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Abstract. For the double power one dimensional nonlinear Schrödinger equation, we establish a complete
classification of the stability or instability of standing waves with positive frequencies. In particular, we
fill out the gaps left open by previous studies. Stability or instability follows from the analysis of the slope
criterion of Grillakis, Shatah and Strauss. The main new ingredients in our approach are a reformulation of
the slope and the explicit calculation of the slope value in the zero-frequency case. Our theoretical results are
complemented with numerical experiments.

Keywords. nonlinear Schrödinger equation, double power nonlinearity, standing waves, stability, orbital
stability.

Mathematical subject classification (2010). 35Q55, 35B35.

Funding. The work of P. K. and S. L. C. is partially supported by ANR-11-LABX-0040-CIMI and CNRS IEA
296038. The work of T.-P. T. is partially supported by the NSERC grant RGPIN-2018-04137.

Manuscript received 15 January 2022, revised 18 February 2022 and 28 February 2022, accepted 1 March 2022.

1. Introduction

Consider the one dimensional nonlinear Schrödinger equation with double power nonlinearity

i∂t u +∂2
x u +ap |u|p−1u +aq |u|q−1u = 0, (1)

where u : Rt × Rx → C, ap , aq ∈ R \ {0} and 1 < p < q < ∞. When ap < 0, aq > 0, we say
that the nonlinearity is defocusing-focusing, with analogous definitions for other possible signs
combinations.

Nonlinear Schrödinger equations appear in many areas of physics such as nonlinear op-
tics (see e.g. [2]) or Bose–Einstein condensation. The double power nonlinearity is an impor-
tant example of the possible nonlinearities appearing in soliton theory (see e.g. [3]). Via gauge
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transformations, the double power nonlinearity is also connected with the derivative nonlinear
Schrödinger equation (see e.g. [24, 28, 36]). The double power nonlinearity is also a typical ex-
ample of a nonlinearity breaking the scaling invariance of the pure power case, while still being
relatively tractable, and it may be used to study phenomena in the absence of scaling symmetry
(see e.g. [27] for the construction of blowing-up solutions).

The Cauchy problem for (1) is well known (see [12] and the references therein) to be well-
posed in the energy space H 1(R): for any u0 ∈ H 1(R), there exists a unique maximal solution
u ∈ C ((−T∗,T ∗), H 1(R)) ∩C 1((−T∗,T ∗), H−1(R)) of (1) such that u(t = 0) = u0. Moreover, the
energy E and the mass M , defined by

E(u) = 1

2
‖ux‖2

L2 −
ap

p +1
‖u‖p+1

Lp+1 −
aq

q +1
‖u‖q+1

Lq+1 , M(u) = 1

2
‖u‖2

L2 ,

are conserved along the flow and the blow-up alternative holds (i.e. if T ∗ <∞ (resp. T∗ <∞), then
limt→T ∗ (resp −T∗)‖u(t )‖H 1 =∞).

A standing wave is a solution of (1) of the form u(t , x) = e iωtφ(x) for some ω ∈ R and a profile
φ ∈C 2(R), which then satisfies

−φ′′+ωφ−ap |φ|p−1φ−aq |φ|q−1φ= 0. (2)

We only consider real-valued φ in this paper. Define ω∗ by

ω∗ = sup

{
ωÊ 0 : ∃ s > 0 such that

ω

2
s2 − ap

p +1
sp+1 − aq

q +1
sq+1 < 0

}
.

It is well known (see [9]) that existence of non-trivial solutions of (2) with lim|x|→∞φ(x) = 0
holds if and only if {

0 Éω<ω∗ when ap < 0, aq > 0,

0 <ω<ω∗ otherwise.

In that case, the solution is positive (up to phase shift), even (up to translation) and unique. We
denote it by φω, or simply φ when there is no ambiguity.

Solitary waves are the building blocks for the nonlinear dynamics of (1), as it is expected that,
generically, a solution of (1) will decompose into a dispersive linear part and a combination of
nonlinear structures as solitary waves. This vague statement is usually referred to as the Soliton
Resolution Conjecture.

Therefore, understanding the dynamical properties of standing waves, in particular their
stability, is a key step in the analysis of the dynamics of (1). Several stability concepts are available
for standing waves. The most commonly used is orbital stability, which is defined as follows. The
standing wave e iωtφ(x) solution of (1) is said to be orbitally stable if the following holds. For any
ε> 0 there exists δ> 0 such that if u0 ∈ H 1(R) verifies

‖u0 −φ‖H 1 < δ,

then the associated solution u of (1) exists globally and verifies

sup
t∈R

inf
y∈R,θ∈R

∥∥∥u(t )−e iθφ( ·− y)
∥∥∥

H 1
< ε.

In the rest of this paper, when we talk about stability/instability, we always mean orbital stabil-
ity/instability.

The groundwork for orbital stability studies was laid down by Berestycki and Cazenave [8],
Cazenave and Lions [13] and Weinstein [37, 38]. Two approaches lead to stability or instability
results: the variational approach of [8, 13], which exploits global variational characterizations
combined with conservation laws or the virial identity, and the spectral approach of [37, 38],
which exploits spectral and coercivity properties of linearized operators to construct a suitable
Lyapunov functional. Later on, Grillakis, Shatah and Strauss [20,21] developed an abstract theory
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which, under certain assumptions, boils down the stability study of a branch of standing waves
ω → φω to the study of the sign of the quantity (usually called slope) ∂

∂ωM(φω). Note that the
theory of Grillakis, Shatah and Strauss has known recently a considerable revamping in the works
of De Bièvre, Genoud and Rota-Nodari [15, 16].

With the above mentioned techniques, the orbital stability of positive standing waves has
been completely determined in the single power case (i.e. aq = 0) in any dimension d Ê 1
in [8, 13, 37, 38]. If aq = 0, positive standing waves exist if and only if ap > 0 and ω > 0. In
this case, they are stable if 1 < p < 1 + 4

d (i.e. 1 < p < 5 in dimension d = 1), and they are
unstable if 1 + 4

d É p < 1 + 4
(d−2)+ (i.e. 5 É p < ∞ in dimension d = 1). Scaling properties of

the single power nonlinearity play an important role in the proof and ensure in particular that
stability and instability are independent of the value of the frequency ω. It turns out that there
is no scaling invariance for double power nonlinearities, which makes the stability study more
delicate. As a matter of fact, only very partial results are available so far in higher dimensions. In
dimension 1, the situation is a bit more favorable, as one might exploit the ODE structure of the
profile equation (2) in the analysis.

Preliminary investigations for the stability of standing waves in dimension 1 were conducted
by Iliev and Kirchev [25] in the case of a generic nonlinearity. In particular, a formula for the slope
condition was obtained in [25]. The earliest work devoted to the stability of standing waves for
nonlinear Schrödinger equations with double power nonlinearity in dimension 1 is the work of
Ohta [33]. In this work, using the integral expression for the slope condition derived by Iliev and
Kirchev [25], Ohta established the stability/instability of standing waves in a number of cases.
Later on, Maeda [31] further refined the approach of Ohta and established the stability/instability
in most of the situations not covered in [33]. However, the stability picture was still not complete,
as the following case was left partially open:

ap < 0, aq > 0, 1 < p < q < 5, p +q É 6 or p É 7

3
.

In the above case, Ohta [33] established the stability of standing waves for ω large enough. The
instability for small ω was obtained by Ohta [33] for p + q > 6, a condition which was later
improved to (p + 3)(q + 3) > 32 by Fukaya and Hayashi [17]. What happens in the intermediate
range of ω when

(p +3)(q +3) > 32 and

(
p +q É 6 or p É 7

3

)
,

was not elucidated in [17, 31, 33], nor what happens for small ω when (p +3)(q +3) É 32, (except
for the notable case p = 2, q = 3, where explicit calculations are possible and show that the wave
is stable for any ω> 0).

For convenience, we adopt the following convention. When a standing wave is stable for any
ω ∈ (0,ω∗), we say that it is of type S. When there exists ω1 ∈ (0,ω∗) such that the standing wave
is unstable for ω ∈ (0,ω1) and stable for ω ∈ (ω1,ω∗), we say that it is of type US. Other types are
defined in a similar manner.

Note that when instability holds the endpoint ω1 could be included in the instability range
under regularity assumptions on the nonlinearity (thanks to the criterion of Comech and Peli-
novsky [14], see (6) and Remark 2).

Our goal in this paper is to fill out the gaps left open by the previous works [17, 31, 33] and
to provide a complete stability picture for the standing waves of the Schrödinger equations with
double power nonlinearity. Our main result is the following.

Theorem 1. Let (φω)ω∈(0,ω∗) be the family of standing waves of (1). The following gives the stability
type of the family of standing waves.

(1) Assume that ap > 0 and aq > 0.
(a) If q É 5, then it is of type S.
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(b) If p Ê 5, then it is of type U .
(c) If p < 5 < q, then it is of type SU .

(2) Assume that ap > 0 and aq < 0.
(a) If p É 5, then it is of type S.
(b) If p > 5, then it is of type U S.

(3) Assume that ap < 0 and aq > 0.
(a) If q É 7−2p, then it is of type S.
(b) If 7−2p < q < 5, then it is of type U S.
(c) If q Ê 5, then it is of type U .

This theorem implies in particular that stability change occurs at most once, which is conjec-
tured in [31, p. 265], and is in contrast to NLS with triple power nonlinearity considered in [30].

Remark 2. The critical frequency at which the stability change occurs is not included in our
statement. Indeed, it was established by Comech and Pelinovsky under a higher regularity
assumption on the nonlinearity that the standing wave at the critical frequency is unstable if (6)
holds. Alternative proofs with improved assumptions on the regularity are provided in [32, 34].
However, the regularity required is still too high to cover the whole range of double-power
nonlinearities. Strategies to treat the critical frequency without regularity assumptions have been
developed for other types of equations, see e.g. [22, 39]. In this paper, we will not try to cover the
critical frequency and we simply verify that the criterion (6) holds.

In Theorem 1, cases (1), (2) and (3c) were already covered in [31,33]. For the sake of complete-
ness, and as the proofs are not very long, we will also cover them in our work. Cases (3a) and (3b)
were only partially solved. We provide a definitive result for these cases. Our approach relies on
several ingredients. First of all, we express the slope condition in a concise, while easily tractable
integral, factoring out terms which are in any case positive. Instead of working with the parame-
ter ω, we manipulate the slope condition with the parameter φ0 = φω(0) (which is in a bijective
relation with ω). We are left with an integral expression F (φ0) (see (8)), of which we need to de-
termine the sign. A refactorisation allows us to introduce an auxiliary parameter γ, and differen-
tiation with respect to φ0 gives us an expression which we can prove to have sign, provided we
have suitably chosen the parameter γ. This gives the information that F (φ0) changes sign at most
once. The sign for large ω (or equivalently large φ0) had already been established in [33]. On the
other hand, the sign for ω close to 0 had not been computed before. Here, an astute rewriting of
the slope in terms of Beta functions allows us to determine the sign for ω close to 0.

Observe that our results are not covering the zero-frequency case ω= 0. Stability or instability
of the corresponding (algebraic) standing waves (when existing) can be conjectured to be the
same as the one for small ω > 0 (which is consistent with the results obtained by Fukaya and
Hayashi [17]).

In the case ap < 0, aq > 0 and 1 < p < q < 5, we complement our theoretical results with
numerical experiments. We first represent the critical surface {ωc (p, q)} at which the stability
change occurs and discuss the different possible shapes of the surface depending on the ratio
ap /aq . We then simulate the dynamics of (1) around a standing wave with the Crank–Nicolson
scheme with relaxation of Besse [10]. Three types of behaviors are observed depending on the
type of initial data : stability, growth followed by oscillations, and scattering.

To end this introduction, we point out that many works are devoted to standing waves of
the double power nonlinear Schrödinger in higher dimension (for which our approach does not
apply), and just give a small sample of the existing literature. The cubic quintic case in higher
dimension was investigated in [11]. Stability of standing waves in higher dimension for generic
nonlinearities was considered in [18]. Strong instability was studied in [35]. Stability results for
algebraic standing waves were obtained in [17]. Uniqueness and non-degeneracy was considered
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in [29]. Existence or non-existence of minimizers of the energy at fixed mass was obtained in [7].
Let us also mention in dimension 1 the work [19], which is devoted to the stability of standing
waves for cubic-quintic nonlinearities in the presence of a δ potential (see [4, 5] for further
developments).

This paper is organized as follows. We start by some preliminaries in Section 2, recalling in
particular the properties of the standing wave profiles and the stability criterion. In Section 3, we
reformulate the slope condition for stability, using the profile equation. In Section 4, we analyze
the limit of the slope at the endpoints of the interval of admissible frequenciesω and in particular
determine the sign of the slope at the endpoints. The sign of the slope on the full interval of
admissible frequencies is recovered in Section 5, which shows Theorem 1. Finally, numerical
experiments are presented in Section 6.

After the first version of this paper was posted to arXiv, Professor Hayashi kindly informed
us he had an independent similar result and posted it as [23]. His Theorem 1.3 is similar to our
Theorem 1 although it does not include the case 1 < p < 9/5.

We would like to thank the anonymous referee for his valuable comments which helped in the
improvement of our paper.

2. Preliminaries

2.1. The profile equation

We start by some analysis around the ordinary differential equation (2) and its solutions (φω).
Apart in a few specific cases (e.g. when q = 2p −1, see e.g. [30]), there does not exist an explicit
formula for the full standing waves profile. Note that ω∗ = ∞ when aq > 0, 0 < ω∗ < ∞ when
ap > 0 and aq < 0, andω∗ =−∞ (i.e. there is no solution of (2) in H 1(R)) when ap , aq < 0. All along
this paper, we assume that 0 < ω < ω∗ (excluding in particular the possibility that ap , aq < 0).
Under this assumption, there exists φ0 > 0 (depending implicitly on ω) such that

φ0 = inf

{
φ> 0 :

ω

2
φ2 − ap

p +1
|φ|p+1 − aq

q +1
|φ|q+1 = 0

}
,

and we have

φω(0) =φ0.

Observe that ω may be expressed in terms of φ0 as follows

ω= 2ap

p +1
φ

p−1
0 + 2aq

q +1
φ

q−1
0 . (3)

Moreover, as ω<ω∗, we have

ω−apφ
p−1
0 −aqφ

q−1
0 < 0.

This implies in particular φ0 is a C 1-function of ω. Moreover, we always have

∂φ0

∂ω
=

(
2ap (p −1)

p +1
φ

p−2
0 + 2aq (q −1)

q +1
φ

q−2
0

)−1

> 0. (4)

As a consequence, the following result holds.

Lemma 3. The function ω→φ0 is a strictly increasing bijection from (0,ω∗) to (φ∗,φ∗) where

φ∗ =


(
− ap

aq

q+1
p+1

) 1
q−p

if ap < 0,

0 if ap > 0,
φ∗ =

∞ if aq > 0,(
− ap

aq

p−1
q−1

q+1
p+1

) 1
q−p

if aq < 0.
(5)
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2.2. The stability criterion

As we already mentioned, stability criteria have been derived in the general case in [20,25]. For the
double power nonlinearity, the stability of the standing wave is determined by a slope condition
(the spectral condition of [20] being always verified in this case when ω> 0). The standing wave
e iωtφω(x) will be stable if

∂

∂ω
M(φω) > 0,

and it will be unstable if
∂

∂ω
M(φω) < 0.

When ∂ωM(φω) = 0, under regularity assumption on the nonlinearity, the stability can be de-
cided by looking at the second derivative, as was established by Comech and Pelinovsky [14]: If
∂ωM(φω) = 0 and

∂2

∂ω2 M(φω) 6= 0, (6)

then the standing wave e iωtφω(x) is unstable.

3. Reformulation of the slope

For notational convenience, we introduce the function J defined by

J (ω, p, q) = ∂

∂ω
M(φω).

Hence the sign of J determines the stability of the corresponding standing wave.
The main idea in this section is to express J in terms of φ0 instead of ω. Before doing that, we

introduce some convenient notation. LetΦp andΦq be defined by

Φp = 2ap

p +1
φ

p+1
0 (1− sp−1), Φq = 2aq

q +1
φ

q+1
0 (1− sq−1), (7)

where ap , aq 6= 0, 1 < p < q <∞ and 0 < s < 1.

Lemma 4. The function J may be expressed in terms of φ0 as follows

J (ω, p, q) =C (φ0)F (φ0),

where

F (φ0) =
∫ 1

0

(5−p)Φp + (5−q)Φq

(Φp +Φq )
3
2

s ds, (8)

and C (φ0) is positive and explicitly known (see (10)).

Proof. We multiply the equation (2) of the profile by φx and we integrate to obtain

−1

2
|φx |2 + ω

2
|φ|2 − ap

p +1
|φ|p+1 − aq

q +1
|φ|q+1 = c.

When x →∞, we know that φ(x) → 0 and φ′(x) → 0. Therefore c = 0, and

− 1

2
|φx |2 + ω

2
|φ|2 − ap

p +1
|φ|p+1 − aq

q +1
|φ|q+1 = 0. (9)

For x > 0, as φ is decreasing, from (9) we have

φx =−
√
ωφ2 − 2ap

p +1
φp+1 − 2aq

q +1
φq+1.
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Still for x > 0, let t =φ(x), then

dx = dt

φx
=− dt√

ωφ2 − 2ap

p+1φ
p+1 − 2aq

q+1φ
q+1

.

Therefore we may perform the following change of variable:

M(φ) = 1

2

∫
R
|φ(x)|2 dx =

∫ ∞

0
|φ(x)|2 dx =

∫ φ0

0

t 2√
ωt 2 − 2ap

p+1 t p+1 − 2aq

q+1 t q+1

dt .

Changing again variable by setting t =φ0s, we have

M(φ) =
∫ 1

0

φ3
0s2

s

√
ωφ2

0 −
2ap

p+1φ
p+1
0 sp−1 − 2aq

q+1φ
q+1
0 sq−1

ds.

Replacing ω by its value (3) in terms of φ0, we have

M(φ) =
∫ 1

0

φ3
0s√

2ap

p+1φ
p+1
0 + 2aq

q+1φ
q+1
0 − 2ap

p+1φ
p+1
0 sp−1 − 2aq

q+1φ
q+1
0 sq−1

ds,

which, using the notation (7) forΦp andΦq , gives

M(φ) =
∫ 1

0

φ3
0s√

Φp +Φq
ds.

Differentiating with respect to ω, we have

∂ωΦp = (p +1)Φpφ
−1
0 ∂ωφ0, ∂ωΦq = (q +1)Φqφ

−1
0 ∂ωφ0.

Therefore we obtain

J (ω, p, q) = ∂ωM(φ) =
∫ 1

0

3φ2
0∂ωφ0s(Φp +Φq )− 1

2φ
3
0s

(
(p +1)Φpφ

−1
0 + (q +1)Φqφ

−1
0 )

)
∂ωφ0

(Φp +Φq )
3
2

ds,

= ∂ωφ0

2
φ2

0

∫ 1

0

6(Φp +Φq )− (
(p +1)Φp + (q +1)Φq )

)
(Φp +Φq )

3
2

s ds,

= ∂ωφ0

2
φ2

0

∫ 1

0

(5−p)Φp + (5−q)Φq

(Φp +Φq )
3
2

s ds,

=C (φ0)F (φ0),

where F (φ0) is defined in (8) and

C (φ0) = ∂ωφ0

2
φ2

0. (10)

This concludes the proof. �

We will now analyze the variations of J (ω, p, q) in terms of φ0. For future convenience (the
reason for such a choice will appear clearly later), we introduce an auxiliary parameter γ in the
following way

J (ω, p, q) =C (φ0)φ−γ
0 Fγ(φ0),

where

Fγ(φ0) =
∫ 1

0
φ
γ
0

 (5−p)Φp + (5−q)Φq(
Φp +Φq

) 3
2

 s ds.
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Denote the integrand of Fγ by

Iγ(φ0) =φγ0

 (5−p)Φp + (5−q)Φq(
Φp +Φq

) 3
2

 . (11)

Observe that there is a implicit dependency in s. In the following lemma we differentiate Iγ(φ0)
with respect to φ0.

Lemma 5. For any 0 < s < 1, the following holds:

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−p)(2γ− (p +1))Φp + (5−q)(2γ− (q +1))Φq

)
(Φp +Φq )−3(q −p)2ΦpΦq(

Φp +Φq
) 5

2

 .

Proof. We start by differentiating the term in parenthesis in Iγ(φ0). We have

∂φ0Φp = (p +1)Φpφ
−1
0 , ∂φ0Φq = (q +1)Φqφ

−1
0 .

Therefore, we have

∂φ0

 (5−p)Φp + (5−q)Φq(
Φp +Φq

) 3
2

 ,

=φ−1
0

(
(5−p)(p +1)Φp + (5−q)(q +1)Φq

)(
Φp +Φq

)− 3
2

(
(5−p)Φp + (5−q)Φq

)(
(p +1)Φp + (q +1)Φq

)
(
Φp +Φq

) 5
2

 ,

= 1

2
φ−1

0

−(5−p)(p +1)Φ2
p − (5−q)(q +1)Φ2

q + ((5−p)(2p −3q −1)+ (5−q)(2q −3p −1))ΦpΦq(
Φp +Φq

) 5
2

 ,

= 1

2
φ−1

0

−(
(5−p)(p +1)Φp + (5−q)(q +1)Φq

)
(Φp +Φq )−3(q −p)2ΦpΦq(

Φp +Φq
) 5

2

 .

Before going on, observe that we may rewrite the term in parentheses in Iγ(φ0) as

(5−p)Φp + (5−q)Φq(
Φp +Φq

) 3
2

= 2
(
(5−p)Φp + (5−q)Φq

)(
Φp +Φq

)
2
(
Φp +Φq

) 5
2

.

Finally, the full derivative of Iγ(φ0) is given by

∂Iγ
∂φ0

= ∂φ0

φγ0
 (5−p)Φp + (5−q)Φq(

Φp +Φq
) 3

2

 ,

= 1

2
φ
γ−1
0

(
(5−p)(2γ− (p +1))Φp + (5−q)(2γ− (q +1))Φq

)
(Φp +Φq )−3(p −q)2ΦpΦq(

Φp +Φq
) 5

2

 .

This concludes the proof. �

For future reference, we establish here the following technical lemma which we will use at
several occasions.

Lemma 6. The function s → 1−sq−1

1−sp−1 is an increasing bijection from (0,1) to (1, q−1
p−1 ).

Proof. Let h(s) = 1−sq−1

1−sp−1 . We have

h′(s) = sp−2

(1− sp−1)2 l (s),

where
l (s) = (q −p)sq−1 +p −1− (q −1)sq−p .
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Note that l (1) = 0 and for 0 < s < 1,

l ′(s) = (q −p)(q −1)(sq−2 − sq−p−1) < 0.

Hence l ′(s) < 0 and l (s) > 0 for 0 < s < 1. We conclude that h′(s) > 0 for 0 < s < 1. As a consequence,
h is increasing on the interval (0,1). Moreover, we have h(0) = 1 and, by L’Hospital’s rule,

lim
s→1

h(s) = q −1

p −1
.

This concludes the proof. �

4. The slope at the endpoints

Our goal in this section is to investigate what happens for J (ω, p, q) when ω is close to 0 and ω∗.

4.1. The zero frequency case

In this section, we determine the limit of J (ω, p, q) when ω tends to zero. Let J0 be defined by

J0(p, q) = lim
ω→0

J (ω, p, q).

We first consider the case where ap > 0.

Proposition 7. Let ap > 0. The following holds.

(1) If 1 < p < 7
3 , then J0(p, q) = 0+.

(2) If p = 7
3 , then 0 < J0(p, q) <∞.

(3) If 7
3 < p < 5, then J0(p, q) =∞.

(4) If p = 5, then three cases have to be distinguished.
(a) If q < 9, then J0(p, q) =−sign(aq )∞.
(b) If q = 9, then 0 <−sign(aq )J0(p, q) <∞.
(c) If q > 9, then J0(p, q) = 0−sign(aq ).

(5) If 5 < p, then J0(p, q) =−∞.

Proof. When ap > 0, we have

lim
ω→0

φ0 =φ∗ = 0.

Recall that we have shown in Lemma 4 that J may be written as J (ω, p, q) =C (φ0)F (φ0). We have
(recalling the definition (10) of C and the expression (4) of ∂ωφ0)

C (φ0) = 1

2
∂ωφ0φ

2
0 =

1

4

(
ap (p −1)

p +1
φ

p−4
0 + aq (q −1)

q +1
φ

q−4
0

)−1

=φ4−p
0

1

4

(
ap (p −1)

p +1
+ aq (q −1)

q +1
φ

q−p
0

)−1

=φ4−p
0

(
p +1

4ap (p −1)
+o(1)

)
.

The function F (defined in (8)) can be written, substitutingΦp andΦq by their expressions (7), as

F (φ0) =
∫ 1

0

2ap (5−p)
p+1 (1− sp−1)φp+1

0 + 2aq (5−q)
q+1 (1− sq−1)φq+1

0(
2ap

p+1 (1− sp−1)φp+1
0 + 2aq

q+1 (1− sq−1)φq+1
0

) 3
2

s ds.
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As we are interested in the limit φ0 → 0, we factor out the terms in φp+1
0 to get

F (φ0) =φ− p+1
2

0

∫ 1

0

2ap (5−p)
p+1 (1− sp−1)+ 2aq (5−q)

q+1 (1− sq−1)φq−p
0(

2ap

p+1 (1− sp−1)+ 2aq

q+1 (1− sq−1)φq−p
0

) 3
2

s ds

= (5−p)φ
− p+1

2
0

(∫ 1

0

(
2ap

p +1
(1− sp−1)

)− 1
2

s ds +o(1)

)
.

In the particular case p = 5, we instead write

F (φ0) = aq (5−q)φq−8
0

∫ 1

0

2
q+1 (1− sq−1)(

ap

3 (1− s4)
) 3

2

s ds +o(1)

 .

In summary, when φ0 → 0 (i.e. ω→ 0), we have established that there exists C =C (p, q) > 0 such
that when p 6= 5 we have

J (ω, p, q) = (5−p)φ
7−3p

2
0 C (1+o(1)),

and when p = 5 we have

J (ω, p, q) = (5−q)aqφ
q−9
0 C (1+o(1)).

This gives the desired result. �

We now discuss the case ap < 0 and aq > 0.

Proposition 8. Let ap < 0 and aq > 0.

(1) Assume that p < 7
3 . Then J0(p, q) ∈R and the following holds.

(a) If 2p +q < 7, then J0(p, q) > 0.
(b) If 2p +q = 7, then J0(p, q) = 0.
(c) If 2p +q > 7, then J0(p, q) < 0.

(2) Assume that p Ê 7
3 . Then J0(p, q) =−∞.

We start with some preliminaries. To establish the first part of Proposition 8, we will calculate
J0 in terms of the Beta function. Recall that the Beta function, also called Euler integral of the first
kind, is a special function closely related to the Gamma function. It is defined for x > 0 and y > 0
by the integral

B(x, y) =
∫ 1

0
t x−1(1− t )y−1 dt . (12)

The relation between the Beta function and the Gamma function is given by (see e.g [1])

B(x, y) = Γ(x)Γ(y)

Γ(x + y)
.

We introduce the function H defined for x > 0 and y > 0 by

H(x, y) =
∫ 1

0

t x−1(1− t y )

(1− t )
3
2

dt . (13)

The relation between H and B is given in the following lemma.

Lemma 9. For x > 0 and y > 0, we have

H(x, y) =−(2x −1)B

(
x,

1

2

)
+ (2x +2y −1)B

(
x + y,

1

2

)
. (14)
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Proof. Let
u(t ) = t x−1(1− t y ).

Rewrite
1

(1− t )
3
2

= v ′(t )− 1

(1− t )
1
2

,

where

v(t ) = 2

(1− t )
1
2

−2(1− t )
1
2 = 2t

(1− t )
1
2

.

We have

H(x, y) =
∫ 1

0
u(t )

(
v ′(t )− 1

(1− t )
1
2

)
dt ,

=u(1−)v(1−)−u(0+)v(0+)−
∫ 1

0
u′(t )v(t )dt −

∫ 1

0

u(t )

(1− t )
1
2

dt ,

=0−
∫ 1

0

2tu′(t )+u(t )

(1− t )
1
2

dt .

Above we have used u(1) = 0 of order 1 to cancel the singularity of v(1−) of order 1
2 , and v(0) = 0

with order 1 to cancel the singularity of u(0+) of order x −1. Note that

2tu′(t )+u(t ) = (2x −1)t x−1 − (2x +2y −1)t x+y−1.

Therefore, using the definition of B given in (12) with y = 1
2 , we have

H(x, y) =−(2x −1)B

(
x,

1

2

)
+ (2x +2y −1)B

(
x + y,

1

2

)
.

This concludes the proof. �

The value J0(p, q) may be expressed using B as follows.

Lemma 10. Let ap < 0 and aq > 0. Assume that 1 < p < 7/3. Then

J0(p, q) = (7−2p −q)C0B

(
7−3p

2(q −p)
,

1

2

)
,

where C0 is a positive constant explicitly known (given by (16)).

The first part of Proposition 8 is a direct consequence of Lemma 10.

Proof of Lemma 10. Let 1 < p < 7/3. Recall that J (ω, p, q) = C (φ0)F (φ0), with C (φ0) > 0 and F
given by (8). Observe that, using the value of φ∗ given in (5), we may introduce the constant

C∗ = 2aq

q +1
φ

q+1
∗ =− 2ap

(p +1)
φ

p+1
∗ .

Using the definition (10) of C (φ0) and the expression (4) of ∂ωφ0, we have

lim
φ0→φ∗

C (φ0) =C (φ∗) = φ5∗
2C∗(q −p)

> 0,

lim
φ0→φ∗

Φp = 2ap

(p +1)
φ

p+1
∗ (1− sp−1) =−C∗(1− sp−1),

lim
φ0→φ∗

Φq = 2aq

(q +1)
φ

q+1
∗ (1− sq−1) =C∗(1− sq−1).

As a consequence, we get

lim
φ0→φ∗

(Φp +Φq ) =C∗(sp−1 − sq−1),

lim
φ0→φ∗

((5−p)Φp + (5−q)Φq ) =C∗
(−(5−p)(1− sp−1)+ (5−q)(1− sq−1)

)
.
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As a consequence,

F (φ∗) =C
− 1

2∗
∫ 1

0

−(5−p)(1− sp−1)+ (5−q)(1− sq−1)(
sp−1 − sq−1

) 3
2

s ds

=C
− 1

2∗
∫ 1

0

−(q −p)(1− sp−1)+ (5−q)(sp−1 − sq−1)

(1− sq−p )
3
2

s
5−3p

2 ds

=C
− 1

2∗

(
−(q −p)

∫ 1

0

(1− sp−1)s
5−3p

2

(1− sq−p )
3
2

ds + (5−q)
∫ 1

0
s

3−p
2

(
1− sq−p)− 1

2 ds

)
.

(15)

Changing variable t = sq−p , we obtain

F (φ∗) =C
− 1

2∗

−∫ 1

0

(1− t
p−1
q−p )t

7−p−2q
2(q−p)

(1− t )
3
2

ds + 5−q

q −p

∫ 1

0
t

5+p−2q
2(q−p) (1− t )−

1
2 ds

 .

We now use B and H to express the above quantity. Setting

(x1, y1) =
(

7−p −2q

2(q −p)
+1,

p −1

q −p

)
=

(
7−3p

2(q −p)
,

p −1

q −p

)
,

(x2, y2) =
(

5+p −2q

2(q −p)
+1,

1

2

)
=

(
5−p

2(q −p)
,

1

2

)
,

we get

F (φ∗) =C
− 1

2∗
(
−H(x1, y1)+ 5−q

q −p
B(x2, y2)

)
.

Observe that we have assumed p < 7
3 , p < q , which ensures that x1, x2, y1, y2 are positive. This a

posteriori justifies the fact that J0(p, q) is finite. The formula (14) allows us to express H(x1, y1) in
the following way (using y2 = 1/2):

H(x1, y1) =−(2x1 −1)B
(
x1, y2

)+ (2x1 +2y1 −1)B
(
x1 + y1, y2

)
.

It turns out that

−(2x1 −1) =−7−2p −q

q −p
, (2x1 +2y1 −1) = 5−q

q −p
, x1 + y1 = 5−p

2(q −p)
= x2.

As a consequence, there is a simplification in the expression of F (φ∗), which becomes

F (φ∗) =C
− 1

2∗
7−2p −q

q −p
B

(
x1, y2

)
.

Setting

C0 = C
− 1

2∗
q −p

C (φ∗) > 0 (16)

gives the desired result. �

Lemma 11. Assume that ap < 0 and aq > 0. For p Ê 7/3 and 1 < p < q, we have

lim
ω→0

J (ω, p, q) =−∞.

The second part of Proposition 8 is a direct consequence of Lemma 11.

Proof. Coming back to the expression (15) of F (φ∗) in the proof of Lemma 10, we observe that
if 5−3p

2 É −1, i.e. p Ê 7
3 , then F (φ∗) = −∞, and, since limφ0→φ∗ C (φ0) = C (φ∗) > 0, we also have

J0(p, q) =−∞ when p Ê 7
3 . �
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4.2. The large frequency case

In this section, we determine the limit of J (ω, p, q) when ω tends to ω∗. Let J∗ be defined by

J∗(p, q) = lim
ω→ω∗ J (ω, p, q).

We first consider the case where aq > 0.

Proposition 12. Let aq > 0. The following holds.

(1) If 1 < q < 7
3 , then J∗(p, q) = 0+.

(2) If q = 7
3 , then 0 < J∗(p, q) <∞.

(3) If 7
3 < q < 5, then J∗(p, q) =∞.

(4) If q = 5, then J∗(p, q) = 0sign(ap ).
(5) If 5 < q, then J∗(p, q) =−∞.

Proof. Since aq > 0, we have ω∗ =∞ and therefore φ∗ =∞. Following similar arguments as in
the proof of Proposition 7, as φ0 →∞, for q 6= 5, we have

C (φ0) =φ4−q
0

(
q +1

4aq (q −1)
+o(1)

)
,

F (φ0) = (5−q)φ
− q+1

2
0

(∫ 1

0

(
2aq

q +1
(1− sq−1)

)− 1
2

s ds +o(1)

)
.

As a consequence, for q 6= 5, when φ0 →∞ (i.e. ω→∞), there exists C =C (aq , q) > 0 such that

J (ω, p, q) = (5−q)φ
7−3q

2
0 C (1+o(1)).

In the particular case q = 5, we instead write

F (φ0) = ap (5−p)φp−8
0

∫ 1

0

2
p+1 (1− sp−1)(

aq

3 (1− s4)
) 3

2

s ds +o(1)

 .

and therefore we get

J (ω, p, q) = ap (5−p)φp−9
0 C (1+o(1)).

The two estimates on J lead to the desired result. �

Then we consider the case where aq < 0 (and thus ap > 0 to ensure existence of standing
waves).

Proposition 13. Let ap > 0, aq < 0 and 5 É p. Then

J∗(p, q) =∞.

Proposition 13 does not cover the whole possible range of p and q . As it was not necessary in
our analysis, we did not try to cover the remaining cases.

Proof of Proposition 13. By construction, ω∗ =ω(φ∗) is the value of ω at which ∂φ0ω(φ∗) = 0. As
a consequence, we have

lim
φ0→φ∗

∂φ0

∂ω
=∞,

which, given the value (10) of C (φ0), readily implies

lim
φ0→φ∗C (φ0) =∞.
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Using the expressions of (7) ofΦp andΦq and the expression (8) of F we have

F (φ∗) =
∫ s

0

2ap
(5−p)(φ∗)p+1(1−sp−1)

p+1 +2aq
(5−q)(φ∗)q+1(1−sq−1)

q+1(
2ap

(φ∗)p+1(1−sp−1)
p+1 +2aq

(φ∗)q+1(1−sq−1)
q+1

) 3
2

s ds.

If p = 5, then we have F (φ∗) > 0 and the conclusion follows. From now on, assume that p > 5.
Recalling the value of φ∗ given in (5), we infer that

2ap
(5−p)(φ∗)p+1(1− sp−1)

p +1
+2aq

(5−q)(φ∗)q+1(1− sq−1)

q +1

= 2aq (φ∗)p+1(1− sq−1)
(5−q)

q +1

(
ap (5−p)(q +1)

aq (5−q)(p +1)

(1− sp−1)

(1− sq−1)
+ (φ∗)q−p

)
= 2ap (φ∗)p+1(1− sq−1)

(5−q)

q +1

(
(5−p)(q +1)

(5−q)(p +1)

(1− sp−1)

(1− sq−1)
− p −1

q −1

q +1

p +1

)
= 2ap (φ∗)p+1(1− sq−1)

(5−q)

p +1

(
(5−p)

(5−q)

(1− sp−1)

(1− sq−1)
− p −1

q −1

)
> 0,

where we have used in particular Lemma 6 for the last inequality. This implies that F (φ∗) > 0
which, since J (ω, p, q) =C (φ0)F (φ0), finishes the proof. �

5. Determination of the sign of the slope

In this section, we determine for each possible values of ap , aq , p and q the sign of J (ω, p, q).
Combined with the stability criteria of Section 2.2, this will prove Theorem 1. The general strategy
of our proofs is the following. Recall from Lemma 4 that J (ω, p, q) =C (φ0)F (φ0), where

F (φ0) =
∫ 1

0

(5−p)Φp + (5−q)Φq

(Φp +Φq )
3
2

s ds,

and C (φ0) > 0. Moreover, ω and φ0 are in an increasing one to one correspondence. Hence, to
determine the sign of J , it is sufficient to determine the sign of F (φ0). To do this, we have two
ingredients at our disposal. First, it is usually not difficult to establish that F has a constant sign on
intervals of the type (φ∗,φ0,1) or (φ0,1,φ∗). On the other hand, the expression for ∂φ0 F (φ0) given
in Lemma 5 allows us to show that ∂φ0 F (φ0) has a constant sign on intervals of the type (φ∗,φ0,2)
or (φ0,2,φ∗). If the intervals of the two ingredients overlap and if the signs are matching, the
conclusion will follow. For example, if F (φ0) > 0 on (φ∗,φ0,1), and ∂φ0 F (φ0) > 0 on (φ0,2,φ∗) and
φ0,1 >φ0,2, then F (φ0) > 0 on (φ∗,φ∗). The detail of each case is given in the following sections.

5.1. The focusing-focusing case

In this section, we consider the case ap > 0, aq > 0. In this case we haveΦp > 0 andΦq > 0.

Lemma 14. Let ap > 0, aq > 0 and q É 5. Then for all ω ∈ (0,∞) we have

J (ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. If q É 5, then 5−p > 0 and 5−q Ê 0. Therefore for any φ0 ∈ (0,∞) we have

F (φ0) > 0,

which gives the desired conclusion. �
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Lemma 15. Let ap > 0, aq > 0 and p Ê 5. Then for all ω ∈ (0,∞) we have

J (ω, p, q) < 0,

and the family of standing waves is of type U.

Proof. If p Ê 5, then 5−p É 0 and 5−q < 0. Therefore for any φ0 ∈ (0,∞) we have

F (φ0) < 0,

which gives the desired conclusion. �

The remaining case p < 5 < q is a bit more involved to consider.

Lemma 16. Let ap > 0, aq > 0 and p < 5 < q. There exists φ0,1 (explicitly given in (17)) such that if
φ

q−p
0 >φq−p

0,1 then
F (φ0) < 0.

Proof. Using the formula (8) of F (φ0) and replacing in the numerator of the integrandΦp andΦq

by their expressions (7), we obtain

F (φ0) =
∫ 1

0

(5−p)
2ap

p+1φ
p+1
0 (s − sp )+ (5−q)

2aq

q+1φ
q+1
0 (s − sq )

(Φp +Φq )
3
2

ds.

Let

l (s) = (5−p)
2ap

p +1
φ

p+1
0 (s − sp )+ (5−q)

2aq

q +1
φ

q+1
0 (s − sq ),

and
k(s) = (Φp +Φq )

3
2 .

We may reformulate l (s) in the following way:

l (s) =
(
(5−p)

2ap

p +1
φ

p+1
0 + (5−q)

2aq

q +1
φ

q+1
0

1− sq−1

1− sp−1

)
(s − sp ).

From Lemma 6, we know that the function s → 1−sq−1

1−sp−1 is increasing from 1 to q−1
p−1 when s goes

from 0 to 1. Let φ0,0 be given by

φ
q−p
0,0 =−ap (5−p)(q +1)(p −1)

aq (5−q)(p +1)(q −1)
,

and assume from now on that φ0 >φ0,0. Then

lim
s→1

l (s)

s − sp < 0,

and there exists s∗ ∈ [0,1) such that l (s) > 0 for s ∈ (0, s∗) and l (s) < 0 for s ∈ (s∗,1).
Define k̃ by k̃(s) = k(s)

k(s∗) . Then k̃(s∗) = 1. As k and therefore k̃ is a positive decreasing function
of s, for all s ∈ (0,1) we have

l (s)

k̃(s)
< l (s).

Integrating over (0,1), we obtain

F (φ0) < 1

k(s∗)

∫ 1

0
l (s)ds,

and F (φ0) will be negative if the integral in the right member is. Define φ0,1 >φ0,0 by

φ
q−p
0,1 =−ap (5−p)(p −1)(q +1)2

aq (5−q)(q −1)(p +1)2 . (17)

If φ0 >φ0,1, then∫ 1

0
l (s)ds = (5−p)

ap

p +1
φ

p+1
0

(
p −1

p +1

)
+ (5−q)

aq

q +1
φ

q+1
0

(
q −1

q +1

)
< 0.
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Hence for any φ0 >φ0,1 we have F (φ0) < 0. This concludes the proof. �

Lemma 17. Let ap > 0, aq > 0 and p < 5 < q. Let γ= p+1
2 . There existsφ0,2 (explicitly given in (20))

such that the integrand Iγ of Fγ defined in (11) verifies

∂Iγ
∂φ0

< 0

for all φ0 ∈ (0,φ0,2).

Proof. As γ= p+1
2 , from Lemma 5 we have

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−q)(p −q)Φq

)
(Φp +Φq )−3(p −q)2ΦpΦq(
Φp +Φq

) 5
2

 ,

= 1

2
φ
γ−1
0 Φq (p −q)

 (5+2q −3p)Φp + (5−q)Φq(
Φp +Φq

) 5
2

 .

As a consequence ∂φ0 Iγ < 0 if

(5+2q −3p)Φp + (5−q)Φq > 0.

ReplacingΦp andΦq by their expressions (7), this is equivalent to

(5+2q −3p)
ap

p +1
φ

p+1
0 (1− sp−1)+ (5−q)

aq

q +1
φ

q+1
0 (1− sq−1) > 0. (18)

Since p < 5 < q , we have 5+2q −3p > 0, and therefore (18) becomes

φ
q−p
0 <−ap

aq

(5+2q −3p)

(5−q)

(q +1)

(p +1)

(1− sp−1)

(1− sq−1)
. (19)

We know from Lemma 6 that
p −1

q −1
< 1− sp−1

1− sq−1 .

Define

φ
q−p
0,2 =−ap

aq

(5+2q −3p)

(5−q)

(q +1)

(p +1)

(p −1)

(q −1)
. (20)

If φ0 <φ0,2 then (19) is verified, which concludes the proof. �

Lemma 18. Let ap > 0, aq > 0 and p < 5 < q. The function Fγ(φ0) has at most one zero in (0,∞).

Proof. As p < q , we have
3(p −1)(p −q) < 0,

hence
(5−p)(q +1) < (p +1)(5+2q −3p).

It implies

−ap

aq

(5−p)

(5−q)

(q +1)2

(p +1)2

(p −1)

(q −1)
<−ap

aq

(5+2q −3p)

(5−q)

(q +1)

(p +1)

(p −1)

(q −1)
.

Therefore, we have
φ

q−p
0,1 <φq−p

0,2 .

We know from Lemma 16 that Fγ(φ0) < 0 if φ0 ∈ (φ0,1,∞), and from Lemma 17 that Fγ(φ0) is
decreasing for all φ0 ∈ (0,φ0,2). As φ0,1 <φ0,2, this implies that Fγ(φ0) has at most one zero. �

Lemma 19. Let ap > 0, aq > 0 and p < 5 < q. There exists ω1 ∈ (0,∞) such that

J (ω, p, q) > 0 for ω<ω1, J (ω1, p, q) = 0, J (ω, p, q) < 0 for ω>ω1,

and the family of standing waves is of type SU.
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Proof. From Proposition 7, we know that J (ω, p, q) > 0 for ω close to 0. Combined with Lem-
mas 16 and 18, this implies the desired result. �

5.2. The focusing-defocusing case

In this section, we consider the case ap > 0, aq < 0. In this caseΦp > 0 andΦq < 0.

Lemma 20. Let ap > 0, aq < 0 and p É 5 < q. For any ω ∈ (0,ω∗), we have

J (ω, p, q) > 0,

and the family of standing waves is of type S.

Proof. We have 5−p Ê 0, and 5−q < 0. Therefore F (φ0) > 0 for any φ0 ∈ (0,φ∗), which gives the
desired result. �

Lemma 21. Let ap > 0, aq < 0 and p < q É 5. Let γ = p+1
2 . Then the integrand Iγ of Fγ defined

in (11) verifies
∂Iγ
∂φ0

> 0

for all φ0 ∈ (0,φ∗).

Proof. From Lemma 5 with γ= p+1
2 , we have

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−q)(p −q)Φq

)
(Φp +Φq )−3(p −q)2ΦpΦq(
Φp +Φq

) 5
2

 .

Since 5−q Ê 0, p −q < 0 andΦq < 0, we have
∂Iγ
∂φ0

> 0 for any φ0 ∈ (0,φ∗). �

Lemma 22. Let ap > 0, aq < 0 and 5 < p < q. Let γ= p −q +3. Then the integrand Iγ of Fγ defined
in (11) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (0,φ∗).

Proof. Let γ= p −q +3.

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−p)(p −2q +5)Φp + (5−q)(2p −3q +5)Φq

)
(Φp +Φq )−3(p −q)2ΦpΦq(

Φp +Φq
) 5

2

 .

The sign of
∂Iγ
∂φ0

is the same as the sign of the numerator of the fraction. Factoring outΦ2
p , the sign

is the same as the one of the second order polynomial in
Φq

Φp
given by

(5−q)(2p −3q +5)

(
Φq

Φp

)2

+2(5−p)(2p −3q +5)

(
Φq

Φp

)
+ (5−p)(p −2q +5).

As 2p−3q+5 < 0 and 5−q < 0, the coefficient of the term of order 2 is positive. Therefore to show
that the polynomial is positive, it is sufficient to show that the discriminant ∆, given by

∆= 4(5−p)(2p −3q +5)((5−p)(2p −3q +5)− (5−q)(p −2q +5)),

=−8(5−p)(2p −3q +5)(p −q)2,

is negative. We have 2p −3q +5 < 0 and 5−p < 0, therefore ∆< 0. This concludes the proof. �
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Lemma 23. Let ap > 0, aq < 0.

• Let p < q É 5. Then for any ω ∈ (0,ω∗), we have

J (ω, p, q) > 0,

and the family of standing waves is of type S.
• Let 5 < p < q. Then there exist ω1 ∈ (0,∞) such that

J (ω, p, q) < 0 for ω<ω1, J (ω1, p, q) = 0, J (ω, p, q) > 0 for ω>ω1,

and the family of standing waves is of type US.

Proof. In both cases, we infer from Lemmas 21 and 22 that for any ω ∈ (0,ω∗), the function
ω→ J (ω, p, q) changes sign (from negative to positive) at most once on ω ∈ (0,ω∗).

To establish the desired conclusion, we consider the values of J close to the endpoints. As
ω→ 0, we have established in Proposition 7 that for ω close to 0, we have

J (ω, p, q) > 0 for p É 5, J (ω, p, q) < 0 for p > 5.

As J is increasing, this gives the conclusion for the first part of the Lemma.
For the second part of the Lemma, we look at the limit ω→ ω∗ (i.e. φ0 → φ∗). From Proposi-

tion 13, for 5 < p < q and for ω close to ω∗ we have

J (ω, p, q) > 0,

which gives the second part of the Lemma. �

5.3. The defocusing-focusing case

In this section, we consider the case ap < 0, aq > 0. In this caseΦp < 0 andΦq > 0.

Lemma 24. Let ap < 0, aq > 0 and p < q < 5. Let γ= q+1
2 . If 3q Ê 2p +5, then the integrand Iγ of

Fγ defined in (11) verifies
∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ= q+1
2 , from Lemma 5 we have

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−p)(q −p)Φp

)
(Φp +Φq )−3(p −q)2ΦpΦq(
Φp +Φq

) 5
2

 ,

= 1

2
φ
γ−1
0 Φp (q −p)

 (5−p)Φp + (5−p)Φq +3(p −q)Φq(
Φp +Φq

) 5
2

 ,

= 1

2
φ
γ−1
0 Φp (q −p)

 (5−p)Φp + (5+2p −3q)Φq(
Φp +Φq

) 5
2

 .

As 0 < 5−p and 2p +5−3q É 0 we have

(5−p)Φp + (5+2p −3q)Φq < 0.

As a consequence
∂Iγ
φ0

> 0 for all φ0 ∈ (φ∗,∞) when 5 + 2p − 3q É 0, which is the desired
conclusion. �
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Lemma 25. Let ap < 0, aq > 0 and p < q < 5. Let γ= p −q +3. If 3q < 2p +5 then the integrand Iγ
of Fγ defined in (11) verifies

∂Iγ
∂φ0

> 0

for all φ0 ∈ (φ∗,∞).

Proof. As γ= p −q +3, from Lemma 5 we have

∂Iγ
∂φ0

= 1

2
φ
γ−1
0

(
(5−p)(p −2q +5)Φp + (5−q)(2p −3q +5)Φq

)
(Φp +Φq )−3(p −q)2ΦpΦq(

Φp +Φq
) 5

2

 .

If the numerator of the fraction is positive then the derivative is positive. Factorizing out Φ2
p , the

sign of the numerator is the same as the one of the quadratic polynomial in
Φq

Φp
given by

(5−q)(2p −3q +5)

(
Φq

Φp

)2

+2(5−p)(2p −3q +5)

(
Φq

Φp

)
+ (5−p)(p −2q +5).

As 2p−3q+5 > 0 and 5−q > 0, the coefficient of the term of order 2 is positive. Therefore to show
that the polynomial is positive, it is sufficient to show that the discriminant ∆, given by

∆= 4(5−p)(2p −3q +5)((5−p)(2p −3q +5)− (5−q)(p −2q +5)),

=−8(5−p)(2p −3q +5)(p −q)2,

is negative. We have 2p −3q +5 > 0 and 5−p > 0, therefore ∆< 0. This concludes the proof. �

Lemma 26. Let ap < 0, aq > 0 and p < q < 5.

• If q É 7−2p, then for any ω ∈ (0,∞), we have

J (ω, p, q) > 0,

and the family of standing waves is of type S.
• If q > 7−2p, then there exist ω1 ∈ (0,∞) such that

J (ω, p, q) < 0 for ω<ω1, J (ω1, p, q) = 0, J (ω, p, q) > 0 for ω>ω1,

and the family of standing waves is of type US.

Proof. Lemmas 24 and 25 implies Fγ changes sign only once on (0,ω∗). From Proposition 8, we
know that as ω→ 0, we have J (ω, p, q) > 0 when q É 7− 2p, which gives the conclusion for the
first part of the Lemma. When q > 7− 2p, from Proposition 8, we know that as ω→ 0, we have
J (ω, p, q) < 0. Since, from Proposition 12, we know that J (ω, p, q) > 0 for large ω, the conclusion
follows for the second part of the Lemma. �

Lemma 27. Let ap < 0, aq > 0 and p < 5 É q. For any ω ∈ (0,∞), we have

J (ω, p, q) < 0,

and the family of standing waves is of type U .

Proof. We have 5 − p > 0, 5 − q É 0, Φp < 0 and Φq > 0. Therefore we directly see on the
expression (8) of F (φ0) that F (φ0) < 0, which gives the desired result. �

Lemma 28. Let ap < 0, aq > 0 and 5 É p < q. For any ω ∈ (0,∞), we have

J (ω, p, q) < 0,

and the family of standing waves is of type U .
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Proof. We know thatφ∗ <φ0, therefore − ap

aq

q+1
p+1 <φq−p

0 . As 5−p
5−q < 1, we have − ap

aq

q+1
p+1

5−p
5−q <φq−p

0 .

From Lemma 6 we know that 1−sp−1

1−sq−1 < 1, hence

−ap

aq

(q +1)

(p +1)

(5−p)

(5−q)

1− sp−1

1− sq−1 <φq−p
0 ,

which is equivalent to
(5−p)

(5−q)
<−Φq

Φp
,

which implies
(5−p)Φp + (5−q)Φq < 0.

This implies that F (φ0) < 0 which gives the desired result. �

5.4. The critical frequency

Observe that, as a by-product of the analysis of the previous sections, we should have instability at
the critical frequency (under regularity assumptions on the nonlinearity) when there is a stability
change. Indeed, we have

∂2
ωM(φω) = ∂ω

(
C (φ0)φ−γ

0 Fγ(φ0)
)= ∂ωφ0

(
∂φ0

(
C (φ0)φ−γ

0

)
Fγ(φ0)+C (φ0)φ−γ

0 ∂φ0 Fγ(φ0)
)

.

At the stability change, we have F (φ0) = 0. Therefore, at the stability change,

∂2
ωM(φω) = (∂ωφ0)C (φ0)φ−γ

0 ∂φ0 Fγ(φ0).

As we have shown that in this case ∂φ0 Fγ(φ0) 6= 0, the criterion (6) holds.

6. Numerical experiments

To explore further the stability/instability of standing waves, we have performed a series of
numerical experiments in the case ap < 0, aq > 0, 1 < p < q < 5.

The Python language and the specific libraries Numpy, Scipy and Matplotlib have been used
to perform the experiments. The code is made available in [26].

6.1. The critical surface for stability/instability

We first analyzed the critical surface in (ω, p, q) separating instability from stability. To this aim,
we first have implemented the calculation of J (ω, p, q). The function integrate.quad has been
used to perform the integration. While the results are overall satisfactory, in some cases the
function returned incorrect results, with problems increasing as ω was taken closer to 0.

To estimate the critical ω at given (p, q), we have used the classical bisection method, which
has the advantage of being very robust. The algorithm is divided into two parts.

First, we find an initial interval [ω0,ω1] in which we are sure that ω → J (ω, p, q) changes
sign. A natural choice for ω0 is 0. To find a suitable ω1, we simply start with ω1 = 1 and test if
J (ω1, p, q) > 0. If not, we replace ω1 by 2ω1 and repeat until J (ω1, p, q) > 0. To avoid running an
infinite loop, we break it whenω1 > 1010 and do not search forωc in these cases. Second, we apply
the bisection method to search for a root of J (ω, p, q) inside [ω0,ω1]. As this approach, while being
efficient, is also relatively slow, we took advantage of the computer power of our department to
run computations in parallel on the (p, q) ∈ [1,5]× [1,5] grid with dp = dq = 0.01.

We have represented the critical surface

{(p, q,ωc (p, q))}
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Critical surface when ap = −1 and aq = 0.5
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Critical surface when ap = −1 and aq = 1
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Critical surface when ap = −1 and aq = 2

Figure 1. Critical surface {(p, q,ωc (p, q))} for ap = −1 and aq = 1/2,1,2. The white lines
represent q = 7−2p and q = p, where the transition from ωc = 0 to ωc > 0 occurs.

for ap =−1 and three different values of aq = 1/2,1,2 in Figure 1.
Several observations can be made on the critical surface. As (p, q) approaches the line q = 5,

we have ωc (p, q) →∞, which is consistent with the fact that standing waves are all unstable on
this line.

It can be observed that on the line q = 7−2p the transition is continuous, no matter the value
of aq . To the contrary, the transition is continuous on the line p = q when aq Ê 1, whereas it
becomes discontinuous when aq < 1, in which case ωc (p, q) →∞ as q → p.

To investigate more the transition close to the lines q = 7 − 2p and q = p, we plot slices
of the critical surface for a fixed value of q in Figure 2. We chose to present the results when
q = 4, but similar results are obtained with other values of q . On Figure 2, we observe that when
aq = |ap | = 1, the transition between ωc (p, q) = 0 and ωc (p, q) > 0 at q = p and q = 7− 2p is
Lipschitz. When aq = 2 > |ap | = 1, the transition seems smoother (but closer observations will
reveal otherwise) when q = p, whereas it remains Lipchitz when q = 7−2p. To the contrary, when
aq = 1/2 < |ap | = 1, the transition is discontinuous when q = p, whereas it seems smoother at
q = 7−2p.

1 2 3 4 5
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when ap = −1 and aq = 0.5

ωc(p, q = 4.00)

1 2 3 4 5
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ωc(p, q = 4.00)

1 2 3 4 5
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when ap = −1 and aq = 2

ωc(p, q = 4.00)

Figure 2. Slices of the critical surface for fixed value of q = 4

To confirm our previous observations, we zoomed on the slices of Figure 2 and obtained the
results presented in Figure 3.

Observing closer the transition from ωc > 0 to ωc = 0 on fixed q slices of Figure 3, we realize
that the transition on the left (q = 7− 2p) seems to be always only Lipschitz, contrary to what
could be inferred from the previous observation. On the other hand, the previous observation
when p = q is confirmed: the transition seems smooth when aq = 2, Lipschitz when aq = 1, and
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Figure 3. Zoom on slices of the critical surface for fixed value of q = 4

discontinuous when aq = 1/2. This is reflecting the fact that when p → q , the family of soliton
profiles has a different behavior for different values of aq . When aq > |ap |, soliton profiles for
p = q exist and are stable (hence ωc (p, q = p) = 0), whereas for aq = |ap | the two nonlinearities
exactly compensate and for |ap | > aq the defocusing nonlinearity becomes the dominant one
(and solitary waves do not even exist).

From the previous observations, we know that at fixed q the map p → ωc (p, q) has a unique
maximum if aq = 1 or aq = 2 (if aq = 1/2, we have seen that the map increases towards infinity as
p approaches q). Denote by pmax(q) the value realizing this maximum, i.e.

ωc (pmax(q), q) = max
1<p<5

ωc (p, q).

The line {(pmax(q), q), q > 7/3} is represented in Picture 4.

1 2 3 4 5
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q

when ap = −1 and aq = 1

p = 7/3

p = q
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q

when ap = −1 and aq = 2

p = 7/3

p = q

q = 7− 2p

pmax(q)

Figure 4. Curve of the argument of maxp ωc (p, q) in terms of q

When aq = 1, we observe that the line is tangent to the line p = q when q is close to 7/3 or close
to 5. On the other hand, when aq = 2, the line seems to be tangent to the line p = 7/3 when q is
close to 7/3. It approaches the point (5,5) as q goes to 5, but does not seem to be tangent to the
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line p = q (it was however not possible to obtain numerically a relevant picture closer to q = 5,
which leaves open the question of the behavior when q is close to 5).

6.2. Evolution for initial data close to standing waves

We now turn to numerical experiments for the stability/instability of solitary waves for the flow
of (1). For the experiments, we have used the Crank–Nicolson scheme with relaxation presented
in [10] which has been proved to be efficient for the numerical simulation of the Schrödinger
flow (see e.g. [6] for the comparison of various schemes used for the dynamical simulations of
the nonlinear Schrödinger flow).

For a time discretization step δt (typically δt = 10−3), denote by un the approximation of u at
time tn = nδt . The semi-discrete (in time) relaxation scheme is then given byφn+ 1

2 +φn− 1
2

2 = ap |un |p +aq |un |q ,

i un+1−un

δt
+∂xx

(
un+1+un

2

)
=−

(
un+1+un

2

)
φn+ 1

2 ,

with the understanding that u0 = u0 and φ− 1
2 = ap |u0|p + aq |u0|q . For the implementation,

the scheme is further discretized in space with second order finite differences for the second
derivative operator, with Dirichlet boundary conditions.

We have performed simulations for (p, q) on the line q = 2p −1, as for this range of exponents
explicit formulas are available for solitary wave profiles (see e.g. [30]) and can be used easily
to construct initial data. Considering other ranges of (p, q) would have been possible, to the
extend of additional computations to first obtain numerically solitary waves. As we do not expect
different behavior to occur for other values of (p, q), the restriction to the line q = 2p − 1 is
harmless.

The initial data that we construct are all based on a solitary wave profile φω. They are of the
form

u0 =φω+εψ,

where 0 < ε¿ 1 is used to adjust the size of the perturbation and ψ is the direction of perturba-
tion, which can be for example

ψ=φω, ψ=φω cos, ψ=φω tanh, ψ=φω( · −3).

As our numerical scheme uses Dirichlet conditions at the bounds of the space interval, we
have chosen to work with well-localized perturbation in order to avoid possible numerical
reflections due to the boundary conditions. Our experiments consisted in taking one of the
previous possibility as initial data, running the simulation of the nonlinear Schrödinger flow, and
observe the pattern of the outcome. It turns out that after running numerous simulations, we
have observed only three possible types of behavior:

• Stability;
• Growth followed by slightly decreasing oscillations;
• Dispersion.

Observe that our numerical results are in part similar to the ones obtained and discussed
in further details in [11, Section 4] in the case of the 2d cubic-quintic (focusing-defocusing)
nonlinear Schrödinger equation.

Stability means that the solution does not leave the neighborhood of φω (up to phase shift
and translations). We obviously expect to see this behavior in the cases where the values of the
parameters p, q , and ω ensure that the solitary wave will be stable. However, one thing which is
not easily decided by the theory is the size of the basin of stability of the solitary wave. In other
words, finding a perturbation of the solitary wave sufficiently large to be visible, but small enough
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so that the corresponding solution remains in the vicinity of the solitary wave requires delicate
adjustments.

An example of a stable behavior is provided in Figure 5. Observe that while on the global scale
the solution seems to be behave exactly as a solitary wave (left picture), when getting a closer look
at the maximum value (right picture) we observe small oscillations (with an amplitude of order
0.03).
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ap = −1, aq = 1, p = 1.25, q = 1.50, ω = 1.00, ωc = 0.00, init=1
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Plot of t 7→ max |u(t, x)| when
ap = −1, aq = 1, p = 1.25, q = 1.50, ω = 1.00, ωc = 0.00, init=1

Figure 5. Example of a stable numerical solution. The initial data is u0 = (1+ε)φω, ε= 10−2.

The second behavior consists in a first phase of focusing growth of the profile, which is
similar to what can be observed when instability of solitons is by blow-up (e.g. for power-
type supercritical nonlinearities. However, after a certain time, the focusing phase stops and is
followed by a phase in which the solution seems to oscillate around another profile. The size of
the oscillation is decaying, but at a slow pace, and we have not run the simulation long enough to
observe convergence toward a final state. An example of such a behavior is presented in Figure 6.
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Figure 6. Example of a growing/oscillating numerical solution. The initial data is u0 =
(1+ε)φω, ε= 10−2.

Finally, the third behavior that we have observed could be characterized as scattering, as the
profile of the solution is simultaneously decreasing in height while spreading over the whole
line. As before, the decay is rather slow and we have not run the simulation long enough for the
solution to converge to 0. An example of such a behavior is presented in Figure 7. Observe that
the domain of calculation is [−50,50], but the solution is represented only on [−20,20], which
explains the non-zero values observed at the boundaries on the left figure.
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Figure 7. Example of a scattering numerical solution. The initial data is u0 = (1 − ε)φω,
ε= 10−2.
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