represents the major task and is spread on two sections.

At first, in section 4, one needs to extend to the N-soliton case the theory developed by Neves
and Lopes [46] in the case of two-solitons. Indeed, in the spectral analysis of linearized oper-
ators, a major difference appears between solitons and multi-solitons: whereas it is possible
for solitons to consider the perturbation at the profile level and therefore to work with oper-
ators having time independent potentials, the operators associated with multi-solitons have
inherently time dependent potentials. To overcome this difficulty, and somehow to go back to
time-independent potentials, one needs a relation between the spectral structure along the time
evolution and the spectral structure at time infinity (where the decoupling between solitons
brings us back to the case of one-solitons). This comes in the form of the preservation of iner-
tia property, i.e. the numbers of negative and zero eigenvalues are constant along the extended
timeline (see proposition 4.3 and corollary 4.5).

With this tool in hand, the spectral analysis is obtained as the spectral analysis of the lin-
earized operator at infinity, which is itself the combination of the spectral analysis of the
linearized operators around each of the composing solitons. In section 5, the later analysis
is made possible by a remarkable factorization identity (see proposition 5.3), which we obtain
thanks to the recursion properties of the linearized conserved quantities around each soliton.
Indeed, given Qj the jth soliton profile, one may introduce the operators

M j = Q j∂x

(
·

Q j

)
, Mt

j =
1

Q j
∂x

(
Q j ·

)
,

and, denoting the linearized operator around Qj by LN,j := S′′
N(Qj), we have

M jLN, jM
t
j = Mt

j

(
N∏

k=1

(−∂2
x + ck)

)
M j,

which allows us to obtain the necessary spectral informations.
Finally, in section 6, we compute the number of positive principal curvatures for the multi-

soliton surface by an astute use of the (matrix) Sylvester’s law of inertia combined with the
relations between the coefficients of the candidate Lyapunov functional and the speeds of the

7113



Nonlinearity 34 (2021) 7109 S Le Coz and Z Wang

multi-soliton. The stability of the N-soliton is then a consequence of the combination of the
previous arguments.

2. Preliminaries

In this section we collect some preliminary results on (mKdV).

2.1. Hamiltonian structure and conserved quantities

The first few conserved quantities of (mKdV) are given by

(mass) H0(u) :=
∫
R

udx,

(momentum) H1(u) :=
1
2

∫
R

u2dx, (1)

(energy) H2(u) :=
1
2

∫
R

u2
x −

1
4

∫
R

u4dx, (2)

(second energy) H3(u) :=
1
2

∫
R

u2
xxdx +

1
4

∫
R

u6dx − 5
2

∫
R

u2u2
xdx.

In general, for n ∈ N, the conserved quantities of (mKdV) are of the form

Hn(u) :=
1
2

∫
R

u2
(n−1)xdx +

∫
R

qn(u, ux, . . . , u(n−2)x)dx,

where qn is a polynomial which might be explicitly calculated. Various strategies are pos-
sible to generate the conserved quantities of (mKdV). In particular, one might rely on the
following Lenard recursion identity. For u ∈ S(R) (the Schwartz space of fast-decaying smooth
functions), define the recursion operator K by

K(u) := − ∂3
x − 2u2∂x − 2ux∂

−1
x (u∂x), ∂−1

x u :=
1
2

(∫ x

−∞
u(y) dy −

∫ ∞

x
u(y) dy

)
. (3)

For all n � 0, we have the recursion formula (see [47] or [22, formula (2.4)])

∂xH′
n+1(u) = K(u)H′

n(u). (4)

The modified Korteweg–de Vries equation (mKdV) is a Hamiltonian system of the form

ut = ∂xH′
2(u).

The recursion formula readily leads to another Hamiltonian expression for (mKdV):

ut = K(u)H′
1(u).

This bi-Hamiltonian nature allows to consider the mKdV hierarchy, a generalized class of
equations given by

ut = ∂xH′
n+1(u) = K(u)H′

n(u), n ∈ N.

In particular, the functionals Hn are constant along the flow of all equations in the hierarchy.
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A substantial body of works is available regarding the Cauchy problem for the modified
Korteweg–de Vries equation (mKdV). In particular, one may refer to the celebrated works
of Kenig et al [25] and Colliander et al [12], or see some of the recent books on the topic
[28, 35, 58]. In this work, we will make use of the following property, which has been
established in a streamlined proof (using only the necessary elements of [25]) by Holmer
et al [22]. For all k ∈ N, given any initial data u0 ∈ Hk(R) there exists a unique global solu-
tion u ∈ C(R, Hk(R)) of (mKdV) such that u(0) = u0. Moreover, the data-to-solution map is
continuous and Hj(u) is preserved by the flow for j = 1, . . . , k + 1.

2.2. Solitons and multi-solitons

The inverse scattering method allows, by purely algebraic technics, to calculate explicitly solu-
tions of (mKdV) (at least for rapidly decreasing solutions) and we now give a quick review of
some solutions which have been constructed for (mKdV). Details of the constructions are given
in [21, 50, 51]. Recent progress using the inverse scattering approach (including a soliton res-
olution result and asymptotic stability of multi-solitons in weighted spaces) are reported in
[11].

We start with the solitons. A soliton of (mKdV) is a traveling wave solution of the form

u(t, x) = Qc(x − ct + x0),

where c ∈ R is the speed and x0 is the initial position. The profile Qc satisfies the ordinary
differential equation

−∂xxQc + cQc − Q3
c = 0. (5)

The soliton profile Qc can be proved to be a minimizer of the energy H2 (see (2)) under the
momentum (see (1)) constraint H1(u) = H1(Qc) = 2

√
c. Up to sign change and translation,

there exists a unique positive even solution to the profile equation (5), which is explicitly given
by the formula

Qc(x) =
√

cQ(
√

cx), Q(x) =
√

2 sech(x). (6)

To make a link with what follows, note that the one-soliton with speed c1 and shift parameter
x1 can be written in the form

Uc1 (t, x; x1) = 2
√

2∂x (arctan (es1 )) ,

where s1 =
√

c1(x − c1t) + x1.
Solitons form the building blocks for more complicated dynamics of (mKdV), which we

now present, starting with two-solitons.
Given speeds c1, c2 > 0, c1 	= c2 and shift parameters x1, x2 ∈ R, a two-soliton is a solution

of (mKdV) given by

Uc1,c2 (t, x; x1, x2) = 2
√

2∂x

(
arctan

(
es1 + es2

1 − ρ2 es1+s2

))
, (7)

where s j :=
√

c j(x − c jt) + x j for j = 1, 2, and ρ :=
√

c1−
√

c2√
c1+

√
c2

. Asymptotically in time, this solu-
tion decomposes into a sum of two one-solitons traveling at speeds c1 and c2. More precisely,
there exist x±1 , x±2 depending explicitly on c1, c2, x1, x2 such that

lim
t→±∞

∥∥Uc1,c2 (t, ·; x1, x2) − Qc1 (· − c1t − x±1 ) − Qc2 (· − c2t − x±2 )
∥∥

H1 = 0.
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As can be observed in the above formula, in the two-solitons the interaction between the two
composing solitons is smooth and its only consequence is a shift in the trajectories, as x−j 	= x+j
for j = 1, 2.

Observe here that when c1 = c2, there exist also solutions behaving at time infinity as two
solitons traveling at the same speed and going away at logarithmic rate (see [51]). Those solu-
tions, called double-poles, are however given by a formula different from (7) and are not
included in the results of the present paper. Our progress in the analysis of such solutions
will be reported in a future work.

The formula for N-solitons for generic N is slightly more complicated but has a similar form.
Given N ∈ N, speeds 0 < c1 < . . . < cN, phases x1, . . . , xN ∈ R, an N-soliton solution is

given by

Uc1,...,cN (t, x; x1, . . . , xN) = 2
√

2∂x

(
arctan

(
g(t, x)
f (t, x)

))
, (8)

where the functions f and g are given by

f (t, x) =


 N
2 �∑

n=0

∑
σ∈CN

2n

a(σ) exp
(
sσ(1) + · · ·+ sσ(2n)

)
,

g(t, x) =


 N−1
2 �∑

n=0

∑
σ∈CN

2n+1

a(σ) exp
(
sσ(1) + · · ·+ sσ(2n+1)

)
.

Here,
⌊

N
2

⌋
denotes the integer part of N

2 and CN
2n is the set of all possible combinations of 2n

elements among N. The variables sj are given for j = 1, . . . , N by

s j :=
√

c j

(
x − c jt

)
+ x j.

The function a is build upon the functions ã given by

ã(k, l) := −
(√

cl −
√

ck√
cl +

√
ck

)2

,

and for n � 1 and σ := {i1, . . . , i2n}, we set

a(σ) :=
∏

1�k<l�2n

ã(ik, il)

and a(σ) = 1 otherwise (i.e. if σ is not in the above form).
It was shown in [21] that the N-soliton solutions given by the above formula decompose at

positive and negative time infinity as sums of solitons. As was shown by Martel [39], they are
the unique solutions of (mKdV) having this prescribed behaviour.

3. The variational principle

We analyze in this section the variational principle satisfied by multi-solitons.
We first observe that the differential equation (5) verified by the soliton profile and the recur-

sion relation (4) imply that the one-soliton Uc1 (t) ≡ Uc1 (t, ·; x1) with speed c1 > 0 satisfies for
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all n � 1 and for any t ∈ R the following variational principle

H′
n+1(Uc1 (t)) + c1H′

n(Uc1 (t)) = 0. (9)

For future reference, we calculate here the quantities H j(Qc1 ) related to the one-soliton profile

Qc1 . Multiplying (9) with
dQc1
dc1

, for each j, we get

dH j+1(Qc)
dc |c=c1

= −c1
dH j(Qc)

dc |c=c1

= · · · = (−c1) j dH1(Qc)
dc |c=c1

= (−1) jc
2 j−1

2
1 ,

and therefore

H j+1(Qc1 ) = (−1) j 2
2 j + 1

c
2 j+1

2
1 . (10)

It can be verified by explicit calculations that the two-soliton Uc1,c2 (t) ≡ Uc1,c2 (t, ·, x1, x2)
with speeds 0 < c1 < c2 satisfies for all n � 1 and for any t ∈ R the variational principle

H′
n+2(Uc1,c2 (t)) + (c1 + c2)H′

n+1(Uc1,c2 (t)) + c1c2H′
n(Uc1,c2 (t)) = 0.

Using the explicit expression (8) for the N-solitons, it would in theory be possible to ver-
ify by hand for any given N that they also satisfy variational principles. Calculations would
however rapidly become unmanageable when N grows. In the following, we provide an ana-
lytic proof that the multi-solitons indeed verify a variational principle. This fact is commonly
accepted but rarely proved. We base here our proof on the approach outlined by Lax [30] and
later rigorously developed by Holmer et al [22].

Proposition 3.1. Let U : Rt × Rx → R be a solution of (mKdV) and assume that there exist
N ∈ N\{0}, 0 < c1 < . . . < cN, and x1, . . . , xN : Rt → R such that∥∥∥∥∥∥U(t) −

N∑
j=1

Qc j(· − x j(t))

∥∥∥∥∥∥
HN+1

� e−
1
2
√

c1 |min j,k(x j(t)−xk(t))|,

and for all j = 1, . . . , N, we have

|∂t x j(t) − c j| �
1
|t| . (11)

Then there exist λ1, . . . ,λN ∈ R such that for all t ∈ R the function U(t) verifies the variational
principle

H′
N+1(U(t)) +

N∑
j=1

λ jH
′
j(U(t)) = 0. (12)

The coefficients λj, j = 1, . . . , N are uniquely determined in terms of the speeds cj, j =
1, . . . , N. Precisely, they are given by Vieta’s formulas: for k = 1, . . . , N we have

λN+1−k =
∑

1�i1<...<ik�N

⎛
⎝ k∏

j=1

ci j

⎞
⎠ . (13)
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Let λ1, . . . ,λN be given by (13). For u ∈ HN(R), we define the functional whose first
derivative gives (12) by

SN(u) = HN+1(u) +
N∑

j=1

λ jH j(u). (14)

We first prove that if a solution of (mKdV) decomposes asymptotically as a sum of solitons,
then the parameters of the variational principle it possibly satisfies are constrained by the values
of the speeds in the asymptotic decomposition and must satisfy (13).

Lemma 3.2. Let U : Rt × Rx → R be a solution of (mKdV) and assume that there exist
N ∈ N\{0}, 0 < c1 � . . . � cN, and x1, . . . , xN : Rt → R such that

lim
t→±∞

∥∥∥∥∥∥U(t) −
N∑

j=1

Qc j(· − x j(t))

∥∥∥∥∥∥
HN

= 0,

and for all j, k = 1, . . . , N, j 	= k we have

lim
t→±∞

|x j(t) − xk(t)| = ∞.

Assume also that there exist λ1, . . . ,λN ∈ R such that for all t ∈ R the function U(t) verifies
the variational principle

H′
N+1(U(t)) +

N∑
j=1

λ jH
′
j(U(t)) = 0. (15)

Then the coefficients λj, j = 1, . . . , N are uniquely determined in terms of the speeds cj,
j = 1, . . . , N by Vieta’s formula (13).

Remark 3.3. The assumptions of lemma 3.2 are weaker than those of proposition 3.1. In
particular, lemma 3.2 applies also to N-pole solutions (i.e. with multi-solitons with possibly
equal speeds), whereas proposition 3.1 is restricted to N-solitons with different speeds.

Proof of lemma 3.2. Letting t →∞ in (15), using the exponential localization of each
soliton and the asymptotic description of U, for each j = 1, . . . , N we have

H′
N+1(Qc j) +

N∑
k=1

λkH′
k(Qc j) = 0.

Observe here that this argument would not be valid if the functionals Hk were containing non-
local terms. In the present setting, each H′

k contains only derivatives and potentials based on
powers of U and its spatial derivatives.

Recall that each soliton profile Qc j verifies for each k � 1 the equation

H′
k+1(Qc j) = (−c j)kH1(Qc j).

As a consequence, we see that for each j = 1, . . . , N we have

(−c j)
N +

N∑
k=1

λk(−c j)
k−1 = 0.
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In other words, the speeds −c j are the roots of the Nth order polynomial with coefficients
1,λN , . . . ,λ1. The relations between the roots of a polynomial and its coefficients are well-
known to be described by Vieta’s formulas as in (13). �

We will use the following technical result in the course of the proof of proposition 3.1.

Lemma 3.4. For any φ ∈ HN+1(R) and for any j, k = 1, . . . , N + 1, we have

(
H′

j(φ), ∂xH′
k(φ)

)
L2 = 0

Proof. The result is a consequence of the iteration identity (4). Indeed, for any φ ∈ C∞
c we

have

(
H′

j(φ), ∂xH′
k(φ)

)
L2 =

(
H′

j(φ),K(φ)H′
k−1(φ)

)
L2 = −

(
K(φ)H′

j(φ), H′
k−1(φ)

)
L2

= −
(
∂xH′

j+1(φ), H′
k−1(φ)

)
L2 =

(
H′

j+1(φ), ∂xH′
k−1(φ)

)
L2 .

Iterating the process k − 1 times, we arrive at

(
H′

j(φ), ∂xH′
k(φ)

)
L2 =

(
H′

j+k−1(φ), ∂xH′
1(φ)

)
L2 .

From the invariance of H j+k−1 under translation, we have

0 =
dH j+k−1(φ(· − y))

dy |y=0
=
(
H′

j+k−1(φ),φx

)
L2 =

(
H′

j+k−1(φ), ∂xH′
1(φ)

)
L2 .

Gathering the previous identities leads to the desired conclusion, which by density is also
valid in HN+1(R). �

Proof of proposition 3.1. From lemma 3.2, we know that, if they exist, λ1, . . . ,λN in
proposition 3.1 are uniquely determined by c1, . . . , cN and (13). We define

r(t) = S′
N(U(t)).

By construction, each of the soliton profile Qc j composing U at the limit t →±∞ is a critical
point of SN and is exponentially decaying, therefore we have

S′
N

⎛
⎝ N∑

j=1

Qc j(· − x j(t))

⎞
⎠ =

N∑
j=1

S′
N(Qc j(· − x j(t))) + O

(
e−

1
2
√

c1|min j,k (x j(t)−xk (t))|
)

= O
(

e−
1
2
√

c1|min j,k (x j(t)−xk (t))|
)
.

Since we have assumed that c j 	= ck for j 	= k, we can infer from (11) that there exists c∗ > 0
such that

S′
N

⎛
⎝ N∑

j=1

Qc j(· − x j(t))

⎞
⎠ = O

(
e−c∗|t|

)
.
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Hence we can use this result with the expression of r to obtain

r(t) = S′
N(U(t)) − S′

N

⎛
⎝ N∑

j=1

Qc j(· − x j(t))

⎞
⎠+ O

(
e−c∗|t|

)
.

= S′′
N

⎛
⎝ N∑

j=1

Qc j(· − x j(t))

⎞
⎠
⎛
⎝U(t) −

N∑
j=1

Qc j(· − x j(t))

⎞
⎠

+ o

⎛
⎝U(t) −

N∑
j=1

Qc j(· − x j(t))

⎞
⎠+ O

(
e−c∗|t|

)
.

By assumption, we have

∥∥∥∥∥∥U(t) −
N∑

j=1

Qc j(· − x j(t))

∥∥∥∥∥∥
HN+1

� e−c∗|t|,

therefore we have

‖r(t)‖L2 � e−c∗|t|.

In particular, we have

lim
t→∞

‖r(t)‖L2 = 0.

Our goal is to show that in fact for all t ∈ R we have

r(t) = 0.

For this, it is sufficient to show that for some t0 ∈ R and for any v0 ∈ C∞
c (R) we have

(r(t0), v0)L2 = 0.

We choose arbitrarily t0 ∈ R and v0 ∈ C∞
c (R) and consider the evolution problem for the

linearized (mKdV) equation around U given by

∂tv = ∂xH′′
2 (U(t))v, v(t0) = v0.

We will show that

∂t(r(t), v(t))L2 = 0,

and

lim
t→∞

(r(t), v(t))L2 = 0,

from which the conclusion follows.
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First, we observe that

∂t(r(t), v(t))L2 = ∂t

(
S′

N(U(t)), v(t)
)

L2 = ∂t

(
H′

N+1(U(t)), v(t)
)

L2 +

N∑
j=1

λ j∂t

(
H′

j(U(t)), v(t)
)

L2 .

We claim that for every j = 1, . . . , N + 1 we have

∂t

(
H′

j(U(t)), v(t)
)

L2 = 0.

Indeed, using the equations verified by U and v (and removing the variable t for convenience)
we have

∂t

(
H′

j(U), v
)

L2 =
(
H′′

j (U)∂xH′
2(U), v

)
L2 +

(
H′

j(U), ∂xH′′
2 (U)v

)
L2 . (16)

From lemma 3.4, we have for any φ ∈ HN+1(R) and for any j, k = 1, . . . , N + 1 that(
H′

j(φ), ∂xH′
k(φ)

)
L2 = 0.

Writing φ = U + sv and differentiating in s at s = 0 we obtain(
H′′

j (U)v, ∂xH′
k(U)

)
+
(
H′

j(U), ∂xH′′
k (U)v

)
L2 = 0.

Substituting in (16) and using the self-adjointness of H′′
j (U) we obtain

∂t

(
H′

j(U), v
)

L2 =
(
H′′

j (U)∂xH′
2(U), v

)
L2 −

(
H′′

j (U)v, ∂xH′
2(U)

)
L2 = 0,

This proves the claim, and we can infer that

∂t(r(t), v(t))L2 = 0.

From the exponential decay of r, we have

(r(t), v(t))L2 � ‖v(t)‖L2 e−c∗|t|.

Hence if we are able to show that v grows slower than ec∗t, we can readily conclude that
necessarily (r(t), v(t))L2 = 0.

To this aim, let us consider a partition of unity constructed in such a way that each member
of the partition is (at time infinity) a localizing factor around one of the solitons composing the
multi-soliton U. The partition that we use is similar to the one used in [14, 15]. Let ψ : R→ R

be a C∞ cut-off function defined such that

ψ(s) = 0 if s � −1, 0 < ψ(s) < 1 if − 1 < s < 1, ψ(s) = 1 if 1 � s.

Define for j = 2, . . . , N the middle speeds

m j =
c j−1 + c j

2
,

Define also for (t, x) ∈ R× R the domain walls

ψ1(t, x) = 1, ψ j(t, x) = ψ

(
1√

t
(x − m jt)

)
, j = 2, . . . , N,

and construct the partition of unity as follows:

φ j = ψ j − ψ j+1, j = 1, . . . , N − 1, φN = ψN .
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We may now write

v =

N∑
j=1

ψ jv.

Recall (see [22]) the following coercivity property for the linearized action around a one-soliton
profile Qc: there exists δ > 0 such that

〈H′′
2 (Qc)w,w〉+ c 〈H′′

1 (Qc)w,w〉 � δ‖w‖2
H1 −

1
δ

((
w, ∂−1

x ΛcQc

)2 − (w, Q)2
)
. (17)

Observe that ∂−1
x ΛcQc and Q = ∂−1

x ∂xQ form the generalized kernel of the operator (H′′
2(Qc) +

H′′
1(Qc))∂x (see the original work of Weinstein [57] for the equivalent version for Schrödinger

equations). We will use this property on ψ jv for j = 1, . . . , N.
We first deal with the orthogonality directions. By direct calculations, we have

∂t

(
ψ jv, Qc j(· − x j(t))

)
L2 =

(
∂tψ j) v, Qc j(· − x j(t))

)
L2 +

(
ψ j∂tv, Qc j(· − x j(t))

)
L2

+
(
ψ jv, ∂t x j(t)∂xQc j(· − x j(t))

)
L2 .

The first term of the right-hand side contains a time derivative of ψ, hence it will be of order
t−

1
2 . For the second term, we have(
ψ j∂tv, Qc j(· − x j(t))

)
L2 =

(
ψ j∂xH′′

2 (U)v, Qc j(· − x j(t))
)

L2

= −
(
∂xψ jH

′′
2 (U)v, Qc j(· − x j(t))

)
L2−

(
ψ jH

′′
2 (U)v, ∂xQc j(·− x j(t))

)
L2

= −
(
ψ jv, H′′

2 (U)∂xQc j(· − x j(t))
)

L2 + O
(

t−
1
2 ‖v‖H1

)
.

Moreover, by assumption on x j(t), the third term gives(
ψ jv, ∂t x j(t)∂xQc j(· − x j(t))

)
=
(
ψ jv, c j∂xQc j(· − x j(t))

)
+ O

(
t−1‖v‖L2

)
=
(
ψ jv, c jH

′′
1 (U)∂xQc j(· − x j(t))

)
+ O

(
t−1‖v‖L2

)
.

By the localization properties of ψ j, as t is large U is close to the soliton Qc j(· − x j(t)) on
the support of ψ j and we have

H′′
2 (U) + c jH

′′
1 (U) = H′′

2 (Qc j(· − x j(t)) + c jH
′′
1 (Qc j(· − x j(t))) + O(e−c∗t).

Since ∂xQc j(· − x j(t)) is in the kernel of the above operator, this gives

∂t

(
ψ jv, Qc j(· − x j(t))

)
= O

(
t−

1
2 ‖v‖H1

)
.

From similar arguments, we may also obtain the result for the other orthogonality direction
that we have chosen:

∂t

(
ψ jv, ∂−1

x Λc jQc j(· − x j(t))
)
= O

(
t−

1
2 ‖v‖H1

)
.

Let j = 1, . . . , N. We have

∂t 〈H′′
2 (U)ψ jv,ψ jv〉 = 〈H′′′

2 (U)∂tUψ jv,ψ jv〉+ 2 〈H′′
2 (U)ψ jv, ∂t(ψ jv)〉

= 〈−6U∂tUψ jv,ψ jv〉+ 2 〈H′′
2 (U)ψ jv, ∂tψ j〉+ 2 〈H′′

2 (U)ψ jv,ψ j∂tv〉 .
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We will keep the first term of the right-hand side. The second term contains a time derivative
of ψ, hence it will be of order t−

1
2 . For the third term, we have

〈H′′
2 (U)ψ jv,ψ j∂tv〉 = 〈H′′

2 (U)ψ jv,ψ j∂xH′′
2 (U)v〉

= −〈∂x(H′′
2 (U)ψ jv),ψ jH

′′
2 (U)v〉 − 〈H′′

2 (U)ψ jv, (∂xψ j)H′′
2 (U)v〉 .

The second term contains a time derivative of ψ, hence it will be of order t−
1
2 . For the first one,

we proceed further:

〈∂x(H′′
2 (U)ψ jv),ψ jH

′′
2 (U)v〉 = 〈∂x(H′′

2 (U)ψ jv), H′′
2 (U)ψ jv〉

−
〈
∂x(H′′

2 (U)ψ jv), (∂xψ j∂xv + ∂2
xψ jv)

〉
= −

〈
∂x(H′′

2 (U)ψ jv), (∂xψ j∂xv + ∂2
xψ jv)

〉
,

and therefore this term is also of order t−
1
2 . Summarizing, we have proved that

∂t 〈H′′
2 (U)ψ jv,ψ jv〉 = 〈−6U∂tUψ jv,ψ jv〉+ O

(
‖ψ jv‖2

H1√
t

)
.

We may argue similarly to obtain

∂t 〈H′′
1 (U)ψ jv,ψ jv〉 = 〈−6U∂xUψ jv,ψ jv〉+ O

(
‖ψ jv‖2

H1√
t

)
.

Hence, we have

∂t

(
〈H′′

2 (U)ψ jv,ψ jv〉+ c j 〈H′′
1 (U)ψ jv,ψ jv〉

)
=
〈
−6U

(
Ut + c j∂xU

)
ψ jv,ψ jv

〉
+ O

(
‖ψ jv‖2

H1√
t

)
.

Recall that a one-soliton Uc verifies the following transport equation

∂tUc + c∂xUc = 0.

All we have left to do is to take into account the localizing factor that we have introduced.
Since ψ j is centered around c jt, by assumption on U we have

(∂tU + c j∂xU)ψ j = O
(
e−c∗t

)
.

Therefore, using the coercivity property (17) we have for t large enough

∂t

(
〈H′′

2 (U)ψ jv,ψ jv〉+ c j 〈H′′
1 (U)ψ jv,ψ jv〉

)
� C√

t

(
〈H′′

2 (U)ψ jv,ψ jv〉+ c j 〈H′′
1 (U)ψ jv,ψ jv〉

)
,

which gives

〈H′′
2 (U)ψ jv,ψ jv〉+ c j 〈H′′

1 (U)ψ jv,ψ jv〉 � eC
√

t.

As a consequence, we have

‖v‖2
H1 �

N∑
j=1

‖ψ jv‖2
H1 � eC

√
t,
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which implies

(r(t), v(t))L2 = 0.

This concludes the proof. �

4. Inertia preservation

The tools presented in this section have been developed by Lax [31], Lopes [37] and Neves and
Lopes [46]. The work of Neves and Lopes being devoted to the case of 2 solitons, we extended
here their results to the case of N-solitons with N an arbitrary integer.

4.1. The generalized Sylvester law of inertia

Let X be a real Hilbert space. We first define the inertia of a self-adjoint operator with positive
essential spectrum.

Definition 4.1. Let L : D(L) ⊂ X → X be a self-adjoint operator. Assume that there exists
δ > 0 such that the spectrum of L in (−∞, δ) consists into a finite number of eigenvalues with
finite geometric multiplicities. The inertia of L, denoted by Inertia(L), is the pair (n, z), where
n is the number of negative eigenvalues of L (counted with geometric multiplicities) and z is
the dimension of the kernel of L.

We first recall the generalized Sylvester law of inertia, which is the operator version of the
eponymous law for matrices, and can be proved using the same line of arguments.

Proposition 4.2 (Generalized Sylvester law of inertia). Let L : D(L) ⊂ X → X be a
self-adjoint operator such that the inertia is well-defined, and let M be a bounded invertible
operator. Then we have

Inertia(L) = Inertia(MLMt),

where MLMt is the self-adjoint operator with domain (Mt)−1(D(L)).

4.2. Iso-inertial families of operators

We will be working with linearized operators around a multi-soliton, which fit in the following
more generic framework.

Consider the abstract evolution equation

∂tu = f (u), (18)

for u : R→ X, and recall that the following framework was set in [30, 37, 46]. Let X2 ⊂ X1 ⊂ X
be Hilbert spaces and V : X1 → R be such that the following assumptions are verified.

(H1) The spaces X2 ⊂ X1 ⊂ X are continuously embedded. The embedding from X2 to X1

is denoted by i.
(H2) The functional V : X1 → R is C3.
(H3) The function f : X2 → X1 is C2.
(H4) For any u ∈ X2, we have V ′(i(u)) f (u) = 0.
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Moreover, given u ∈ C1(R, X1) ∩ C(R, X2) a strong solution of (18), we assume that there
exists a self-adjoint operator L(t) : D(L) ⊂ X → X with domain D(L) independent of t such that
for h, k ∈ Z, where Z ⊂ D(L) ∩ X2 is a dense subspace of X, we have

〈L(t)h, k〉 = V ′′(u(t))(h, k).

We consider the operators B(t) : D(B) ⊂ X → X such that for any h ∈ Z we have

B(t)h = − f ′(u(t))h,

and we have the following assumption.

(H5) The closed operators B(t) and Bt(t) have a common domain D(B) which is independent
of t. The Cauchy problems

∂tu = B(t)u, ∂tv = Bt(t)v

are well-posed in X for positive and negative times.

We then have the following result, which we recall without proofs (see the work of Lax [31]
or the work of Lopes [37]).

Proposition 4.3. Let u ∈ C1(R, X1) ∩ C(R, X2) be a strong solution of (18) and assume that
(H1)–(H5) are satisfied. Then the following assertions hold.

• Invariance of the set of critical points. If there exists t0 ∈ R such that V ′(u(t0)) = 0, then
V ′(u(t)) = 0 for any t ∈ R.

• Invariance of the inertia. Assume that u is such that V ′(u(t)) = 0 for all t ∈ R. Then the
inertia Inertia(L(t)) of the operator L(t) representing V ′′(u(t)) is independent of t.

4.3. Iso-inertia at infinity

Given an t-dependent family of operators whose inertia we are interested in, proposition 4.3
allows to choose for a specific t to perform the inertia calculation. This is however in most
situations not sufficient, as we would like to let t go to infinity and relate the inertia of our
family with the inertia of the asymptotic objects that we obtain. This is what is allowed in the
following framework.

Let X be a real Hilbert space. Let N ∈ N and (τ j
n) be sequences of isometries of X for

j = 1, . . . , N. For brevity in notation, we denote the composition of an isometry τ k
n and the

inverse of τ j
n by

τ k/ j
n = τ k

n (τ j
n)−1.

Let A, (B j) j=1,...,N be linear operators and (Rn) be a sequence of linear operators. Define the
sequences of operators based on (B j) and (τ j

n) by

B j
n = (τ j

n )−1B jτ j
n .

We will use the following notations: the resolvent set of an operator L will be denoted by ρ(L).
We denote by Pλ,ε(L) the spectral projection of L corresponding to the circle of center λ ∈ C

and radius ε > 0. The range will be denoted by Range and the dimension by dim.
We make the following assumptions.
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(A1) For all j = 1, . . . , N and n ∈ N, the operators A, A + B j, A + B j
n, A +

∑N
j=1B j

n + Rn are
self-adjoint with the same domain D(A).

(A2) The operator A is invertible. For all j = 1, . . . , N and n ∈ N, the operator A commutes
with τ j

n (i.e. A = (τ j
n)−1Aτ j

n ).
(A3) There exists δ > 0 such that for all j = 1, . . . , N and n ∈ N, the spectra of A, A + B j,

A + B j
n, A +

∑N
j=1B j

n + Rn in (−∞, δ) consist into a finite number of eigenvalues with
finite geometric multiplicities.

(A4) For every λ ∈ ∩N
j=1ρ(A + B j) and for all j = 1, . . . , N the operators A(A + B j − λI)−1

are bounded.
(A5) In the operator norm,

∥∥RnA−1
∥∥→ 0 as n →∞.

(A6) For all u ∈ D(A) and for all j, l = 1, . . . , N, j 	= l we have

lim
n→∞

∥∥∥τ j/l
n Blτ l/ j

n u
∥∥∥

X
→ 0.

(A7) For all u ∈ X and for all j, k = 1, . . . , N, j 	= k, we have τ
j/k

n u ⇀ 0 weakly in X as
n →∞.

(A8) For all j = 1, . . . , N, the operator B jA−1 is compact.

Define the operator Ln : D(A) ⊂ X → X by

Ln = A +
N∑

j=1

B j
n + Rn.

We have the following result on the asymptotic behaviour of the spectrum of Ln as n goes to
infinity.

Theorem 4.4. Assume that assumptions (A1)–(A8) hold and let λ < δ. The following
assertions hold.

• If λ ∈ ∩N
j=1ρ(A + B j), then there exists nλ ∈ N such that for all n � nλ we haveλ ∈ ρ(Ln).

• If λ ∈ ∪N
j=1σ(A + B j), then there exists ε0 > 0 such that for all 0 < ε < ε0 there exists

nε ∈ N such that for all n � nε we have

dim
(
Range

(
Pλ,ε (Ln)

))
=

N∑
j=1

dim
(
Range

(
Pλ,ε

(
A + B j

)))
.

In our setting, we are interested in particular in the inertia of Ln and we will make use of
the following corollary.

Corollary 4.5. Under the assumptions of theorem 4.4, if there exists nL such that for all
n � nL we have

dim(ker(Ln)) �
N∑

j=1

dim(ker(A + B j)),

then for all n � nL we have

Inertia(Ln) =
N∑

j=1

Inertia(A + B j).

Moreover, a non-zero eigenvalue of Ln cannot approach 0 as n →∞.
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Theorem 4.4 and corollary 4.5 were proved in [46] in the case N = 2. We adapt here the
proof of [46] to handle the case of generic N ∈ N.

Proof of theorem 4.4. We start by the first assertion. Let λ < δ be such that λ ∈ ∩N
j=1ρ

(A + B j). By assumption (A3) λ can either be in the resolvent of Ln or be an eigenvalue with
finite multiplicity. Hence, to prove that λ ∈ ρ(Ln), it is sufficient to prove that u = 0 is the only
solution to

(Ln − λI)u = 0.

Assume therefore that there exists u ∈ D(A) such that

(Ln − λI)u =

⎛
⎝A +

N∑
j=1

B j
n + Rn − λI

⎞
⎠ u = 0. (19)

We remark here that since

(τ j
n)−1

(
A + B j − λI

)
τ j

n = A + B j
n − λI

we have

ρ(A + B j) = ρ(A + B j
n).

Since λ ∈ ∩N
j=1ρ(A + B j) we may rewrite (19) for any k = 1, . . . , N as

u = (A + Bk
n − λI)−1

⎛
⎜⎜⎝−

N∑
j=1
j	=k

B j
nu − Rnu

⎞
⎟⎟⎠ .

We now use this equation recursively and replace the u after B j
n by its expression in the right

member (with k replaced by j) to obtain

u = (A + Bk
n − λI)−1

⎛
⎜⎜⎝−

N∑
j=1
j	=k

B j
n(A + B j

n − λI)−1

⎛
⎜⎝−

N∑
l=1
l 	= j

Bl
nu − Rnu

⎞
⎟⎠− Rnu

⎞
⎟⎟⎠ .

We develop the right member of the previous equation to define the operator Wk
n(λ) :

D(A) → X by

Wk
n (λ) = (A + Bk

n − λI)−1

⎛
⎜⎜⎝

N∑
j=1
j	=k

B j
n(A + B j

n − λI)−1

⎛
⎜⎝ N∑

l=1
l 	= j

Bl
n + Rn

⎞
⎟⎠
⎞
⎟⎟⎠− (A + Bk

n − λI)−1Rn.

(20)

Then u ∈ D(A) is a fixed point of Wk
n (λ). We aim at showing that the operator Wk

n can in
fact be extended to a bounded operator which verifies

∥∥Wk
n (λ)

∥∥ < 1 for n large. This will imply
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that u = 0. We first consider the operator

(A + Bk
n − λI)−1

N∑
j=1
j	=k

B j
n(A + B j

n − λI)−1
N∑

l=1
l 	= j

Bl
n.

Since an operator and its adjoint share the same norm and all the operators that we are manip-
ulating are symmetric by assumption, we have for any j, k, l = 1, . . . , N, k 	= j, j 	= l that

∥∥(A + Bk
n − λI)−1B j

n(A + B j
n − λI)−1Bl

n

∥∥ =
∥∥Bl

n(A + B j
n − λI)−1B j

n(A + Bk
n − λI)−1

∥∥
Since the τ j

n are isometries, we have∥∥Bl
n(A + B j

n − λI)−1B j
n(A + Bk

n − λI)−1
∥∥

=
∥∥∥(τ l

n)−1Blτ l/ j
n (A + B j − λI)−1τ j

n (τ j
n)−1B jτ j/k

n (A + Bk − λI)−1τ k
n

∥∥∥
=
∥∥∥(τ j

n)−1
(
τ j/l

n Blτ l/ j
n (A + B j − λI)−1B jτ j/k

n (A + Bk − λI)−1τ k/ j
n

)
τ j

n

∥∥∥
=
∥∥∥τ j/l

n Blτ l/ j
n (A + B j − λI)−1B jA−1τ j/k

n A(A + Bk − λI)−1τ k/ j
n

∥∥∥ .
Now, by assumption (A4), the family

τ j/k
n A(A + Bk − λI)−1τ k/ j

n

is uniformly bounded. By assumption (A8), the operator

B jA−1

is compact. The operator

(A + B j − λI)−1

is bounded. And finally, combining all these informations with assumption (A6), we have

lim
n→∞

∥∥∥τ j/l
n Blτ l/ j

n (A + B j − λI)−1B jA−1τ j/k
n A(A + Bk − λI)−1τ k/ j

n

∥∥∥ = 0.

The terms involving Rn in Wk
n (λ) are taken care of by assumptions (A4) and (A5): as n →∞,

we have∥∥(A + Bk
n − λI)−1Rn

∥∥ =
∥∥Rn(A + Bk

n − λI)−1
∥∥ =

∥∥RnA−1A(A + Bk
n − λI)−1

∥∥→ 0.

In conclusion, we indeed have

lim
n→∞

∥∥Wk
n (λ)

∥∥ = 0,

which implies that for n large enough u = 0 is the only solution of (19) and that λ ∈ ρ(Ln).
This concludes the proof of the first part of theorem 4.4.

We now prove the second part of theorem 4.4. Let λ < δ be such that λ ∈ ∪N
j=1σ(A + B j).

By isolatedness of the eigenvalues below δ, there exists ε0 > 0 such that for allμ ∈ C verifying
|λ− μ| � ε0,μ 	= λwe haveμ ∈ ∩N

j=1ρ(A + B j). Take now 0 < ε < ε0. By the first part, there
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exists nε such that for all μ ∈ C verifying |λ− μ| = ε, μ 	= λ, we have μ ∈ ρ(Ln). We denote
by Γ ⊂ C the circle centered at λ with radius ε. The corresponding spectral projection is then
given by

Pλ,ε(Ln) =
1

2πi

∫
Γ

(Ln − μI)−1dμ.

We use a strategy similar to the one of the first part to express the resolvent (Ln − μI)−1. Assume
that u ∈ D(A) and f ∈ X are such that

(Ln − μI)−1 f = u.

It is equivalent to

(Ln − μI)u = Au +

N∑
j=1

B j
nu + Rnu − μu = f .

Since for all k = 1, . . . , N we have μ ∈ ρ(A + Bk), we may write

u = (A + Bk
n − μI)−1

⎛
⎜⎜⎝ f −

N∑
j=1
j	=k

B j
nu − Rnu

⎞
⎟⎟⎠ .

As in the first part, we use the equation recursively to replace the u after B j
n to get

u = (A + Bk
n − μI)−1

⎛
⎜⎜⎝ f −

N∑
j=1
j	=k

B j
n(A + B j

n − μI)−1

⎛
⎜⎝ f −

N∑
l=1
l 	= j

Bl
nu − Rnu

⎞
⎟⎠− Rnu

⎞
⎟⎟⎠ .

Using the operator Wk
n already defined in the first part (see (20)), we write

u = Wk
n (μ)u + (A + Bk

n − μI)−1 f + (A + Bk
n − μI)−1

N∑
j=1
j	=k

B j
n(A + B j

n − μI)−1 f .

We already proved in the first part that limn→∞
∥∥Wk

n (μ)
∥∥ = 0, therefore if n is large enough

we may write u as the image of f by the following operator, therefore giving a new expression
for the resolvent:

(I − Wk
n (μ))−1

⎛
⎜⎜⎝(A + Bk

n − μI)−1 + (A + Bk
n − μI)−1

N∑
j=1
j	=k

B j
n(A + B j

n−μI)−1

⎞
⎟⎟⎠= (Ln − μI)−1.

Let us define an approximate projection by

Pn =
1

2πi

∫
Γ

(A + Bk
n − μI)−1dμ+

1
2πi

∫
Γ

(A + Bk
n − μI)−1

N∑
j=1
j	=k

B j
n(A + B j

n − μI)−1dμ.
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Since limn→∞
∥∥Wk

n (μ)
∥∥ = 0, we have

lim
n→∞

‖Pλ,ε(Ln) − Pn‖ = 0.

As Pλ,ε(Ln) has finite dimensional range, this implies that for n large enough we have

dim
(
Range

(
Pλ,ε (Ln)

))
= dim (Range (Pn)) .

We now analyze Pn. The first term in the expression of Pn is just

1
2πi

∫
Γ

(A + Bk
n − μI)−1dμ = Pλ,ε(A + Bk

n).

Moreover, we have

dim
(
Range(Pλ,ε(A + Bk

n))
)
= dim

(
Range((τ k

n )−1Pλ,ε(A + Bk)τ k
n )
)

= dim
(
Range(Pλ,ε(A + Bk))

)
.

Remark here that it may very well be that λ /∈ σ(A + Bk) and Pλ,ε(A + Bk) has null range.
For the second term in the expression of Pn, we argue as follows. For j 	= k, we have

(A + Bk
n − μI)−1B j

n(A + B j
n − μI)−1 = (τ j

n)−1τ j/k
n (A + Bk − μI)−1τ k/ j

n B j(A + B j − μI)−1τ j
n .

We will therefore analyze the operator

Qn,k, j(μ) = τ j/k
n (A + Bk − μI)−1τ k/ j

n B j(A + B j − μI)−1. (21)

It is well-known (see e.g. [24, 3 section 6.4 and 5 section 3.5]) that the resolvent of a self-
adjoint operator U around an isolated eigenvalue λ verifies

(U − μI)−1 =
Pλ

λ− μ
+ (U − λI)−1(I − Pλ) + U(μ),

where Pλ is the orthogonal projection on the eigenspace corresponding to λ and U(μ) is
holomorphic in μ and verifies U(λ) = 0. Applying this to A + Bl for l = j, k, we get

(A + Bl − μI)−1 =
Pl

λ− μ
+ (A + Bl − λI)−1(I − Pl) + Ul(μ)

where we have used the notation Pl = Pλ,ε(A + Bl) and Ul(μ) is holomorphic in μ and verifies
Ul(λ) = 0. Consequently, we have

Qn,k, j(μ) = τ j/k
n

(
Pk

λ− μ
+ (A + Bk − λ)−1(I − Pk) + Uk(μ)

)
τ k/ j

n

× B j

(
P j

λ− μ
+ (A + B j − λ)−1(I − P j) + U j(μ)

)
.

The residue of the operator Qn,k, j given by (21) at λ is thus given by

τ j/k
n Pkτ k/ j

n B j(A + B j − λ)−1(I − P j) + τ j/k
n (A + Bk − λ)−1(I − Pk)τ k/ j

n B jP j. (22)
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The second term in (22) is treated in the following way. Since P j projects on the kernel of
A + B j − λI, we have

B jP j = −(A − λI)P j = −(A + τ j/k
n Bkτ k/ j

n − λI)P j + τ j/k
n Bkτ k/ j

n P j

= −τ j/k
n (A + Bk − λI)τ k/ j

n P j + τ j/k
n Bkτ k/ j

n P j.

Therefore, we have

τ j/k
n (A + Bk − λ)−1(I − Pk)τ k/ j

n B jP j

= −P j + τ j/k
n Pkτ k/ j

n P j + τ j/k
n (A + Bk − λ)−1(I − Pk)Bkτ k/ j

n P j.

We claim that, as n tends to infinity, only the term −Pj will remain. Indeed, let (ξp
k )p=1,...,P

and (ξq
j )q=1,...,Q be normalized bases for the (finite dimensional) subspaces on which Pk and Pj

project. Given u ∈ X, we have

τ j/k
n Pkτ k/ j

n P ju =
∑

p=1,...,P
q=1,...,Q

(
ξq

j , u
)

X

(
τ j/k

n ξp
k , ξq

j

)
X
τ k/ j

n ξq
j .

Therefore, we have∥∥∥τ j/k
n Pkτ k/ j

n P j
∥∥∥ �

∑
p=1,...,P
q=1,...,Q

(
τ j/k

n ξp
k , ξq

j

)
X

By assumption (A7), the right-hand side goes to 0 as n →∞. In addition, since P j has finite
range and (A + Bk − λ)−1(I − Pk) is bounded, by assumption (A6), as n →∞, we have∥∥∥τ j/k

n (A + Bk − λ)−1(I − Pk)Bkτ k/ j
n P j

∥∥∥→ 0,

which proves our claim.
The first term in (22) will vanish as n →∞ as we now show. By assumption (A4), the

operator

A(A + B j − λ)−1(I − P j)

is bounded (note that here assumption (A4) remains valid even if λ ∈ σ(A + Bj) as we are
projecting out the spectral subspace associated with λ). By assumption (A8), the operator

B jA
−1A(A + B j − λ)−1(I − P j)

is compact, which combined with assumption (A7) shows that as n →∞ we have∥∥∥τ j/k
n Pkτ k/ j

n B j(A + B j − λ)−1(I − P j)
∥∥∥→ 0.

Summarizing the previous analysis, we have shown that

lim
n→∞

∥∥∥∥∥∥∥∥
Pn − (τ k

n )−1Pkτ k
n −

∑
j=1,...,N

j	=k

(τ j
n )−1P jτ j

n

∥∥∥∥∥∥∥∥
= 0.
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Therefore, for n large enough we have

dim (Range (Pn)) =
∑

j=1,...,N

dim
(
Range

(
P j
))

.

This concludes the proof. �

5. Spectral analysis

In the theory of stability of solitary waves (as developed e.g. in [19, 57] or more recently in
[16]), it is customary to use the coercivity properties of a linearized operator around the solitary
wave to obtain the stability estimate. If the perturbation is set at the level of the solitary wave
profile, the corresponding linearized operator is independent of time. When trying to adopt a
similar strategy for multi-solitons, it is not possible to write the perturbation at the level of a
profile independent of time and the linearized operator is necessarily time dependent.

The combination of two main arguments allows to overcome this difficulty. First, we have
shown in section 4 that a form of iso-spectrality holds for linearized operators around a multi-
soliton, in the sense that the inertia (i.e. the number of negative eigenvalues and the dimension
of the kernel, see definition 4.1 below) is preserved along the time evolution. Second, at large
time, the linearized operator can be viewed as a composition of several decoupled linearized
operators around each of the soliton profiles composing the multi-soliton, and the spectrum of
the multi-soliton linearized operator will converge to the union of the spectra of the linearized
operators around each soliton.

5.1. The auxiliary operators Mc and Mt
c

Let c > 0 and consider the associated soliton profile Qc given in (6). We introduce an auxiliary
linear operator Mc and its adjoint Mt

c, defined as follows:

Mc, Mt
c : D(Mc) = D(Mt

c) = H1(R) ⊂ L2(R) → L2(R),

Mch(x) = h′(x) +
√

c tanh(
√

cx)h(x), Mt
ck(x) = −k′(x) +

√
c tanh(

√
cx)k(x).

(23)

The operators Mc and Mt
c are linked with Qc by the following observation. Given h, k ∈

H1(R), we have

Mch = Qc∂x

(
h

Qc

)
, Mt

ck = − 1
Q c

∂x(Qck). (24)

The operators Mc and Mt
c are linked to Darboux transformations and the factorization of

Schrödinger operators. As such, their use is not limited to integrable equations and they appear
in other contexts, see in particular [10, section 3.2]. The auxiliary operators Mc and Mt

c verify
the following properties (see e.g. [46, lemma 5]).

Lemma 5.1. Let Mc, Mt
c be given by (23). The following properties are verified.

• The operators Mc and Mt
c map odd functions on even functions and even functions on odd

functions.
• The null space of Mc is spanned by Qc and Mt

c is injective.
• The operator Mc is surjective and the image of Mt

c is the L2(R)-subspace orthogonal to
Qc.
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Proof. That Mc and Mt
c map odd (resp. even) functions to even (resp. odd) functions is easily

seen from their definition in (23), using in particular the oddness of x �→ tanh(x).
Let h ∈ H1(R) be such that Mch = 0. From the expression of Mc in terms of Qc given

in (24), this implies that h/Qc is constant, i.e. h is a multiple of Qc. Hence we indeed have
ker(Mc) = span(Qc).

Let k ∈ H1(R) be such that Mt
ck = 0. From the expression of Mt

c in terms of Qc given in
(24), this implies that Qck is constant, i.e. k is a multiple of 1/Qc. However, 1/Qc does not
belong to H1(R), hence k = 0. This gives the injectivity of Mt

c.
From the preceding observations combined with the fact that Mt

c is the adjoint of Mc, we
have

im(Mc) = ker (Mt
c)
⊥ = L2(R), im(Mt

c) = ker (Mc)⊥ = Q⊥
c .

It remains to prove that both images are closed.
We start with im(Mc). Let g ∈ L2(R). We look for h ∈ H1(R) such that Mch = g. To this

aim, we define the operator T by

T g(x) = Qc(x)
∫ x

0

g(y)
Qc(y)

dy.

We clearly have

(T g)′ − Q′
c

Qc
T g = (T g)′ +

√
c tanh(

√
cx)T g = g,

hence we only have to prove that (T g) ∈ L2(R) to prove that (T g) ∈ H1(R) and Mc(T g) = g.
We will prove the operator T is bounded in L1(R) and L∞(R) respectively, thus in L2(R)
by interpolation. Recall the explicit expression of Qc given in (6): Qc(x) =

√
2c sech(

√
cx).

Hence, we have∣∣∣∣Qc(x)
∫ x

0

dy
Qc(y)

∣∣∣∣ =
∣∣∣∣ 1√

c
sinh(

√
cx)sech(

√
cx)

∣∣∣∣ =
∣∣∣∣ 1√

c
tanh(

√
cx)

∣∣∣∣
and we see that T is bounded in L∞(R). We now prove that T is bounded in L1(R). Let a > 0
and g ∈ L1(R). By integration by parts, we have∫ a

0
Qc(x)

∫ x

0

|g(y)|
Qc(y)

dydx

=

∫ a

0
∂x

(
−
∫ a

x
Qc(s)ds

)∫ x

0

|g(y)|
Qc(y)

dydx

=
1√
c

∫ a

0

(
arctan

(
sinh(

√
ca)
)
− arctan

(
sinh(

√
cx)
))

cosh(
√

cx)|g(x)| dx

=
1√
c

∫ a

0

(
arctan

(
sinh(

√
ca)
)
− π

2
+ arctan

(
1

sinh(
√

cx)

))
cosh(

√
cx)|g(x)|dx

� 1√
c

∫ a

0
arctan

(
1

sinh(
√

cx)

)
cosh(

√
cx)|g(x)|dx � C

∫ a

0
|g(x)| dx,

where we have used the famous calculus formula

arctan(x) + arctan

(
1
x

)
=

π

2
.
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The case a < 0 can be treated in a similar way. This shows the boundedness of T in L1(R). By
interpolation, T is also bounded in L2(R).

We now consider im(Mt
c). Let g ∈ L2(R) be such that (g, Qc)L2 = 0. We look for k ∈ H1(R)

such that Mt
ck = g. Using (24), we define

Sg = k(x) = − 1
Qc(x)

∫ x

−∞
g(y)Qc(y) dy.

From similar arguments as before, the operator S is bounded in L2 and verifies Mt
cSg = g,

which concludes the proof. �
The operators Mc and Mt

c have remarkable algebraic properties. We give the simplest ones
in the following lemma.

Lemma 5.2. The following identities hold

McMt
c = −∂2

x + c, Mt
cMc = −∂2

x + c − Q2
c , (25)

Mc(−∂2
x − 2Qc∂

−1
x (Qc∂x)) = (−∂2

x − Q2
c)Mc, (−∂2

x − Q2
c)Mt

c = Mt
c(−∂2

x ), (26)

McQc = 0, Mt
cQc = −2(Qc)x, (27)

Mc(xQc) = Qc, Mt
c(xQc) = −Qc − 2x(Qc)x. (28)

Each of the identities of lemma 5.2 may be obtain by elementary calculations. We omit the
details here.

5.2. Spectra of linearized operators around one-soliton profiles

Let N ∈ N and 0 < c1 � . . . � cN. Denote by 1,λN, . . . ,λ1 the coefficients of the polynomial
whose roots are (−cj) (see (13)). Let SN be the corresponding functional defined in (14). For
any j = 1, . . . , N, define operators LN, j : HN(R) ⊂ L2(R) → L2(R) by

LN, j := S′′
N(Qc j).

For brevity, we use the notation

M j :=Mc j , Mt
j :=Mt

c j
.

The main interest of the auxiliary operators Mj and Mt
j stems from the following result, which

gives a factorization of LN,j in terms of pure differential operators.

Proposition 5.3. For any j = 1, . . . , N, the operator LN,j verifies the following factorization

M jLN, jM
t
j = Mt

j

(
N∏

k=1

(−∂2
x + ck)

)
M j.

The proof of proposition 5.3 relies on several ingredients. We first prove the result for N = 1.
Then we establish an iteration identity at the level of the conserved quantities linearized around
soliton profiles and use it to factorize the operators LN,j. Finally, we obtain the conclusion by
combining these elements with the properties of Mj and Mt

j.
We start with the case N = 1. By direct calculations, we have the following result (which

has been used in particular in [54]).

Lemma 5.4. The operator L1,1 is given by

L1,1 = H′′
2 (Qc1 ) + c1H′′

1 (Qc1 ) = −∂2
x + c1 − 3Q2

c1
.
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The following operator identity holds:

M1L1,1Mt
1 = Mt

1

(
−∂2

x + c1

)
M1. (29)

Remark 5.5. It would also be possible to obtain by direct calculations the result for N = 2.
However, even for N = 3 the calculations are becoming very intricate and it would not be
reasonable to calculate by hand any further.

Lemma 5.6. Let Qc be a soliton profile of (mKdV) with speed c > 0 as given in (6). For
any n ∈ N, and for any z ∈ Hn(R) we have

H′′
n+1(Qc)z = R(Qc)H′′

n (Qc)z + (−1)ncn−1
(
Q2

cz + 2Qc∂
−1
x (Q′

cz)
)

, (30)

where the recursion operator R(Qc) is defined by

R(Qc) = −∂2
x − 2Qc∂

−1
x (Qc∂x).

Proof. The strategy of the proof is to linearize the recursion identity (4) around Qc. Let
n ∈ N, n � 1, and z ∈ Hn(R). We have by differentiation of (4) around Qc at z the following
identity:

∂x

(
H′′

n+1(Qc)z
)
= K(Qc)(H′′

n (Qc)z) +
(
K′(Qc)z

)
H′

n(Qc),

where

K′(Qc)z = −4Qcz∂x − 2zx∂
−1
x (Qc∂x) − 2(Qc)x∂

−1
x (z∂x).

Observe that the operator K(Qc) might be rewritten in the following way

K(Qc) = −∂3
x − 2Q2

c∂x − 2(Qc)x∂
−1
x (Qc∂x) = ∂x

(
−∂2

x − 2Qc∂
−1
x (Qc∂x)

)
= ∂xR(Qc)

From the variational principle (9) satisfied by the one-soliton profile Qc, we have

H′
n(Qc) = (−c)n−1H′

1(Qc) = (−c)n−1Qc,

hence (
K′(Qc)z

)
H′

n(Qc) = (−c)n−1
(
K′(Qc)z

)
Qc.

Moreover, we have(
K′(Qc)z

)
Qc = −4Qc(Qc)xz − 2zx∂

−1
x (Qc(Qc)x) − 2(Qc)x∂

−1
x (z(Qc)x)

= −
(
2Qc(Qc)xz + Q2

czx

)
− 2

(
Qc(Qc)xz + (Qc)x∂

−1
x (z(Qc)x)

)
= −∂x

((
Q2

cz
)
+ 2

(
Qc∂

−1
x (z(Qc)x)

))
.

Combining the previous identities and removing the ∂x give the desired recursion identity
and conclude the proof. �

Lemma 5.7. Fix j = 1, . . . , N. The operator LN,j can be factorized in the following way:

LN, j =

⎛
⎝ N∏

k=1,k 	= j

(R(Qc j) + ck)

⎞
⎠ (H′′

2 (Qc j) + c jH
′′
1 (Qc j)). (31)
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Proof. The proof proceeds by finite induction. Let k = 1, . . . , N, k 	= j. We have

LN, j = H′′
N+1(Qc j) +

N−1∑
l=1

λ̃lH
′′
l+1(Qc j) + ckL̃N−1, j,

where λ̃l is obtained from λl by removing all terms containing ck and

L̃N−1, j := S̃′′
N−1(Qc j) :=H′′

N−1(Qc j) +
N−1∑
l=1

λ̃lH
′′
l (Qc j).

Writing more explicitly the coefficients λ̃l:

λ̃1 = c1 + · · ·+ ck−1 + ck+1 + · · ·+ cN , . . . , λ̃N−1 = c1 . . . ck−1ck+1 . . . cN ,

we observe that (1, λ̃1, . . . , λ̃N−1) is the family of coefficients of the polynomial with roots
−c1, . . . ,−ck−1,−ck+1, . . . ,−cN . We now use the recursion formula (30) to obtain

H′′
N+1(Qc j) +

N−1∑
l=1

λ̃lH
′′
l+1(Qc j) = R(Qc j)

(
H′′

N(Qc j) +
N−1∑
l=1

λ̃lH
′′
l (Qc j)

)

−
(

(−c j)N−1 +
N−1∑
l=1

(−c j)l−1λ̃l

)
(Q2

c j
+ 2Qc j∂

−1
x ((Qc j)x·)

= R(Qc j)L̃N−1, j,

where we have used the fact that −c j is a root of the polynomial of coefficients 1, λ̃1, . . . , λ̃N−1

(recall that j 	= k). Gathering the previous calculations, we obtain the following formula:

LN, j = (R(Qc j) + ck)L̃N−1, j.

Iterating the process for any k = 1, . . . , N, k 	= j, we obtain the desired formula (31). �
With lemmas 5.4, 5.6 and 5.7 in hand, we may now proceed to the proof of proposition 5.3.

Proof of proposition 5.3. Using successively (31) and (26) (first equation), (29) and (26)
(second equation) we have

M jLN, jM
t
j =

⎛
⎝ N∏

k=1,k 	= j

(−∂2
x − Q2

c j
+ ck)

⎞
⎠M j(H′′

2 (Qc j) + c jH
′′
1 (Qc j))M

t
j

=

⎛
⎝ N∏

k=1,k 	= j

(−∂2
x − Q2

c j
+ ck)

⎞
⎠Mt

j(−∂2
x + c j)M j = Mt

j

(
N∏

k=1

(−∂2
x + ck)

)
M j.

This concludes the proof. �

Lemma 5.8. For j = 1, . . . , N, the operator LN,j verifies the following properties.

• The essential spectrum of LN, j is [c1 . . . cN ,∞).
• If there does not exist k such that ck = c j, then we have the following.

∗ The operator LN, j has zero as a simple eigenvalue with eigenvector (Qc j)x.
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∗ If j is odd, then LN, j has exactly one negative eigenvalue.
∗ If j is even, then LN, j has no negative eigenvalue.

• If there exists k such that ck = c j, then the operator LN, j has zero as a double eigenvalue
with eigenvectors (Qc j)x and ΛQc j (see (32)) and the rest of the spectrum is positive.

Remark 5.9. As a particular case of lemma 5.8, we obtain the spectrum of the linearized
operator LN, j around the one-soliton with profile Qc j . This information might be used to obtain
the nonlinear stability of one-solitons of (mKdV) (see e.g. [8]).

Proof of lemma 5.8. Since Qc j is smooth and exponentially decaying, the operator LN, j is a
compact perturbation of

N∏
k=1

(−∂2
x + ck).

From Weyl’s theorem, they share the same essential spectrum, which is [c1 . . . cN ,∞).
Given c > 0, introduce the scaling derivative ΛQc, given by

ΛQc :=
dQc̃

dc̃ |̃c=c
=

1
2c

(Qc + x(Qc)x). (32)

By construction, each soliton profile Qc j verifies the variational principle (15), i.e. S′
N(Qc j) =

0. Differentiating with respect to x and c j readily gives

LN, j(∂xQc j) = 0,

Using H′
k(Qc j) = (−c j)k−1H′

1(Qc j) = (−c j)k−1Qc j , we have

LN, jΛQc j = −
N∑

k=1

∂λk

∂c j
H′

k(Qc j) = −
N∑

k=1

∂λk

∂c j
(−c j)k−1Qc j = −

⎛
⎝ N∏

k=1,k 	= j

(ck − c j)

⎞
⎠Qc j.

Observe that if there is any k such that ck = c j, then ΛQc j ∈ ker(LN, j).
These preliminary observations being made, we now proceed to the proof.
Any z ∈ HN(R) might be decomposed orthogonally as

z = aQc j + Mt
jg

for a ∈ R and g ∈ HN+1(R).
The operator LN, j preserves the symmetry (i.e. if z is even, then LN, jz is also even), hence it

is natural to distinguish between two cases: z odd or z even.
We first treat the case where z is odd. In this case, a = 0 and (see lemma 5.1) g is even. We

have

〈LN, jz, z〉 =
〈
LN, jM

t
jg, Mt

jg
〉
=
〈
M jLN, jM

t
jg, g

〉
=

〈
Mt

j

N∏
k=1

(−∂2
x + ck)M jg, g

〉
=

〈
N∏

k=1

(−∂2
x + ck)M jg, M jg

〉
.

In particular, 〈LN, jz, z〉 > 0, unless M jg = 0, i.e. g is a multiple of Qc j . Since Mt
jQc j = −2(Qc j)x

(see (27)), and LN, j(∂xQc j) = 0, this implies that 0 a simple (for odd functions) eigenvalue of
LN, j, with associated eigenvector (∂xQc j).
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We then treat the case where z is even. In this case, we may have a 	= 0 and (see lemma 5.1)
g is odd. Recall from (28) that Mt

j(xQc j) = −Qc j − 2x(Qc j)x. Therefore, we may rewrite z as

z = 4ac jΛQc j + Mt
jk, k = axQc j + g.

This gives

〈LN, jz, z〉 = 16a2c2
j

〈
LN, jΛQc j ,ΛQc j

〉
+ 8ac j

〈
LN, jΛQc j , Mt

jk
〉
+
〈
LN, jM

t
jk, Mt

jk
〉

= −16a2c2
j

⎛
⎝ N∏

k=1,k 	= j

(ck − c j)

⎞
⎠〈Qc j ,ΛQc j

〉

− 8ac j

⎛
⎝ N∏

k=1,k 	= j

(ck − c j)

⎞
⎠〈Qc j , Mt

jk
〉
+
〈
LN, jM

t
jk, Mt

jk
〉

= −16a2c
3
2
j

⎛
⎝ N∏

k=1,k 	= j

(ck − c j)

⎞
⎠+

〈
N∏

k=1

(−∂2
x + ck)M jk, M jk

〉
, (33)

where we have used〈
Qc j ,ΛQc j

〉
=

1
2

d
dc |c=c j

‖Qc‖2
L2 =

d
dc |c=c j

H1(Qc) =
d
dc |c=c j

(2
√

c) =
1

√
c j
.

To proceed further, we distinguish between two cases. First, we assume that if k 	= j, then
ck 	= c j.

When j is even, since we have 0 < c1 < . . . < cN , (33) implies that 〈LN, jz, z〉 > 0 unless
a = 0 and Mt

jk = 0, i.e. z = 0.
When j is odd, (33) implies that 〈LN, jz, z〉 > 0 on the hyperplane {a = 0}, hence LN, j can

have at most one nonnegative eigenvalue. Using ΛQc j as a test function, we have

〈
LN, jΛQc j ,ΛQc j

〉
= −c

− 1
2

j

⎛
⎝ N∏

k=1,k 	= j

(ck − c j)

⎞
⎠ < 0,

which implies the existence of a negative eigenvalue.
Finally, assume that there exists k 	= j such that ck = c j. In this case, (33) implies that

〈LN, jz, z〉 > 0 unless Mt
jk = 0, i.e. z = 4ac jΛQc j , which makes ΛQc j the unique possible

direction for the 0 eigenvalue. This concludes the proof. �

6. Stability of multi-solitons

This section is devoted to the proof of theorem 1.1. To this aim, we will show that multi-
solitons of (mKdV) verify a stability criterion established by Maddocks and Sachs [38]. Before
stating the stability criterion, we introduce some notation. Recall that an N-soliton solution
U(N )(t, x) ≡ U(N )(t, x; c, x) defined in (8) is a critical point of an associated action functional
SN defined in (14).

In general, the N-soliton U(N ) is not a minimum of SN . At best, it is a constrained (and
non-isolated) minimizer of the following variational problem

min HN+1(u) subject to H j(u) = H j(U
(N)), j = 1, 2, . . . , N.
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We define the self-adjoint operator

LN := S′′
N(U(N))

and denote by

n(LN)

the number of negative eigenvalues of LN . Observe that the above defined objects are a priori
time-dependent. We also define an N × N Hessian matrix by

D :=

{
∂2SN(U(N))
∂λi∂λ j

}
,

and denote by

p(D)

the number of positive eigenvalues of D. Since SN is a conserved quantity for the flow of
(mKdV), the matrix D is independent of t. The proof of theorem 1.1 relies on the following
theoretical result, which was obtained by Maddocks and Sachs [38, lemma 2.3].

Proposition 6.1. Suppose that

n(LN) = p(D). (34)

Then there exists C > 0 such that U(N ) is a non-degenerate unconstrained minimum of the
augmented Lagrangian (Lyapunov function) AL defined by

AL(u) = SN(u) +
C
2

N∑
j=1

(
H j(u) − H j(U

(N))
)2
.

As a consequence, U(N ) is nonlinearly stable.

Remark 6.2. The conclusion of proposition 6.1 (nonlinear stability) is usually stated without
proof in the literature (as in the original work of Maddocks and Sachs [38]). We give here
some elements of proof. First remark that the functional SN depends only on c and not on t
or x. Hence, by construction of AL, any N-soliton with parameters c is a critical point of AL.
Moreover, there exists γ > 0 (which, as well as C, can be chosen independently of x) such that
for any U(N)

c (·, ·; x) and for any h ∈ HN(R) such that

〈
∇xU(N)

c (t, ·; x), h
〉
= 0,

we have

〈
AL′′(U(N)

c (t, ·; x))h, h
〉
> γ‖h‖2

HN .

Note here that in particular, for any u ∈ HN(R) such that

inf
x∈RN

∥∥u − U(N)
c (t, ·, x)

∥∥
HN < ε
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(as we already mentioned, the value of t is irrelevant here, as it is absorbed by the variations
of x), for any xu ∈ RN we have

inf
x∈RN

∥∥u − U(N)
c (t, x, x)

∥∥2

HN <
2
γ

(
AL(u) − AL(U(N)

c (t, ·; xu))
)
.

As a consequence of the preservation of AL by the (mKdV) flow, given an initial data u0 suf-
ficiently close to an N-soliton profile Uc,x0 (0, ·, x0), the closeness to the N-solitons manifold
with speeds c is preserved for all time:

inf
x∈RN

∥∥u − U(N)
c (t, ·, x)

∥∥2

HN <
2
γ

(
AL(u) − AL(U(N)

c (t, ·; x0))
)

=
2
γ

(
AL(u0) − AL(U(N)

c (0, ·; x0))
)
�
∥∥u0 − U(N)

c (0, ·; x0)
∥∥2

HN .

In view of proposition 6.1, to complete the proof of theorem 1.1, it is sufficient to
verify (34).

We start with the count of the number of positive eigenvalues of the Hessian matrix D.

Lemma 6.3. For all finite values of the parameters c, x with 0 < c1 < . . . < cN, we have

p(D) =

⌊
N + 1

2

⌋
.

Proof. Let t be fixed. For notational convenience, we omit the dependency in t in the proof
(as the result will be in any case independent of t). For any 1 � i, j � N, we have

Di j =
∂2SN

∂λi∂λ j
=

N∑
k=1

∂ck

∂λi

∂

∂ck

∂SN

∂λ j
=

N∑
k=1

∂ck

∂λi

∂H j

∂ck
,

where we have used the fact that

∂SN

∂λ j
=

〈
S′

N(U(N)),
∂U(N)

∂λ j

〉
+ H j(U(N)) = H j(U(N)).

We observe that D can be obtained as a product of two matrices:

D = AB, A =

(
∂c j

∂λi

)
, B =

(
∂H j

∂ci
,

)

The value of H j is explicitly known (see (10)) for each Qc j composing the asymptotic form of
the multi-soliton U(N ). Therefore, we have

∂H j(U(N))
∂ci

= (−1) j 2
2 j + 1

∂

∂ci

N∑
k=1

c
2 j+1

2
k = (−1) jc

2 j−1
2

i .

The value of c j in terms of the coefficients λk cannot be easily expressed. However, we may
express λk in terms of c j using Vieta’s formula (13). We therefore have an explicit expression
for the inverse of A:

A−1 =

⎛
⎜⎜⎜⎝

1 c2 + c3 + · · ·+ cN . . . c2c3 . . . cN

1 c1 + c3 + · · ·+ cN . . . c1c3 . . . cN
...

...
...

1 c1 + c2 + · · ·+ cN−1 . . . c1c2 . . . cN−1

⎞
⎟⎟⎟⎠ .
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Observe that

A−1D(A−1)t = B(A−1)t,

and therefore, by Sylvester’s law of inertia (see proposition 4.2), the number of positive eigen-
values of D is the same as the number of positive eigenvalues for B(A−1)t, which turns out to
be very simple. Indeed, the entries of the jth column of (A−1)t are the coefficients of a polyno-
mial whose roots are −c1, . . . ,−c j−1,−c j+1, . . . ,−cN and the entries of the ith line of B can
be rewritten as (

√
c j)−1(−c j) j. Hence B(A−1)t is a diagonal matrix with diagonal entries given

by

(−1)N−1 1
√

c j

∏
k 	= j

(c j − ck).

The number of positive entries is⌊
N + 1

2

⌋
,

which is the desired result. �
Now we verify that n(LN) is also equal to

⌊
N+1

2

⌋
. In fact we can go further and we prove

the following.

Lemma 6.4. The operator LN verifies

Inertia(LN) = (n(LN), z(LN)) =

(⌊
N + 1

2

⌋
, N

)
.

From the preservation of inertia stated in theorem 4.4, we know that

Inertia(LN) =
N∑

j=1

Inertia(LN, j).

Therefore, lemma 6.4 is a direct consequence of the results of section 5.2, in particular
lemma 5.8.
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