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1 Introduction

The objective of these notes is to present the main elements of an approach based on Hamilton-

Jacobi equations with constraint that has been developed since 2005 [DJMP05] to study the

evolutionary dynamics of populations structured by quantitative traits.

The ability of an individual to survive and to reproduce depends indeed on genetic or pheno-

typic parameters called traits. Several mechanisms contribute to the evolution of the living

organisms: heredity, i.e. vertical transmission of the ancestral trait to the offspring, mutation

which generates variability in the trait values, selection which results from the interaction of

individuals with their environment, and horizontal gene transfer, i.e. horizontal exchange of

genetic information between individuals during their life time. Is it possible to predict the sur-

vival or extinction of a population which is subject to such mechanisms? Can we characterize

the phenotypic distribution of such population? Such types of questions emerge for instance

in the study of the impact of an environmental change, e. g. climate change, on a population

or in the investigation of an efficient therapy avoiding resistance of bacteria or cancer cells to

medications [LMR10, CLM10, KM14, BPnMGI17].

When studying large populations, the evolutionary dynamics of phenotypically structured popu-

lations, subject to asexual reproduction, selection and mutation, may be described by parabolic

Lotka-Volterra type integro-differential models. In Section 1.1 we introduce some pioneer mod-

els in this field and we provide explicit solutions in some particular cases. In Section 1.2 we

introduce a framework where the Hamilton-Jacobi approach can be applied. This approach

allows to study more general situations.

1.1 Models and explicit solutions

Our first model, which is also the most natural one, is the following
∂tn = nR(z, I) +

∫
K(y − z) b(y, I)n(t, y) dy, (t, z) ∈ R+ × Rd,

I(t) =
∫

Rd n(t, y)dy,

n(0, z) = n0(z).

(1)

Here, z corresponds to a phenotypic trait and n(t, z) denotes the density of trait z at time t.

The integral term I(t) corresponds to the total population size and can also be interpreted as

an indicator of the total consumption of a nutrient. We represent the birth (without mutation)

and death rate of the individuals with phenotype z by a growth rate R(z, I) (called also the
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fitness function) which depends on the phenotype and the environmental feedback I(t). The last

integral term models the mutations; the term b(y, I) corresponds to the birth rate of individuals

with trait y such that the offspring has a mutated trait and K corresponds to the distribution

of mutational effects.

A variant of this model, known as the continuum of alleles model, was first suggested

by Kimura [Kim65]. Later such equation was derived rigorously from stochastic individ-

ual based models in the limit of large populations by Champagant, Férrière and Méléard

[CFM06, CFM08].

Another option is to model the mutations with a diffusion term instead of an integral kernel:
∂tn− σ2∆n = nR(z, I), (t, z) ∈ R+ × Rd,

I(t) =
∫

Rd n(t, y)ψ(y)dy,

n(0, z) = n0(z).

(2)

Here, the parameter σ is a positive constant that measures the effect of the mutations. This

model was also suggested by Kimura [Kim65] as an approximation of (1) considering small

mutational effects (see also [B0̈0, p. 239-241] for a discussion on the range of the validity of

the above equation as an approximation of (1)). Later this model was directly derived from

a stochastic individual based model considering small effects of mutations but with important

mutation rate (or with large birth and death rates) [CFM06, CFM08].

1.1.1 Explicit Gaussian solution for a model with quadratic stabilizing selection

A typical example of the growth rate R is given by

R(z, I) = r(z)− κI, ψ ≡ 1, z ∈ R,

r(z) = rmax − s(z − θ)2,

with r(z) known as a quadratic stabilizing selection function. Here, rmax corresponds to the

maximal growth rate of individuals. The quadratic term in the expression of r(z) means that

the optimal trait is give by z0 = θ and having a non-optimal trait has a cost given by (z − θ)2

times a coefficient s which is called the pressure of the selection. In this example, we consider

a uniform competition between the traits, with intensity κ.

For this particular growth rate R, and considering a well-prepared initial condition, (2) has
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explicit Gaussian solutions:

n(t, z) =
ρ(t)√
2πσ

exp
(
−
√
s(z − µ(t))2

2σ

)
,

with

µ′(t) = 2
√
sσ(θ − µ),

ρ′(t) = ρ(t)
(
rmax −

√
sσ − s(θ − µ)2 − κρ

)
.

Note that ρ(t) and µ(t) correspond respectively to the total size of the population, and the

mean phenotypic trait at time t. In this example, the variance of the phenotypic density is

constant, given by

v ≡ σ√
s
.

It is often more practical for biologists to deal with the moments of the phenotypic distribution

rather than the phenotypic distribution itself. These quantities are indeed more easily mea-

surable in the biological experiments. Let’s give some interpretation of the above expressions

:

ρ′ = κρ
( rmax

κ
maximal total size

−
√
sσ

κ
demographic load 1

− s

κ
(θ − µ)2

demographic load 2

− ρ
)
.

Here, the first term at the r.h.s. ( rmax

κ
) corresponds to the size of a population where all the

individuals have the optimal trait θ. The second term (
√
sσ
κ

) corresponds to a demographic load

due to the mutations. The third term corresponds to a demographic load due to the distance of

the phenotypic mean to the optimum. In long time, the population distribution will be centered

around the optimal trait (µ converges to θ) and this second demographic load will disappear,

while the first load due to the mutations will persist.

The dynamics of the phenotypic mean can be rewritten as below

µ′(t) =
σ√
s

phenotypic variance

· 2s(θ − µ)

gradient of the fitness r(z)

.

The equation above is known indeed as the Lande’s equation in Quantitative Genetics [Lus37,

Lan79, LA83], obtained under Gaussian assumption on the phenotypic distribution. Quantita-

tive Genetics is a theory in evolutionary biology that studies the evolution of continuous traits.

It is also related to the so-called canonical equation in Adaptive Dynamics, another theory in

evolutionary biology, that considers very rare mutations leading to discrete distributions.
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1.1.2 Beyond the Gaussian solutions

In the previous subsection, we saw a particular situation where we can find Gaussian explicit

solutions for our model. Gaussian distributions may also provide good approximations of the

solutions in other situations. Many of the theoretical results in Quantitative Genetics are indeed

based on such approximations. However, when considering non-Gaussian initial conditions,

other fitness functions or in presence of heterogeneity, these approximations are not always

satisfying. In particular, when considering more complex models the phenotypic distribution

may not be anymore unimodal and several dominant traits may appear in the population. How

can one describe such complex distributions?

In what follows we introduce a method based on Hamilton-Jacobi equations that allows to

study general models from Quantitative Genetics, in a regime where the mutations have small

effect (σ small in (2)).

1.2 The regime of small mutations and concentration

The integro-differential equations presented above have the property that in the limit of small

diffusion, representing the mutations, and in long time the solution concentrates on one or

several evolving points corresponding to dominant traits. In this section, we show how an

approach based on Hamilton-Jacobi equations allows to study such phenomena. This approach

was first suggested in [DJMP05] and the first results were provided in [BP07, PB08]. Note that

related tools were already used to study the propagation phenomena for local reaction-diffusion

equations (see for instance [Fre85, ES89]).

To consider small mutation effects, we assume that the variance of the mutational effects is

of order ε2, with ε a small parameter. To take into account this assumption in our models, we

replace K(·) by 1
εd
K( ·

ε
), in the case of (1) and we take σ = ε2 in the case of (2). Our objective,

being to perform an asymptotic analysis, we also make a change of variable in time:

t 7→ t

ε
,

which accelerates the dynamics such that we can observe the effect of small mutations. We

thus define the rescaled functions

nε(t, z) = n(
t

ε
, z), Iε(t) = I(

t

ε
).
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In the first model, the rescaled equation becomes
ε∂tnε = nεR(z, Iε) +

∫
1
εd
K(y−z

ε
) b(y, Iε)nε(t, y) dy, (t, z) ∈ R+ × Rd,

Iε(t) =
∫

Rd nε(t, y)ψ(y)dy,

nε(0, z) = nε,0(z).

(3)

In the second model, the rescaled equation is written
ε∂tnε − ε2∆nε = nεR(z, Iε), (t, z) ∈ R+ × Rd,

Iε(t) =
∫

Rd nε(t, y)ψ(y)dy,

nε(0, z) = nε,0(z).

(4)

For both of these equations, we expect that, as ε → 0, the solution of (4) concentrates on a

single trait, corresponding to a dominant trait which evolves in time, i.e.

nε(t, z)−⇀ρ(t)δ(z(t).

See Figure 1, for the numerical resolution of (4), for ε small and a choice of parameters com-

patible with our assumptions below. We observe that the solution concentrates indeed around

a dominant trait which evolves in time. The fact that we expect to have a single Dirac mass

Figure 1 – The dynamics of the phenotypic density. The colors represent different values of
the phenotypic density nε(t, z), the solution to (4). The population concentrates on a dominant
trait which evolves with time. Here we consider the following parameters R(z, I) = 7− z2 − I,

ψ(z) ≡ 1, nε,0(z) = 1√
επ

exp(− (z+2)2

ε
) and ε = 0.02.

at the limit is related to the competitive exclusion principle in ecology [Lev70, Sch74]. This

principle states indeed that when there are k limiting factors for the population, no more than k

distinct traits may coexist. In the present model, we consider only one nutrient that is modeled

via the nonlocal term I. Therefore, we expect to have a monomorphic population, except in
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Figure 2 – The numerical resolution of (4) with z ∈ R2, ψ = 1, R(z1, z2, I) = 3− 5.6(Rez
2
1 +

z2
2)−1.5I and nε,0 = Cmass

[
exp

(
−2.4

ε

(
(z1 − .25

√
2)2 + z2

2

))
+ exp

(
−2.4

ε

(
(z2 − .25

√
2)2 + z2

1

))]
and ε = 0.003. The constant Cmass is chosen such that the size of the initial population in the
computation domain equal 0.3. At left we consider Re = 1.1 and at right we choose Re = 1.
We depict the population density n at three consecutive times. We observe that, only for the
completely symmetric case, two Dirac masses can persist and once we perturb a little bit the
symmetry, one of the traits disapears.

very particular symmetric cases (see Figure 2).

1.2.1 Regime of interest: evolutionary time scale much larger than ecological time

scale

Let’s suppose that

R(z, I) = r(z)− κI,

with r : R→ R such that it tales a unique maximum point at z0 ∈ R. We rewrite r(z) as below

r(z) = rmax − µ(z),

with µ(z) such that

min
z
µ(z) = µ(z0) = 0, −1

2
µ′′(z0) = s0.

Adimensional parametrization:

ñ(t, z) =
κ

rmax

n(
t

rmax

,
z√

s0/rmax

), µ̃(z) =
1

rmax

µ(
z√

s0/rmax

).

Leads to
∂

∂t
ñ− σ2s0

r2
max

∆ñ = ñ
(
1− µ̃(z)− ρ̃

)
,
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with µ̃(z) such that

min
z
µ̃(z) = µ̃(z0) = 0,

1

2

∂2µ̃

∂z2
(z0) = 1.

The quantity that should be sufficiently small to have a good approximation:

σ2s0

r2
max

<< 1,

or equivalently

σ
√
s0 << rmax.

This means indeed that the evolutionary time scale has to be much larger than ecological time

scale.

1.2.2 The Hamilton-Jacobi approach

The main idea in the Hamilton-Jacobi approach, in order to study asymptotically nε and in

particular to describe such concentration phenomenon, is to perform the Hopf-Cole transfor-

mation

0 < nε =
1

(2πε)
d
2

exp
(uε
ε

)
. (5)

While, as ε → 0, nε converges to a measure, the limit of uε is a continuous function which

solves a Hamilton-Jacobi equation. The idea is to first obtain the convergence of uε to such

continuous function u and then use the properties of u to describe the limit n, of nε. The

identification of u allows us in particular to show that n is a single Dirac mass.

When the growth term R and the initial data nε,0 are nice, in a sense that we will precise

later, one can even go further than just obtaining the convergence of uε, but also obtain an

asymptotic expansion with respect to ε:

uε(t, z) = u(t, z) + εv(t, z) + o(ε).

Replacing the above expansion in (5) we obtain an approximation of the population’s distribu-

tion nε for ε small but nonzero:

nε(t, z) =
1

(2πε)
d
2

exp
(u(t, z)

ε
+ v(t, z) + o(ε)

)
.

Such approximation is particularly interesting from the biological point of view, since it is

more relevant to consider non-vanishing effects of mutations. Moreover, going further in the

approximation by using the Lapalce’ method for integration, one can estimate the moments of
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the population’s distribution and obtain more quantitative results which could be compared to

measurable quantities in biological experiments [MG20, FIM18].

We show below how to derive the convergence of uε to u the viscosity solution to a certain

Hamilton-Jacobi equation with constraint.
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2 Maximum principles for parabolic equations

In this section, we present the maximum principle for linear parabolic equations with Dirichlet

boundary conditions.

Consider the following linear elliptic operator, with continuous and bounded coefficients,

L = −
d∑

i,j=1

ai,j(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
+ c(t, x), (t, x) ∈ R+ × Ω.

Here, we assume that (ai,j) is a symmetric matrix and that the operator is uniformly elliptic,

that is there exists α, β > 0, such that

α‖ξ‖2 ≤
∑
i,j

ai,j(t, x)ξiξj ≤ β‖ξ‖2,

for all vector ξ ∈ Rd and for all t ≥ 0 and x ∈ Ω. We introduce the maximum principle for the

parabolic equations of the following form:∂tϕ+ Lϕ = 0, (t, x) ∈ (0,∞)× Ω

ϕ(t, x) = 0, (t, x) ∈ (0,∞)× ∂Ω,
(6)

with Ω an open and connected set.

Definition 2.1 A function ϕ ∈ C2((0,∞)×Ω) ∩ C([0,∞)× Ω) is called a sub-solution to (6)

if and only if the following inequalities hold∂tϕ+ Lϕ ≤ 0, (t, x) ∈ (0,∞)× Ω

ϕ(t, x) ≤ 0, (t, x) ∈ (0,∞)× ∂Ω.

A function ϕ ∈ C2((0,∞)×Ω)∩C([0,∞)×Ω) is called a sub-solution to (6) if and only if the

same inequalities hold with opposite signs.

When Ω is unbounded, we add the condition that, for all T > 0,

|ϕ(t, x)| ≤ AeB|x|, A,B > 0,

for all (t, x) ∈ [0, T ]× Ω.

Theorem 2.2 (The weak maximum principle) Let u be a subsolution (resp. supersolu-

tion) to (6), such that u(0, ·) ≤ 0 (resp. u(0, ·) ≥ 0). Then, for all t ≥ 0, u(t, ·) ≤ 0, (resp.

u(t, ·) ≥ 0).
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Theorem 2.3 (The strong maximum principle) Let u be a subsolution (resp. supersolu-

tion) to (6), such that u(0, ·) ≤ 0 (resp. u(0, ·) ≥ 0). If there exists (t0, x0) ∈ (0,∞)× Ω such

that u(t0, x0) = 0, then u ≡ 0 in [0, t0]× Ω.

Before providing the proofs of the theorems above we first state the following Lemma which

will be useful in what follows.

Lemma 2.4 Let P = (pi,j)i,j∈{1,··· ,d} and Q = (qi,j)i,j∈{1,··· ,d} be two symmetric definite positive

matrices. Then, we have Tr (PQ) =
∑

i,j pi,jqi,j ≥ 0.

The proof of this lemma is left to the reader as an exercise. We next prove the weak maximum

principle in a simple case.

Lemma 2.5 Let Ω be a bounded set, and u be a strict subsolution of (6), that is
∂tu+ Lu < 0,

u(t, x) < 0, (t, x) ∈ R+ × ∂Ω,

u(0, x) < 0, x ∈ Ω.

(7)

Then,

u(t, x) < 0, for all (t, x)× R+ × Ω.

Proof of Lemma 2.5. Let t0 > 0 be the first time that u attains the value 0 in Ω, that is

there exists x0 ∈ Ω such that u(t0, x0) = 0. Since this is a maximum point in [0, t0]×Ω we have

∂tu(t0, x0) ≥ 0,
d∑
i=1

bi
∂

∂xi
(t0, x0) = 0, −D2u(t0, x0) ≥ 0.

Moreover, from the latter inequality and Lemma 2.4 we deduce that

−
d∑

i,j=1

ai,j
∂2u

∂xi∂xj
(t0, x0) ≥ 0.

We deduce that

∂tu(t0, x0) + Lu(t0, x0) ≥ 0,

which is in contradiction with (7).

To prove Theorem 2.2 the idea is to bring the problem to the situation above.

Proof the the weak maximum prinicple. (i) Bounded domains. We now prove the

result, for bounded domains, in the case where u is not a strict subsolution.

14



We define w = ue−Kt, with K a large constant such that c+K ≥ 1. We have

∂tw + Lw +Kw = ∂tw −
d∑

i,j=1

ai,j
∂2w

∂xi∂xj
(t0, x0) +

d∑
i=1

bi
∂

∂xi
w + (c+K)w ≤ 0. (8)

Note that w(t, x) ≤ 0 for (t, x) ∈ R+ × ∂Ω × {0} × Ω. Moreover, w(t, x) ≤ 0 implies that

u(t, x) ≤ 0.

Now let t0 be the first time that w attains the value δ > 0 in Ω, that is there exists x0 ∈ Ω

such that w(t0, x0) = δ. Similarly to above, we have

∂tw(t0, x0) ≥ 0, −
d∑

i,j=1

ai,j
∂2w

∂xi∂xj
(t0, x0) ≥ 0,

d∑
i=1

bi
∂

∂xi
w(t0, x0) = 0.

It follows that

∂tw(t0, x0)−
d∑

i,j=1

ai,j
∂2w

∂xi∂xj
(t0, x0)+

d∑
i=1

bi
∂

∂xi
w(t0, x0)+(c+K)w(t0, x0) ≥ (c+K)w(t0, x0) ≥ δ > 0.

This is in contradiction with (8). We deduce that

w(t, x) ≤ 0, for all (t, x) ∈ R+ × Ω.

(ii) Unbounded domains. Let’s suppose now that Ω is unbounded. We define

v = uψ(x),

where ψ ∈ C∞(Rd) is strictly positive and such that

|∇ψ|
ψ
∈ L∞(Rd),

|D2ψ|
ψ
∈ L∞(Rd).

and

ψ(x) = e−2B|x|, for large |x|.

Then v is a subsolution to a linear parabolic equation with bounded coefficients and v → 0 as

|x| → ∞. Then, the proof follows similarly to the case (i).

In order to prove the strong maximum principle, We first state the following lemma.

Lemma 2.6 Let u be a subsolution of (6) such that u(0, x) < 0 for all x ∈ Ω. Then, u(t, x) < 0

for all (t, x) ∈ R+ × Ω.

Proof of Lemma 2.6. Thanks to the weak maximum principle, we can assume without
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loss of generality that Ω = Bδ(0). We then define

w = u+ µ(δ2 − |x|2)2e−αt.

We can choose µ > 0 such taht w(0, x) < 0 for all x ∈ Bδ(0) and w(t, x) ≤ 0 for all (t, x) ∈
R+×∂Bδ(0). We show that we can also choose α > 0 such that w is a subsolution. We compute

∂tw + Lw = ∂tu+ Lu
+µe−αt

(
− α(δ2 − |x|2)2 −

∑d
i,j=1 ai,j

∂2

∂xi∂xj
(δ2 − |x|2)2 +

∑d
i=1 bi

∂
∂xi

(δ2 − |x|2)2 + c(δ2 − |x|2)2
)
.

Note that

c(δ2 − |x|2)2 ≤ C1(δ2 − |x|2)2.

d∑
i=1

bi
∂

∂xi
(δ2 − |x|2)2 = −2

d∑
i=1

bixi(δ
2 − |x|2) ≤ C1δ(δ

2 − |x|2).

−
∑d

i,j=1 ai,j
∂2

∂xi∂xj
(δ2 − |x|2)2 = −4

∑d
i,j=1 ai,jxixj + 2Tr(ai,j)(δ

2 − |x|2)

≤ −C2|x|2 + 2Tr(ai,j)(δ
2 − |x|2).

One can consequently verify that it is possible to choose δ′ < δ, up to reducing δ if necessary,

such that for all x ∈ Bδ(0) \Bδ′(0), we have

−
d∑

i,j=1

ai,j
∂2

∂xi∂xj
(δ2 − |x|2)2 +

d∑
i=1

bi
∂

∂xi
(δ2 − |x|2)2 + c(δ2 − |x|2)2 ≤ 0.

We then deduce that w is a subsolution of (6) in R+ × Bδ(0) \ Bδ′(0). Next, we can choose α

large enough such that w is a subsolution of (6) in R+ × Bδ′(0). Hence w is a subsolution of

(6) in R+ ×Bδ(0). Using the weak maximum principle we obtain that

u < w ≤ 0.

Proof of the strong maximum principle. Let u 6≡ 0 in [0, t0] × Ω. Then, there exists

a point, that we can suppose to be (0, 0) without loss of generality, such that u(0, 0) < 0. By

continuity, u(0, x) < 0 for all x ∈ Br(0), for r small enough. We then suppose that the segment

that links 0 to x0 is included in Ω. Since Ω is an open set, reducing if necessary r, we can also

suppose that for all s ∈ [0, 1] any ball of radius r and centered around sx0 is also included in

Ω. We now define

w(t, x) = u(t, x+
t

t0
x0).
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One can verify that w is also a subsolution of an equation of similar form to (6) in R+ × Br.

Applying now Lemma 2.6 to w, we deduce that

w(t0, 0) = u(t0, x0) < 0,

which is a contradiction. By connectedness of the set Ω there always exists an arc which links

0 to x0. This arc can be chosen as a union of segments. The argument can thus be adapted to

the general case.

Exercise 2.7 Assume that u is a smooth solution of
∂tu−∆u+ cu = 0, in (0,+∞)× Ω,

u = 0, in (0,+∞)× ∂Ω,

u = g in {0} × Ω,

with Ω a bounded domain, and the function c such that c ≥ γ > 0. Prove the following

exponential decay estimate

|u(t, x)| ≤ Ce−γt, (t, x) ∈ (0,+∞)× Ω.
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3 Hamilton-Jacobi equations

The notes in this section are inspired from the books [Bar94] and [Eva98].

3.1 Characteristics

The method of characteristics allows to find local smooth solutions for non-linear first order

PDE, when considering smooth solutions on the boundary. The idea of this method is to

convert the PDE problem into an appropriate system of ODE. Within this method, we try

to compute the value of the solution u at a certain point Z at the interior of the domain, by

finding some curve lying within the domain connecting Z with a point Z0 at the boundary of

the domain, and along which we compute u.

Let’s consider the following Hamilton-Jacobi equation∂tu+H(z,Du) = 0, (t, z) ∈ R+ × Rd,

u(0, z) = u0(z), z ∈ Rd.
(9)

Suppose that the curve along which solve the equation is given by z(s). Assuming that u is a

C2 solution, we also define

u(s) := u(s, z(s), p(s) := Du(s, z(s).

Then the corresponding characteristics equations are given by
ṗ(s) = −DzH(z(s),p(s))

u̇(s) = DpH(z(s),p(s)) · p(s)−H(z(s),p(s)),

ż(s) = DpH(z(s),p(s)).

Note that in the case of the Hamilton-Jacobi equation, it is indeed enough to solve the Hamilton

equations which are decoupled from the dynamics of u:ṗ(s) = −DzH(z(s),p(s)),

ż(s) = DpH(z(s),p(s)).

The dynamics of u can then be deduce from the dynamics of (z,p).

If such ODE system can be solved, with all ending points z(t) = z, in a unique way with an

19



initial condition (z(0),u(0),p(0)) which is admissible, that is

u(0) = u0(z(0)), p(0) = Du0(z(0)),

then the Hamilton-Jacobi equation can be solved along the characteristic curves and the value

of the solution at the point (t, z) is given by u(t).

However, such admissible initial condition may not exist or may not be unique. When the

initial condition u0 is smooth, the characteristics method is indeed efficient for finding smooth

local solutions to the Hamilton-Jacobi equation for small times, since the existence and unique-

ness of an admissible initial condition holds locally.

3.2 Viscosity solutions

3.2.1 Looking for a good notion of solutions

As we mentioned in the previous section, the characteristic method could provide us with local

smooth solutions for Hamilton-Jacobi equations. However, even starting with a smooth initial

condition, after some time the characteristics may cross such that the characteristic curves

ending at such crossing point are not unique. In this case, the Hamilton-Jacobi equation does

not admit a smooth solution and one should look for a notion of weak solutions. Note however

that since the Hamilton-Jacobi equations are not of divergence form, one cannot use the notion

of weak solutions in the distribution sense. One should look for another notion of weak solution.

We can for instance look for solutions in W 1,∞
loc (R+ × Rd), that is the class of Lipschitz-

continuous functions. By the Rademacher’s theorem any Lipschitz function u is almost every-

where differentiable. We can hence look for a function u ∈ W 1,∞
loc (R+ × Rd) which solves (9)

almost everywhere. However, this is not a good choice for the definition of a weak solution

since Hamilton-Jacobi equations may have several (and even infinitely many) such solutions.

Example. Consider the following problem∂tu+ |∂zu|2 = 0 in (0,∞)× R

u = 0 on {0} × R.
(10)

One obvious solution is the following

u0(t, x) ≡ 0.
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However, one can find infinitely many other solutions:

uc(t, z) :=


0 if |z| ≥ ct

cz − c2t if 0 ≤ z ≤ ct

−cz − c2t if −ct ≤ z ≤ 0

Note that the function uc is Lipschitz continuous and solves (10) everywhere except on the lines

z = 0, z = ct, z = −ct.

Another usual option is the notion of weak solutions in the distribution sense. The idea in this

case is to transfer the derivatives by integration by parts on a test function to find a formulation

which does not rely on the derivatives of a smooth solution. However this method works for the

equations in the divergence form which is not the case of Hamilton-Jacobi equations. The notion

of viscosity solutions, introduced by Crandall and Lions in [CL83], relies on a same type of idea,

that is to put the derivative on a smooth test function. However, one exploits the maximum

principle, and not the integration by parts, to carry out the transfer of the derivatives. We

introduce in the following sections the viscosity solutions. By showing existence, uniqueness

and stability of such solutions, we will confirm that this is an appropriate notion of solutions

for Hamilton-Jacobi equations.

3.2.2 Definition of viscosity solutions

Even if here we are interested in Hamilton-Jacobi equations of first order, we will present the

notion of viscosity solutions for non-linear parabolic and elliptic equations of second order since

the definition can be introduced in a more natural manner in this general framework. However,

in the next sections we will again restrict our studies to the Hamilton-Jacobi equations.

Let’s consider the equations of the following types

∂tu+H(z, u,Du,D2u) = 0, in Ω, (11)

H(z, u,Du,D2u) = 0, in Ω, (12)

where Ω ⊂ Rd is an open set, and H : Ω × R × Rd × Sd → R is a continuous function. Here,

Sd represents the vector space of d × d symmetric matrices. We assume that H satisfies the

following ellipticity condition

H(z, u, p,M1) ≤ H(z, u, p,M2), if M2 ≤M1,
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for all z ∈ Ω, u ∈ R, p ∈ Rd and M1,M2 ∈ Sd and the ≤ order on S being defined as below:

M2 ≤M1 ⇐⇒ (M2p, p) ≤ (M1p, p), ∀p ∈ Rd,

with (, ) the usual scalar product in Rd.

The notion of viscosity solutions relies on the maximum principle. We first state the following

theorem based on the maximum principle for equations (11)–(12).

Theorem 3.1 The function u ∈ C2(R+ × Ω) (resp. u ∈ C2(Ω)) is a classical solution of (11)

(resp. (12)) if and only if

(i) For all φ ∈ C2(R+ × Ω) (resp. φ ∈ C2(Ω)), if (t0, z0) is a local maximum point of u − φ,

then

∂tφ(t0, z0) +H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≤ 0,

(respectively H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≤ 0.)

(ii) For all φ ∈ C2(R+ × Ω) (resp. φ ∈ C2(Ω)), if (t0, z0) is a local minimum point of u− φ,

then

∂tφ(t0, z0) +H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≥ 0,

(respectively H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≥ 0.)

This theorem provides an equivalent definition of the notion of classical solutions. The particu-

lar interest of the second formulation is that it does not use the regularity of u. This formulation

is what is used to introduce the notion of viscosity solutions.

Before providing the definition of the viscosity solutions we first prove the theorem above.

Proof. Let us suppose that u ∈ C2(R+ × Ω) is a classical solution of (11). Assume also that

φ ∈ C2(R+ × Rd) and that u− φ takes a local maximum at (t0, z0). We then have

∂tu(t0, z0) = ∂tφ(t0, z0), Du(t0, z0) = Dφ(t0, z0), D2u(t0, z0) ≤ D2φ(t0, z0).

Using the ellipticity of (11) we then obtain that

∂tφ(t0, z0) +H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0))

≤ ∂tu(t0, z0) +H(z0, u(t0, z0), Du(t0, z0), D2u(t0, z0)) = 0.

One can prove the condition (ii), and the corresponding statements for equation (12), following

similar arguments.

We next prove the converse statement for equation (11) (the case of equation (12) can be

treated similarly). Let u ∈ C2(R+ × Ω) satisfy the statements (i) and (ii). For each of the

statements we can consider the test function φ = u. Since any point (t0, z0) ∈ R+ × Ω is both
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a maximum and minimum point of u− u, we find that

0 ≤ ∂tu(t0, z0) +H(z0, u(t0, z0), Du(t0, z0), D2u(t0, z0)) ≤ 0,

which implies that

∂tu(t0, z0) +H(z0, u(t0, z0), Du(t0, z0), D2u(t0, z0)) = 0, for all (t0, z0) ∈ R+ × Ω.

We are now ready to introduce the notion of viscosity solutions.

Definition 3.2 (i) A function u ∈ C(R+ × Ω) is called a viscosity subsolution of (11) (resp.

(12)), if for all test function φ ∈ C2(Ω) such that u − φ takes a local maximum at (t0, z0) ∈
R+ × Ω, we have

∂tφ(t0, z0) +H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≤ 0,

(resp. H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≤ 0).

(ii) A function u ∈ C(R+ × Ω) is called a viscosity supersolution of (11) (resp. (12)), if for

all test function φ ∈ C2(Ω) such that u−φ takes a local minimum at (t0, z0) ∈ R+×Ω, we have

∂tφ(t0, z0) +H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≥ 0.

(resp. H(z0, u(t0, z0), Dφ(t0, z0), D2φ(t0, z0)) ≥ 0).

(iii) A function u ∈ C(R+ × Ω) is called a viscosity solution of (11) (respectively (12)) if it

is both viscosity sub and supersolution of (11) (resp. (12)).

Proposition 3.3 We obtain equivalent definitions of viscosity sub and supersolutions, if we

replace in the definition 3.2:

(i) ”φ ∈ C2” by ”φ ∈ Ck”, for 2 < k ≤ +∞ in the case the equation of second order.

(ii) ”φ ∈ C2” by ”φ ∈ Ck”, for 1 ≤ k ≤ +∞ in the case the equation of first order.

(iii) ”local maximum’ or ”local minimum” by ”strict local maximum” or strict local minimum”

or by ”global maximum’ or ”global minimum” or by ”strict global maximum’ or ”strict global

minimum”.

(iv) We obtain also an equivalent definition of viscosity sub and supersolutions, if we impose

to the test functions that u(t0, z0) = φ(t0, z0).

This proposition is very useful since it allows to simplify many proofs. The proof of this

proposition relies on classical arguments from the functional analysis and we let it as an exercise.
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3.2.3 An equivalent definition using sub- and superdifferentials

In this section, we provide an equivalent definition of viscosity sub- and supersolutions which

may be useful to identify the viscosity solutions. We introduce this equivalent definition in the

case of time independent first order equations

H(z, u,Du) = 0, z ∈ Ω. (13)

Similar types of definitions exist also for time dependent Hamilton-Jacobi equations (9) and

also for second order elliptic or parabolic equations of type (11) or (12).

Definition 3.4 (Sub- and superdifferentials of a continuous function) Let u ∈ C(Ω),

with Ω ⊂ Rd an open set. Fix x ∈ Ω. We define the superdifferential of u at point x as

D+u(x) = {p ∈ Rd; lim sup
y→x

u(y)− u(x)− (p, y − x)

|y − x|
≤ 0}.

We define the subdifferential of u at point x as

D−u(x) = {p ∈ Rd; lim inf
y→x

u(y)− u(x)− (p, y − x)

|y − x|
≥ 0}.

Exercise 3.5 Show that if u is differentiable in z, then D+u(z) = D−u(z) = {Du(z)}.

Exercise 3.6 Let z ∈ R. Compute the sub- and superdifferentials of the mapping z → |z|.
Consider next z ∈ Rd and compute the sub- and and superdifferentials of the mapping z → |z|
when | · | corresponds to the euclidean norm.

Theorem 3.7 (i) u ∈ C(Ω) is a viscosity subsolution of (9), if and only if for all z ∈ Ω:

∀p ∈ D+u(z), H(z, u(z), p) ≤ 0.

(ii) u ∈ C(Ω) is a viscosity supersolution of (9), if and only if for all z ∈ Ω:

∀p ∈ D−u(z), H(z, u(z), p) ≥ 0.

3.2.4 Examples

Example 1. Let’s consider equation (10) introduced in Section 3.2.1. One can easily verify

that u0 is a viscosity solution to (10). We show that the functions uc, for all c > 0, are not

viscosity solutions of (10). We show indeed that the viscosity supersolution criterion does not
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hold at the points (t, 0), for all t ≥ 0. In order to do so, let’s consider the test functions

φ(t, x) = −c2t.

One can verify that

uc(t, x) ≥ φ(t, x), uc(t, 0) = φ(t, 0).

Therefore, uc(t, x)− φ(t, x) has minimum points at the points (t, 0), for all t ≥ 0. For uc to be

a viscosity supersolution of (10) one should have

∂tφ(t, 0) + |∂xφ(t, x)|2 ≥ 0.

However, this cannot hold since the left hand side term equals to −c2.

Example 2. We now consider the following Eikonal equation:|Du|2(z) = 1, z ∈ (−1, 1),

u(z) = 0, z = ±1.
(14)

This equation admits infinitely many Lipschitz continuous solution which satisfy the equation

almost everywhere. Here are some of these solutions:

u1(z) = 1− |z|,

u2(z) = −1 + |z|,

u3(z) =


z + 1 for z ∈ [−1,−1

2
),

−z for z ∈ [−1
2
, 1

2
),

z − 1 for z ∈ [1
2
, 1].

However, only the function u1 is a viscosity solution of (14). One can also verify that any

function that has an angle towards the bottom (as the function u2 at the point z = 0 or the

function u3 at the point 1
2
) is not a viscosity supersolution of the problem. We state these

properties in the following exercise.

Exercise 3.8 (i) Show that u1(z) is a viscosity solution of (14).

(ii) Show that u2(z) = −u1(z) and u3 are not viscosity solutions of (14).

Exercise 3.9 Assume that u is a viscosity solution of

∂tu+H(z,Du) = 0, in R+ × Rd.
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Show that ũ := −u is a viscosity solution of

∂tũ+ H̃(z,Dũ) = 0, in R+ × Rd,

with H̃(z, p) := −H(z,−p).

3.2.5 The vanishing viscosity method

The ellipticity of H was a crucial condition in the definition above. In the case of first order

Hamilton-Jacobi equations (9) without the term D2u it is not clear where the inequalities above

come from. A possible way to justify these inequalities is to obtain such solutions by the method

of vanishing viscosity, and this is where the terminology viscosity solution comes from. Let us

introduce an approximate problem by adding a small viscosity term to the equation (9):∂tuε − ε∆uε +H(z,Duε) = 0, (t, z) ∈ R+ × Rd,

uε(0, z) = u0(z) z ∈ Rd.
(15)

Note that while (9) involves a fully nonlinear first order PDE, (15) is a quasilinear parabolic

equation which turns out to have a smooth solution. The term −ε∆ regularizes indeed the

Hamilton-Jacobi equation. The idea is then to let ε→ 0 and to hope that uε converges to some

function u which would be a weak solution of the Hamilton-Jacobi equation. This is called the

vanishing viscosity method.

However, one could expect to loose control over the regularity estimates on uε as ε→ 0 since

these regularities rely strongly on the regularizing effects of the vanishing viscosity term ε∆.

Fortunately, it turns out that most of the time one can prove at least that the family of solutions

(uε) is equicontinuous on compact sets of R+ × Rd. Then, using the Arzela-Scoli Theorem one

can deduce that, as ε → 0 and along subsequences, (uε) converges locally uniformly to a

continuous function u (see for instance Section 5 where such property is proved in the study of

problem (4)). We show below that such a limiting function u is indeed a viscosity solution of

(9).

To do so, we will use the following lemma whose proof is left as an exercise to the reader.

Lemma 3.10 Let (ve) be a family of continuous functions in an open set Ω which converges

in C(Ω) to v. If x0 ∈ Ω is a strict local maximum point of v, then there exists a sequence of

local maximum points of vε, denoted by (xε), which converges to x0.

We prove that such a limiting function u is a viscosity subsolution of (9). The proof of the

supersolution criterion follows similar arguments.
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Let φ ∈ C∞(R+ × Rd) be a test function such that u − φ attains a local maximum at the

point (t0, z0). Since uε−φ converges locally uniformly along a subsequence to u in R+×Rd, we

deduce thanks to Lemma 3.10 that, along this subsequence, uε − φ attains a local maximum

at a point (tε, zε), with (tε, zε) → (t0, z0) as ε → 0. Since (tε, zε) is a local maximum point of

(uε − φ) we obtain that

∂tuε(tε, zε) = ∂tφ(tε, zε), Duε(tε, zε) = Dφ(tε, zε), −ε∆uε(tε, zε) ≥ −ε∆φ(tε, zε).

Combining this with equation (15) we then obtain that

∂tφ(tε, zε)− ε∆φ(tε, zε) +H(z,Dφ(tε, zε)) ≤ 0.

Letting now ε→ 0 we deduce that

∂tφ(t0, z0) +H(z,Dφ(t0, z0)) ≤ 0,

which is the viscosity subsolution criterion.

Exercise 3.11 Let (uk)
∞
k=1, be viscosity solutions of the Hamilton-Jacobi equations

∂tuk +H(z,Duk) = 0, in (0,+∞)× Rd,

with H a continuous function. Suppose also that uk → u locally uniformly. Show that u is a

viscosity solution of

∂tu+H(z,Du) = 0, in (0,+∞)× Rd.

3.2.6 Consistency

Let us now check whether the notion of viscosity solutions is consistent with that of the classical

solutions. We have seen in Section 3.2.2 that any classical solution of (11) or (12) (and conse-

quently any classical solution of (9)) is also a viscosity solution. We now prove the following.

Theorem 3.12 (Consistency) Let u be a viscosity solution of (9) and that u is differentiable

at some point (t0, z0) ∈ R+ × Rd. Then, we have

∂tu(t0, z0) +H(Du(t0, z0), z0) = 0.

The proof of the theorem above relies on the next lemma.
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Lemma 3.13 (Touching by a C1 function) Assume that v : Rk → R is a continuous func-

tion which is differentiable at the point x0. Then, there exists a function ψ ∈ C1(Rk) such

that

v(x0) = ψ(x0),

and

v − ψ has a strict local maximum at x0.

We postpone the proof of this lemma to the end of this section and proceed with the proof of

Theorem 3.12.

Proof. [Proof of Theorem 3.12] Applying Lemma 3.13 to u, with k = d + 1 and x0 = (t0, z0)

we obtain that there exists a function ψ ∈ C1(R+ × Rd) such that

u− ψ has a strict maximum at (t0, z0).

On the one hand, from the definition of the viscosity solutions we deduce that

∂tψ(t0, z0) +H(Dψ(t0, z0), z0) ≤ 0.

On the other hand, since u and ψ are C1 functions, we find that

∂tu(t0, z0) = ∂tψ(t0, z0), Du(t0, z0) = Dψ(t0, z0).

It follows that

∂tu(t0, z0) +H(Du(t0, z0), z0) ≤ 0.

One can prove following similar arguments that

∂tu(t0, z0) +H(Du(t0, z0), z0) ≥ 0.

which completes the proof.

We finally prove Lemma 3.13.

Proof. [Proof of Lemma 3.13] (i) First note that, up to changing the function v to v(x+x0)−
v(x0)−Dv(x0) · x, we can suppose that

x0 = 0, v(x0) = 0, Dv(x0) = 0.

(ii) We can then write

v(x) = |x|ρ1(x),
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wit ρ1 : Rk → R a continuous function and ρ1(0) = 0.

We next define

ρ2(r) = max
x∈Br(0)

{|ρ1(x)|}, r ≥ 0.

The function ρ2 : R+ → R+ is continuous and non-decreasing and ρ2(0) = 0.

(iii) We are now ready to define, for all x ∈ Rk,

ψ(x) =

∫ 2|x|

|x|
ρ2(r)dr + |x|2.

Since 0 ≤ ψ(x) ≤ |x|ρ2(2|x|) + |x|2, we find that

ψ(0) = 0, Dψ(0) = 0.

Moreover, for all x 6= 0, we have

Dψ(x) =
2x

|x|
ρ2(2|x|)− x

|x|
ρ2(|x|) + 2x,

which implies that ψ ∈ C1(Rk).

(iv) Finally note that

v(x)− ψ(x) = |x|ρ1(x)−
∫ 2|x|
|x| ρ2(r)dr − |x|2

≤ |x|ρ2(|x|)−
∫ 2|x|
|x| ρ2(r)dr − |x|2

≤ −|x|2 < 0 = v(0)− ψ(0).

Therefore v − ψ has a strict local maximum at 0.

3.2.7 Comparison principle and uniqueness

There are different variants of results providing a comparison principle for Hamilton-Jacobi

equations depending on the assumptions that one makes on the Hamiltonian and on the domain.

Here, via a particular framework we show the main idea to obtain such results, that is the

method of doubling the number of variables.

Let Ω be a bounded and open set of Rd and H a continuous Hamiltonian which is Lipschitz

continuous with respect to z such that

|∂zH(z, p)| ≤ C(1 + |p|). (16)
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We consider the following Hamilton-Jacobi equations

u+H(Du, z) = 0, z ∈ Ω, (17)

and

∂tu+H(Du, z) = 0, (t, z) ∈ R+ × Ω. (18)

Theorem 3.14 (Comparison principle for (17)) Assume (16). Let u and v be respectively

a viscosity subsolution and supersolution of (17). Assume also that u ≤ v on ∂Ω. Then, u ≤ v

in Ω.

Theorem 3.15 (Comparison principle for (18)) Assume (16). Let u and v be respectively

a viscosity subsolution and supersolution of (18). Assume also that u ≤ v on {0} × Ω and on

R+ × ∂Ω. Then, u ≤ v in R+ × Ω.

It is immediate that the comparison principle 3.14 leads to a uniqueness result for the following

problem: u+H(Du, z) = 0, z ∈ Ω,

u(z) = g(z), z ∈ ∂Ω,

and that the comparison principle 3.15 leads to a uniqueness result for:
∂tu+H(Du, z) = 0, (t, z) ∈ R+ × Ω,

u(t, z) = g(t, z), (t, z) ∈ R+ × ∂Ω,

u(0, z) = u0(z), z ∈ Ω.

Proof. [Proof of Theorem 3.14] Define M = supΩ(u − v). Since u and v are continuous

functions and since Ω is bounded. This supremum is attained and finite. Our objective is to

show M ≤ 0. We hence assume that M > 0 and try to find a contradiction. To this end, we

use the method of doubling the number of variables, that is we define

Mδ = sup
(x,y)∈Ω̄2

ψδ(x, y), ψδ(x, y) = u(x)− v(y)− 1

δ2
|x− y|2.

Still from the continuity of u and v we obtain that this suppremum is attained and finite. We

then state the following lemma.

Lemma 3.16 (i) As δ → 0, Mδ →M .

(ii) If (xδ, yδ) is a maximum point of ψδ, then we have

|xδ − yδ|2

δ2
→ 0, as δ → 0,
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u(xδ)− v(yδ)→M, as δ → 0,

(iii) If δ is small enough, then xδ, yδ ∈ Ω.

The proof of this lemma is left as an exercise.

We now use the viscosity sub and supersolution criteria. Let’s choose δ small enough such

that Lemma 3.16–(iii) holds. Since u is a viscosity subsolution of (17) and since u(x)− v(yδ)−
1
δ2 |x− yδ|2 has a maximum point at xδ ∈ Ω, we obtain that

u(xδ) +H
(
xδ,

2(xδ − yδ)
δ2

)
≤ 0.

Similarly, since v is a supersolution of (17) and since v(y)−u(xδ) + 1
δ2 |xδ− y|2 has a maximum

point at yδ ∈ Ω, we obtain that

v(yδ) +H
(
yδ,

2(xδ − yδ)
δ2

)
≥ 0.

Combining the inequalities above we obtain that

u(xδ)− v(yδ) ≤ H
(
yδ,

2(xδ − yδ)
δ2

)
−H

(
xδ,

2(xδ − yδ)
δ2

)
.

Using assumption (16) we deduce that

u(xδ)− v(yδ) ≤ C(1 +
2|xδ − yδ|

δ2
)|xδ − yδ|.

Thanks to Lemma 3.16 we deduce that the right hand side of the equality above tends to 0,

as δ → 0, while the left hand side converges to M > 0, which is a contradiction. We conclude

that M ≤ 0.

Proof. [Proof of Theorem 3.15] The proof of Theorem 3.15 follows similar types of arguments.

However several new difficulties arise:

(i) A first difficulty comes from the fact that there is no dependence on u in (18). This

dependence was used in the proof of 3.14 to obtain a contradiction at the very last step from

a strict inequality. To overcome this difficulty we will modify the function u as below

uα = u− αt.

It is indeed enough to prove that uα ≤ v in R+ × Ω for all α ≥ 0.

Let us fix T > 0 and assume that max[0,T ]×Ω{u−v} > 0. Then, for α small enough, we would

also have that max[0,T ]×Ω{u− αt− v} > 0. Let’s first assume that the maximum is attained in
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(0, T )× Ω. We next consider the following function

ψδ,α(t, s, x, y) = u(t, x)− αt− v(s, y)− 1

δ2
|x− y|2 − 1

δ2
|s− t|2.

Following similar arguments as in the proof of Theorem 3.14 we would obtain that for δ small

enough the maximum of the above function is attained at some point (tα,δ, sα,δ, xα,δ, yα,δ) ∈
(0, T )× Ω and we have

0 < α ≤ H
(
yα,δ,

2(xα,δ − yα,δ)
δ2

)
−H

(
xα,δ,

2(xα,δ − yα,δ)
δ2

)
≤ C(1 +

2|xα,δ − yα,δ|
δ2

)|xα,δ − yα,δ|.

Letting δ → 0 we then obtain a contradiction since the right hand side of the inequality tends

to 0.

(ii) A second difficulty comes from the boundary condition. From the arguments above we

deduce that for α small enough, the maximum of u(t, x) − αt − v(t, x) is attained on the

boundary of the domain. If the maximum is attained on the parabolic boundary, that is

[0, T ]×∂Ω∪{0}× Ω̄, then we can use the fact that u ≤ v on this set by assumption and obtain

a contradiction by letting α tend to 0.

Now, what can we say on the maximum when the maximum point is attained at a point

(T, x0), which does not belong to the parabolic boundary? To overcome this difficulty we prove

that u (resp. v) is indeed a viscosity subsolution (resp. supersolution) up to the boundary

{T} × Ω. That is, for instance in the case of viscosity subsolution, we prove that for all

φ ∈ C1((0, T ]× Ω), if (T, x0) is a local maximum point of u− φ in [0, T ]× Ω, then we have

∂φ

∂t
(T, x0) +H(x0, Dφ(T, x0)) ≤ 0.

Lemma 3.17 Let u ∈ C([0, T ]×Ω) be a subsolution (resp. supersolution) of (18) in (0, T )×Ω,

then u is a subsoltion (resp. supersolution) of (18) in Ω× (0, T ].

This lemma completes the proof of Theorem 3.15.

Proof. [Proof of Lemma 3.17] We provide the proof in the case where u is a subsolution. The

supersolution case can be treated following similar arguments.‘

Let φ ∈ C1(0, T ] × Ω) and assume that u − φ has a local maximum point at (T, x0), with

x0 ∈ Ω. Replacing if necessary φ by φ+ |x−x0|2 + (t−T )2 we can assume that this is indeed a

local strict maximum point. Then the strategy is to move this maximum point to the interior

of the domain (0, T )× Ω. Let’s consider the function

χη(t, x) = u(t, x)− φ(t, x)− η

T − t
.
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One can prove that there exists a sequence of points (tη, xη) which are local maximum points

of χη and which tend to (T, x0) as η → 0 (this is let as an exercise). Moreover, since

limt→T χη(t, x) = +∞, we necessarily have tη < T . Therefore, for η small enough, we can

write the viscosity subsolution criterion at the point (tη, xη) to obtain

η

(T − tη)2
+ ∂tφ(tη, xη) +H(xη, Dφ(tη, xη)) ≤ 0,

and consequently

∂tφ(tη, xη) +H(xη, Dφ(tη, xη)) ≤ 0.

We then conclude by letting η → 0.

3.3 Variational solutions

Let’s consider the following Hamilton-Jacobi equation∂tu+H(Du, z) = 0, (t, z) ∈ R+ × Rd,

u(0, z) = u0(z).
(19)

Assume that H is smooth and that for all z ∈ Rd,

the mapping p→ H(p, z) is convex (20)

and

lim
|p|→∞

H(p, z)

|p|
= +∞. (21)

In this framework we can also introduce another type of weak solution to (19) based on a

variational formulation.

3.3.1 Lagrangian formulation

We define the Lagrangian L associated with the Hamiltonian H as

L(v, z) = sup
p∈Rd
{p · v −H(p, z)}.

Note that this corresponds indeed to the Legendre transform of H. Note also that in view of

(21) the sup above is indeed a max.

One can verify that L is itself a convex and super-linear function of v. Moreover, H is also

equal to the Legendre transform of L.
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The variational formulation of the problem is then given below

u(t, z) = inf
γ∈A(t,z)

∫ t

0

L(γ̇(s), γ(s))ds+ u0(γ(0)), (22)

with A the set of all admissible trajectories

A(t, z) = {γ(·) ∈ C2([0, t]; Rd) | γ(t) = z}.

Under suitable assumptions such variational solution is indeed the unique viscosity solution of

the problem and hence provides a representation formula for the unique viscosity solution of

the problem. We will not show such property here (see for instance [Lio82, FS06, BCD97]). We

show however, the relation between such variational problem with the characteristic ODEs.

Let’s assume that the infimum value in the variational problem is indeed attained for a certain

trajectory z ∈ A. We next deduce some of its properties.

Theorem 3.18 (Euler-Lagrange equation) The function z(·) solves the system of Euler-

Lagrange equations

− d

ds
(DvL(ż(s), z(s)) +DzL(ż(s), z(s)) = 0, 0 ≤ s ≤ t. (23)

Proof. Choose a smooth function y : [0, t]→ Rd such that

y(0) = y(t) = 0. (24)

We define for all h ∈ R, xh(·) = z(·) + hy(·). Then xh ∈ A(t, z). Therefore, the function

J(h) =
∫ t

0
L(ẋh(s), xh(s))ds + u0(z(0)) has a minimum at h = 0, and consequently J ′(0) = 0.

We then compute this derivative:

J ′(h) =

∫ t

0

d∑
i=1

( ∂
∂vi

L(ẋhi (s), x
h
i (s))ẏi(s) +

∂

∂zi
L(ẋhi (s), x

h
i (s))yi(s)

)
ds.

We then integrate by parts and use (24) to obtain

J ′(h) =

∫ t

0

d∑
i=1

(
− d

ds

( ∂
∂vi

L(ẋhi (s), x
h
i (s))

)
+

∂

∂zi
L(ẋhi (s), x

h
i (s))

)
yi(s)ds.
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We evaluate the above equality at h = 0 and find

J ′(0) =

∫ t

0

d∑
i=1

(
− d

ds

( ∂
∂vi

L(ż(s), z(s))
)

+
∂

∂zi
L(ż(s), z(s))

)
yi(s)ds.

This identity holds for all smooth function y(·) satisfying the boundary condition (24). We

conclude that, for all 1 ≤ i ≤ d,

− d

ds

( ∂
∂vi

L(ż(s), z(s))
)

+
∂

∂zi
L(ż(s), z(s)) = 0, for all 0 ≤ s ≤ t.

3.3.2 Hamilton’s equations

We now transform the Euler-Lagrange equation into Hamilton’s equations. Let z be a C2

function that is a critical point of the action functional so that it solves the Euler-Lagrange

equation (23).

We define

p(s) := DvL(ż(s), z(s)), 0 ≤ s ≤ t. (25)

Here, p(·) is known as the generalized momentum corresponding to the position z(·) and velocity

ż(·).

Then, we have the following result.

Theorem 3.19 The functions z(·) and p(·) satisfy Hamilton’s equations:ṗ(s) = −DzH(p(s), z(s),

ż(s) = DpH(p(s), z(s)).

Moreover, the value function u(s) = u(s, z(s)) satisfies

u̇(s) = DpH(p(s), z(s)) · p(s)−H(p(s), z(s)).

Proof. To simplify the notations we prove the result in one dimension d = 1. The multi-

dimensional case can be treated following similar arguments.

Note first that since H is the Legendre transform of L, we have

H(p, z) = sup
v∈Rd
{p · v − L(v, z)}.
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Note that such sup is also attained for some point v(p, z), such that

p =
∂

∂v
L(v(p, z), z). (26)

Since L is convex and super-linear, the function v(p) is uniquely determined. Now from the

definition of p(s) in (25) we deduce that

ż(s) = v(p(s), z(s)). (27)

Using

H(p, z) = v(p, z) · p− L(v(p, z), z)}.

we obtain

∂
∂z
H(p, z) = p ∂

∂z
v(p, z)− ∂

∂v
L(v(p, z), z) ∂

∂z
v(p, z)− ∂

∂z
L(v(p, z), z)

= − ∂
∂z
L(v(p, z), z).

(28)

We also compute

∂
∂p
H(p, z) = p ∂

∂p
v(p, z) + v(p, z)− ∂

∂v
L(v(p, z), z) ∂

∂p
v(p, z)

= v(p, z).
(29)

We obtain Hamilton’s equations by combining (23), (26), (27), (28) and (29).

Note also that the characteristic equation for the value function u is given by

u̇(s) = L(ż(s), z(s))

= ż(s) · p(s)−H(p(s), z(s)),

= DpH(p(s), z(s)) · p(s)−H(p(s), z(s)).
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4 Well-posedness of the problem (4)

4.1 Choice of the growth rate and the initial population

In this section, we provide the main assumptions on the different parameters of the model.

We assume that R is smooth with respect to z and differentiable with respect to I and that

there exist positive constants Ki such that, for any z ∈ Rd and I ∈ R+,

−K1 ≤
∂

∂I
R(z, I) ≤ −K2. (30)

Note that the above assumption means that the growth rate of any individual is a decreasing

function of the total consumption of the resources, which is natural from the biological point

of view. We also assume that the resources are limited such that if the the total consumption

I(t) reaches a certain threshold IM , with IM a positive constant, then the growth rate becomes

negative everywhere, in other terms,

sup
z∈Rd

R(z, IM) = 0. (31)

We furthermore, make the following technical assumptions on R:

−K3 ≤ ∆(ψR), −K4(1 + |z|2) ≤ R(z, I), for all 0 ≤ I ≤ 2IM . (32)

Note that assumptions (30)–(31) imply also that

sup
z∈Rd

0≤I≤2IM

R(z, I) ≤ K5.

We assume that the consumption rate ψ is a smooth function such that, for ψm and ψM some

positive constants, we have

ψm ≤ ψ(z) ≤ ψM , ‖ψ‖W 2,∞(Rd) ≤ K6. (33)

To provide the assumptions on the initial condition, we first define

uε,0 = ε log
(
(2πε)

d
2nε,0

)
.
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We then assume that there exist positive constants Ai and I0 such that

− A1 − A2|z|2 ≤ uε,0(z) ≤ A3 − A4|z| for all z ∈ Rd, (34)

Iε(0)→ I0 > 0, as ε→ 0, (35)

1

ε

∫
Rd
ψ(z)R(z, Iε(0))nε,0(z)dz ≥ o(1), as ε→ 0. (36)

Assumption (34) is to consider a well-prepared initial condition. The left inequality in (34)

can indeed be relaxed, however, we keep it to make the computations more straight forward.

The right inequality is to consider small population at infinity. Assumption (35) means that

the initial population has a non-negligeable size. Assumption (36) indicates that initially the

population is not very maladapted to the environment and it guarantees the non-extinction

of the population. However, condition (36) is not necessary for the population to persist. A

precise criterion for extinction versus survival of the population is given in [CEM21].

Example of admissible growth rate and initial condition: a typical example for the

growth rate R, for z ∈ R, is the following

R(z, I) = r − g(z − θ)2 − κI.

Here, r is the maximal growth rate and θ corresponds to the optimal trait. Individuals with

non-optimal traits suffer from a decreased growth rate depending on their distance with the

optimal trait and proportionally to g, a positive constant that denotes the selection pressure.

Finally, κ denotes the intensity of the competition.

For the consumption rate, we consider ψ ≡ 1.

A typical example for compatible initial condition is the following:

nε,0(z) =
I0√
2πε

e−
(z−z0)2

ε ,

with (z0, I0) such that

r − g(z0 − θ)2 − I0 > 0.

The above condition guarantees that Assumption (36) is satisfied, i. e. the initial population

is not maladapted.

However, there is no reason to consider an initial condition which concentrates as a Dirac

mass as ε→ 0, even if this will be the case for all positive times. One can for instance consider
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also the following initial condition

nε,0(z) =


C for |z − z0| < δ,

1√
2πε
e
ϕε(z)
ε for 1 ≤ |z − z0| < 2δ,

1√
2πε
e−

(z−z0)2

ε for 2δ < |z − z0|.

To satisfy the assumptions, we choose ϕ a positive and smooth function such that

ϕε(z) = ε log(C
√

2πε), for |z − z0| = δ, and ϕε(z) = −4δ2, for |z − z0| = 2δ.

We also choose C and ϕε such that, as ε→ 0,
∫

R nε,0(z)dz → I0, with (z0, I0) such that

r − g(y − θ)2 − I0 ≥ 0, for all |y − z0| ≤ 2δ.

The results presented below hold under the above assumptions. However, in order to simplify

the computations during the lecture we may replace assumption (32) by the following more

restrictive assumptions

sup
0≤I≤2IM

‖R(·, I)‖W 2,∞(Rd) < K5, (37)

and

∃Im > 0, s.t. inf
z∈Rd

R(z, Im) = 0. (38)

4.2 Well-posedness

Theorem 4.1 Under assumptions (30)–(33) and (35)–(36), there is a unique solution nε ∈
C(R+;L1(Rd)) to (4). This solution is nonnegative for all t ≥ 0. Moreover, assuming addition-

ally (38), there exists ε0 > 0 such that we have

I ′m = min(
Im
2
,
I0

2
) ≤ Iε(t) ≤ I ′M = 2IM , for all ε ≤ ε0. (39)

Remark 4.2 Assumption (38) has been made in the theorem above to prove the uniform lower

bound on Iε. However, this assumption may be relaxed. In [CEM21] rather general conditions

are provided for the population size to remain uniformly bounded away from 0.

Proof. We prove the result under additional assumptions (37)–(38) using the Banach-Picard

fixed point theorem. We do this in several steps.

Step 1. We first prove that there exists a unique solution to an auxiliary problem, where R
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is replaced by R̃, defined as below

R̃(z, I) =


R(z, I) if I ′m < I < I ′M ,

R(z, I ′M) if I ′M ≤ I,

R(z, I ′m) if I ≤ I ′m,

and in a short interval of time.

Let T > 0 be given and A be the following closed subset:

A = {u ∈ C
(
[0, T ], L1(Rd)

)
, u ≥ 0, ‖u‖L∞([0,T ];L1(Rd)) ≤ a},

where a =
(∫

Rd nε,0dz
)
e
K5T
ε . Let Φ be the following application:

Φ : A→ A

u 7→ v,

where v is the solution to the following equation∂tv − ε∆v = v
ε
R̃(z, Iu(t)), z ∈ Rd, t ≥ 0,

v(t = 0) = nε,0.
(40)

Iu(t) =

∫
Rd
ψ(z)u(t, z)dz. (41)

Note that from the assumptions that nε,0 ∈ L2(Rd). Therefore, the existence of a weak solution

v to the equation above follows for instance from the Galerkin method. Moreover, from the

regularizing effects of the heat operator, we obtain that such solution is indeed smooth and

classical (see for instance [Eva98] for more details).

We prove that

(a) Φ defines a mapping of A into itself,

(b) Φ is a contraction for T small.

With these properties, we can apply the Banach-Picard fixed point theorem to prove that

there exists a unique solution to (40) for t ∈ [0, T ].

Assume that u ∈ A. In order to prove (a) we show that v, the solution to (40), belongs to A.
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By the maximum principle we know that v ≥ 0. To prove the L1 bound we integrate (40)

d

dt

∫
Rd
vdz =

∫
Rd

v

ε
R̃(z, Iu(t))dz ≤

1

ε
sup
z∈Rd

R̃(z, Iu(t))

∫
Rd
vdz ≤ K5

ε

∫
Rd
vdz.

Note that to do the integration rigorously one could multiply first the equation by χL, a smooth

function with a compact support such that χL|B(0,L) ≡ 1, χL|R\B(0,2L) ≡ 0. Then integrate to

obtain
d

dt

∫
Rd
ψLvdz =

∫
Rd
ψL

∂

∂t
vdz =

∫
∆ψLvdz +

∫
Rd

v

ε
R̃(z, Iu(t))dz.

The integration above then follows by letting L tend to +∞.

We conclude from the Gronwall Lemma that

‖v‖L∞([0,T ];L1(Rd)) ≤
(∫

Rd
nε,0dz

)
e
K5T
ε = a.

Thus (a) is proved.

It remains to prove (b). Let u1, u2 ∈ A, v1 = Φ(u1) and v2 = Φ(u2). We have

∂t(v1 − v2)− ε∆(v1 − v2) =
1

ε

[
(v1 − v2)R̃(z, Iu1) + v2

(
R̃(z, Iu1)− R̃(z, Iu2)

)]
. (42)

It is then tempting to multiply the equation above by sgn(v1 − v2) and integrate with respect

to z to obtain an inequality on ‖(v1−v2)(t, ·)‖L1(Rd) which is the quantity that we would like to

control. However, to do this we encounter the technical difficulty that the function sgn(v1− v2)

is not smooth. We hence use a sequence of smooth functions (Sδ) which approach the sign

function in the following waySδ is smooth, even and convex, max(0, |x| − δ) ≤ Sδ(x) ≤ |x|,

0 ≤ sgn(x)S ′δ(x) ≤ 1, 0 ≤ x
2
S ′δ(x) ≤ Sδ(x).

We then multiply (42) by S ′δ(v1 − v2) to obtain

∂tSδ(v1 − v2)− ε∆Sδ(v1 − v2) = −εS ′′δ (v1 − v2)|∇v1 −∇v2|2

+1
ε
S ′δ(v1 − v2)

[
(v1 − v2)R̃(z, Iu1) + v2

(
R̃(z, Iu1)− R̃(z, Iu2)

)]
.

Next, thanks to the assumptions on Sδ, we obtain that

∂tSδ(v1 − v2)− ε∆Sδ(v1 − v2) ≤ 1

ε

[
2Sδ(v1 − v2)|R̃(z, Iu1)|+ v2

∣∣∣R̃(z, Iu1)− R̃(z, Iu2)
∣∣∣] .
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Noting that |R̃(z, Iu1)− R̃(z, Iu2)| ≤ K1|Iu1 − Iu2| ≤ K1ψM‖u1 − u2‖L∞([0,T ];L1(Rd)) we find that

∂tSδ(v1 − v2)− ε∆Sδ(v1 − v2) ≤ 2K5

ε
Sδ(v1 − v2) +

v2(z)K1ψM
ε

‖(u1 − u2)(t, ·)‖L1(Rd).

We then integrate the equation above following similar arguments as above, using truncation

functions χL, and recalling that ‖v2‖L∞([0,T ];L1(Rd)) ≤ a, to obtain

d

dt

∫
Rd
Sδ(v1 − v2)(t, z)dz ≤ 2K5

ε

∫
Rd
Sδ(v1 − v2)(t, z)dz +

aK1ψM
ε
‖(u1 − u2)(t, ·)‖L∞([0,t];L1(Rd)).

Applying the Grönwall lemma and using the fact that v1(0, ·) = v2(0, ·) we deduce that∫
Rd
Sδ(v1 − v2)(t, z)dz ≤ aK1ψM

2K5

(e
2K5t
ε − 1)‖u1 − u2‖L∞([0,t];L1(Rd)).

We then let δ → 0 to find

‖v1 − v2‖L∞([0,T ];L1(Rd)) ≤
aK1ψM

2K5

(e
2K5T
ε − 1)‖u1 − u2‖L∞([0,T ];L1(Rd)).

Thus, for T small enough such that e
K5T
ε (e

2K5T
ε − 1) < K5

K1ψM
∫
ñε,0dz

, Φ is a contraction.

Therefore Φ has a fixed point and there exists ñε ∈ A a solution to the following equation, in

[0, T ]× Rd, 
∂tñε − ε∆ñε = ñε

ε
R̃(z, Ĩε(t)),

Ĩε(t) =
∫

Rd ψ(z)ñε(t, z)dz,

ñε(t = 0) = nε,0.

(43)

Exercise 4.3 Let m solve the following equation∂tm(t, x)− σ∆m(, x) = f(t, x), x ∈ Rd

m(0, x) = m0(x),

with m0 ∈ L2(Rd) and f ∈ L2(Rd). Prove that

‖m(t, ·)‖L2(Rd) ≤
∫ t

0

‖f(s)‖L2(Rd)ds+ ‖m0‖L2(Rd).

Step 2. We next prove that for any solution (nε, Iε) to (4) and for any solution (ñε, Ĩε) to

(43) we have, for ε ≤ ε0 with ε0 a small positive constant,

I ′m ≤ Ĩε(t), Iε(t) ≤ I ′M , t ∈ [0,∞).
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This property implies that ñε is indeed the unique solution to (4) and that (39) holds.

This property can be proved following similar arguments for Iε and Ĩε. We prove the property

for Iε.

To this end, we define ψL = χL ·ψ ∈W∞
2,c(R

d), where χL is a smooth function with a compact

support such that χL|B(0,L) ≡ 1, χL|R\B(0,2L) ≡ 0, ‖χL‖W 2,∞ ≤ C. We also define

Iε,L =

∫
Rd
ψL(z)nε(t, z)dz.

We next multiply the equation in (4) by ψL(z) and then integrate with respect to z, performing

an integration by parts, to obtain

d

dt
Iε,L =

∫
Rd
ψL(z)

∂

∂t
nε(t, z)dz = ε

∫
Rd
nε(t, z)∆ψL(z)dz +

1

ε

∫
Rd
ψL(z)nε(t, z)R(z, Iε(t))dz.

We then let L→∞ to obtain

dIε
dt

= ε

∫
Rd
nε(t, z)∆ψ(z)dz +

1

ε

∫
Rd
ψ(z)nε(t, z)R(z, Iε(t))dz.

It follows that

− εK6

ψm
Iε +

1

ε
Iε inf

z∈Rd
R(z, Iε) ≤

dIε
dt
≤ ε

K6

ψm
Iε +

1

ε
Iε sup

z∈Rd
R(z, Iε).

It follows that, for C chosen large enough and using assumptions (30), (31) and (38), if Iε ≥
IM +Cε2, we then have dIε

dt
< 0. Similarly, if Iε ≤ Im−Cε2, we then have dIε

dt
> 0. Furthermore,

thanks to assumptions (30), (31) and (36), we obtain that Iε(0) ≤ I ′M for ε small enough. Hence

(39).

Step 3. We now fix T small enough such that e
K5T
ε (e

2K5T
ε −1) < K5

K1ψM I′m
. The previous steps

imply that there exist a unique solution to (4) in [0, T ]×Rd. Moreover, since I ′m ≤
∫
nε(t, z)dz

for all t thanks to Step 2, one can iterate the procedure above to find a unique solution nε in

[0,∞)× Rd.
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5 Asymptotic analysis of the problem (4)

In this section, we provide the main results on the asymptotic analysis of equation (4), that we

recall below 
ε∂tnε − ε2∆nε = nεR(z, Iε), (t, z) ∈ R+ × Rd,

Iε(t) =
∫

Rd nε(t, y)ψ(y)dy,

nε(0, z) = nε,0(z).

Our objective is to prove that the solution nε converges, as ε → 0, to a Dirac mass. To this

end, we use the Hopf-Cole transformation (5) which, when combined by the above equation,

leads to the following equation on uε :

∂tuε − ε∆uε = |∇uε|2 +R(z, Iε). (44)

To study the limit of nε as ε→ 0, we first provide an asymptotic analysis of uε. We prove that

Theorem 5.1 (Convergence to a Hamilton-Jacobi equation with constraint) Assume

(30)–(36). Let nε be the solution of (4), and uε be given by (5). Assume additionally that

(uε,0)ε := log(nε,0) is a sequence of locally uniformly Lipschitz continuous functions which con-

verges locally uniformly to u0. Then, after extraction of a subsequence, (Iε)ε converges a.e. to

I ∈ BV(R+) and (uε)ε converges locally uniformly to u ∈ C([0,∞) × Rd), a viscosity solution

to the following equation: 
∂tu = |∇u|2 +R(z, I(t)),

max
z∈Rd

u(t, z) = 0, ∀t > 0,

u(0, z) = u0(z).

(45)

In the above equation, I can be seen as a Lagrange multiplier associated with the constraint

maxz∈Rd u(t, z) = 0. The above theorem was proved in [PB08] with the uniform continuity

assumption of the initial data (uε,0)ε and without such assumption in [BMP09]. The above

theorem provides the convergence along subsequences and does not guarantee the uniqueness

of the limit. The uniqueness property was proved later in [CL]:

Theorem 5.2 (Uniqueness property for the Hamilton-Jacobi equation with constraint)

Let (ui, Ii) ∈ C(R+ × Rd)× BV(R+), for i = 1, 2 such that (ui, Ii) solves
∂tu = |∇u|2 +R(z, I(t)),

max
z∈Rd

u(t, z) = 0, ∀t > 0,

u(0, z) = u0(z).

(46)
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in the viscosity sense. Then, I1 = I2 a.e. and u1 = u2.

A consequence of the above result is that, in the case of locally uniformly Lipschitz initial data,

the whole sequence (uε)e converges to the unique limit u. Such uniqueness result, before being

proved in the above general form, was first proved in [PB08] for a particular form of growth

rate, and next in [MR16] in a concave framework, where R and u0 are strictly concave with

respect to z. In this latter case, one can go further than the uniqueness result and obtain the

regularity of the solution (u, I) and also an asymptotic expansion for the solution uε in terms

of ε.

Once the limit of (uε)ε identified, we can obtain some information on n, the limit of nε, which

allows us to completely characterize n in some cases.

Theorem 5.3 (The inclusion properties) Assume (30)–(36). Then, as ε → 0 and along

subsequences, nε converges weakly in the sense of measures to n ∈ L∞(R+;M1(Rd)) such that,

for a.e. t, ∫
ψ(z)n(t, z)dz = I(t) a.e., (47)

and

supp n(t, ·) ⊂ {z |u(t, z) = 0} ⊂ {z |R(z, I(t)) = 0}, for a.e. t. (48)

The inclusion property (48) is a key point in the description of the limit n. In particular, if

one of the sets {z |u(t, z) = 0} or {z |R(z, I(t)) = 0} has a single point, then (48) implies that

the measure n has to be a Dirac mass at that point. Such property holds for instance in the

case where z ∈ R and R is monotonic with respect to z, such that the set {z |R(z, I(t)) = 0}
has a single element. Similarly if u is a strictly concave function with respect to z, then the

set {z |u(t, z) = 0} which corresponds to the set of maximum points of u consists of a single

point. The strict concavity of u can be guaranteed under concavity assumptions on R and u0

(see Section 6).

5.1 Main ingredients

The proof of Theorem 5.1, on the convergence of (uε), is based on the following results.

Theorem 5.4 Assume (30)–(33) and (35)–(36). Then, (Iε)ε is locally uniformly bounded in

W 1,1
loc (R+), and Iε converges, along subsequences, in L1

loc(R
+) and a.e. to I : R+ → R+, which is

non-decreasing and locally of bounded variation.

Theorem 5.5 Assume (30)–(36). Then,

(i) there exists positive constants C and ε0, such that we have the following uniform bounds on
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uε, for ε ≤ ε0:

− A1 − A2|z|2 − Ct ≤ uε(t, z) ≤ A3 − A4|z|+ Ct. (49)

(ii) The sequence (uε)ε≤ε0 is locally uniformly Lipschitz with respect to z in (0,+∞)× Rd.

(iii) The sequence (uε)ε≤ε0 is locally equicontinuous with respect to t in (0,+∞)× Rd.

(iv) If we assume that (u0
ε)ε is a sequence of locally uniformly Lipschitz functions, then (uε) is

locally uniformly Lipschitz in [0,∞)× Rd.

5.2 Regularity estimates on Iε: the proof of Theorem 5.4

We prove the result under additional assumptions (37)–(38).

We prove that for all T > 0, there exists a positive constant C such that∫ T

0

| d
dt
Iε(s)ds| ≤ C.

This estimate together with (39) implies that (Iε)ε is locally uniformly bounded in W 1,1
loc (R+),

and hence it converges, along subsequences, in L1
loc(R

+) and a.e. to a function I : R+ → R+

which is of bounded variation.

Using the computations in Section 4.2 we write

dIε
dt

= ε

∫
Rd
nε(t, z)∆ψ(z)dz +

1

ε

∫
Rd
ψ(z)nε(t, z)R(z, Iε(t))dz. (50)

Let’s define

Jε(t) =
1

ε

∫
Rd
ψ(z)nε(t, z)R(z, Iε(t))dz. (51)

We then differentiate Jε:

d
dt
Jε(t) =

∫
Rd nε∆(ψ(z)R(z, Iε(t)))dz + 1

ε2

∫
Rd ψ(z)nε(t, z)R

2(z, Iε(t))dz

+1
ε

∫
Rd ψ(z)nε(t, z)

∂
∂I
R(z, Iε(t))dz

d
dt
Iε(t).

We next use (50)–(51) to recover Jε:

d
dt
Jε =

∫
Rd nε∆(ψ(z)R(z, Iε(t)))dz + 1

ε2

∫
Rd ψ(z)nε(t, z)R

2(z, Iε(t))dz

+1
ε

∫
Rd ψ(z)nε(t, z)

∂
∂I
R(z, Iε(t))dz

(
Jε − ε

∫
Rd nε(t, z)∆ψ(z)dz

)
.

Thanks to (39) and the regularity assumptions on R and ψ we obtain that

d

dt
Jε = O(1) +

1

ε2

∫
Rd
ψ(z)nε(t, z)R

2(z, Iε(t))dz +
1

ε

(∫
Rd
ψ(z)nε(t, z)

∂

∂I
R(z, Iε(t))dz

)
Jε(t).

(52)
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Furthermore, using assumption (30) together with (39) we deduce that∫
Rd
ψ(z)nε(t, z)

∂

∂I
R(z, Iε(t))dz ≤ −C1.

We then multiply (52) by 1Jε<0 and use the fact that

(1Jε<0)
d

dt
Jε =

d

dt
(Jε)−, a.e.,

to obtain that
d

dt
(Jε)− ≤ C2 −

C1

ε
(Jε)−.

Note that here we have used the positivity of the term 1
ε2

∫
Rd ψ(z)nε(t, z)R

2(z, Iε(t))dz. Using

the Gronwall Lemma we then obtain that

(Jε)−(t) ≤ εC2

C1

+ (Jε)−(0)e−
C1t
ε .

Inserting this in (50) and using (33), (36) and (39), we obtain that as ε→ 0

( d
dt
Iε(t)

)
− ≤ o(1). (53)

We then use (39) to conclude∫ T
0
| d
dt
Iε(t)|dt =

∫ T
0

d
dt
Iε(t)dt+ 2

∫ T
0

( d
dt
Iε(t))−dt

= Iε(T )− Iε(0) + 2
∫ T

0
( d
dt
Iε(t))−dt

≤ I ′M + o(1)T.

As explained above, this inequality implies that (Iε)ε is locally uniformly bounded in W 1,1
loc (R+),

and hence it converges, along subsequences, in L1
loc(R

+) and a.e. to a function I : R+ → R+

which is of bounded variation. Finally, the function I is nondecreasing thanks to (53).

5.3 Regularity estimates on uε: the proof of Theorem 5.5

In this section, we provide the main ingredients for the proof of Theorem 5.5, assuming addi-

tionally (37)–(38).
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5.3.1 Locally uniform bounds on uε

The proof of the bounds on uε is equivalent with

exp
(
− A1 + A2|z|2 + Ct

ε

)
≤ nε(t, z) ≤ exp

(A3 − A4|z|+ Ct

ε

)
.

We prove this using the comparison principle, the assumption (34) on the initial condition and

the fact that, thanks to the assumption (37),

−K5nε ≤ ε∂tnε − ε2∆nε = nεR(z, Iε) ≤ K5nε,

5.3.2 Lipschitz estimates

Note from (49) that, for all T > 0, there exists a constant D(T ) such that

uε(t, z) ≤ D(T ), for all (t, z) ∈ [0, T ]× Rd.

We define, for all (t, z) ∈ [0, T ]× Rd,

vε(t, z) =
√

2D(T )− uε(t, z). (54)

To prove the locally uniform Lipschitz bound on uε, in (0, T ] × Rd, we will prove that, for all

0 < t0 < T ,

|∇vε|(t, z) ≤ C(T )(1 +
1√
t0

), for all t0 ≤ t ≤ T and z ∈ Rd. (55)

We replace (54) in (44), neglecting the subscript ε here for the simplification of notations, we

obtain the following equation on v in [0, T ]× Rd:

∂tv − ε∆v −
[ε
v
− 2v

]
|∇v|2 = −R(z, I)

2v
. (56)

Define p = ∇v. We differentiate (56) with respect to zi to obtain that

∂tpi − ε∆pi − 2
[ε
v
− 2v

]
∇v · ∇pi +

[ ε
v2

+ 2
]
|∇v|2pi = −

∂
∂zi
R(z, I)

2v
+
R(z, I)

2v2
pi .

We multiply the equation by pi and sum over i to obtain that

∂t
|p|2

2
− ε

∑
i

(∆pi)pi − 2
[ε
v
− 2v

]
p · ∇|p|

2

2
+
[ ε
v2

+ 2
]
|p|4 = − 1

2v
∇zR · p+

1

2v2
R(z, I)|p|2.
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We then divide the above equation by |p| to find that

∂t|p| − ε∆|p| − 2
[ε
v
− 2v

]
p · ∇|p|+

[ ε
v2

+ 2
]
|p|3 ≤ − 1

2v
∇zR ·

p

|p|
+

1

2v2
R(z, I)|p|. (57)

Here we have used the fact that

−ε|p|∆|p| ≤ −ε
∑
i

(∆pi)pi.

To prove this, we first compute
∑

i(∆pi)pi:∑
i(∆pi)pi =

∑
i ∆

p2
i

2
−
∑
|∇pi|2

= ∆ |p|
2

2
−
∑
|∇pi|2

= |p|∆|p|+ |∇|p||2 −
∑

i |∇pi|2.

We also have

|∇|p||2 =
∑

i

|p·∂zip|
2

|p|2 ≤
∑

i |∂zip|2 =
∑

i,j |∂zipj|2 =
∑

j |∇pj|2.

We deduce that ∑
i

(∆pi)pi ≤ |p|∆|p|.

We now go back to inequality (57). We note that from the assumption (37) we have that R

and ∇R are bounded. Moreover, using (54), we find that

1

v
≤ 1√

D(T )
.

We deduce that, for some positive constant C(T ),

∂t|p| − ε∆|p| − 2
[ε
v
− 2v

]
p · ∇|p|+ 2|p|3 ≤ C(T )(1 + |p|).

As a consequence, and thanks to (49), there exists positive constants ε0, C1 and C2(T ) and

θ(T ) such that, for all ε ≤ ε0 and (t, z) ∈ [0, T ]× Rd,

∂t|p| − ε∆|p| − [C1|z|+ C2] |p| |∇|p||+ 2(|p| − θ(T ))3 ≤ 0. (58)

Define the function

q(t, z) = q(t) =
1

2
√
t

+ θ + 1.
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One can verify that q is a strict supersolution to (58). We would like to prove that

|p|(t, z) ≤ q(t). (59)

Let t0 be the first time such that supz∈Rd |p|(t, z)− q(t) = 0. Note that t0 cannot be equal to 0

since q(0) = +∞. Let’s suppose that |p|(t0, ·)− q(t0) attains its maximum at an interior point

z0 of Rd. We then have

0 ≤ ∂t(|p| − q)(t0, z0), 0 ≤ −∆(|p| − q)(t0, z0), and |p| |∇|p|| = q |∇q| (t0, z0).

Combining the above properties with the facts that |p| and z are respectively sub and strict

supersolution of (57), we obtain that

2(|p|(t0, z0)− θ)3 − 2(q(t0, z0)− θ)3 < 0.

It follows that

|p|(t0, z0) < q(t0, z0),

which is in contradiction with the choice of (t0, z0).

Note however that the maximum of |p|(t0, ·) − q(t0) may not be attained at interior point

of Rd. To overcome this difficulty one can modify the supersolution q by adding a barrier

function forcing the maximum point of |p| − q to be attained at an interior point [BMP09].

This argument is left as an exercise below.

Exercise 5.6 For (t, z) ∈ [0, T ]×BL(0) and C a positive constant, define

w(t, z) =
1

2
√
t

+
CL2

L2 − |z|2
+ θ.

(i) Show that for C large enough w is a strict supersolution of (58).

(ii) Prove that |p| ≤ w(t, z) for C large enough and consequently (59) by letting L→∞.

Exercise 5.7 Let’s suppose that (uε,0) is locally uniformly Lipschitz with respect to z. Prove

that (uε) is is locally uniformly Lipschitz with respect to z in [0,+∞)× Rd.

Hint: Follow the arguments above replacing w(t, z) by

w(t, z) =
1

2
√
t+ C0

+
CL2

L2 − |z|2
+ θ.
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5.3.3 Equi-continuity in time

From the uniform bounds and the Lipschitz bound with respect to z, we can also deduce

uniform continuity in time i.e. for all η > 0, there exists θ > 0 such that for all (t, s, z) ∈
[0, T ]× [0, T ]× B(0, R

2
), such that 0 < t− s < θ, and for all ε < ε0 we have:

|uε(t, z)− uε(s, z)| ≤ 2η.

We prove this with the same method as that of Lemma 9.1 in [BBL02] (see also [BBAL09]

for another proof of this claim). We prove that for any η > 0, we can find positive constants

A, B large enough such that, for any z ∈ B(0, R
2

), s ∈ [0, T ] and for every ε < ε0,

uε(t, y)− uε(s, z) ≤ η + A|z − y|2 +B(t− s), for all (t, y) ∈ [s, T ]× B(0, R), (60)

and

uε(t, y)− uε(s, z) ≥ −η − A|z − y|2 −B(t− s), for all (t, y) ∈ [s, T ]× B(0, R). (61)

We prove inequality (60), the proof of (61) is analogous. We fix (s, z) in [0, T [×B(0, R
2

).

Define

ξ(t, y) = uε(s, z) + η + A|y − z|2 +B(t− s), (t, y) ∈ [s, T [×B(0, R),

where A and B are constants to be determined. We prove that, for A and B large enough, ξ

is a super-solution to (44) on [s, T ]× B(0, R) and ξ(t, y) > uε(t, y) for (t, y) ∈ {s} × B(0, R) ∪
[s, T ]× ∂B(0, R).

According to section 5.3.1, uε are locally uniformly bounded, so we can take A a constant

such that for all ε < ε0,

A ≥
8 ‖ uε ‖L∞([0,T ]×B(0,R))

R2
.

With this choice, ξ(t, y) > uε(t, y) on [0, T ]× ∂B(0, R), for all η, B and z ∈ B(0, R
2

). Next we

prove that, for A large enough, ξ(s, y) > uε(s, y) for all y ∈ B(0, R). We argue by contradiction.

Assume that there exists η > 0 such that for all constants A there exists yA,ε ∈ B(0, R) such

that

uε(s, yA,ε)− uε(s, z) > η + A|yA,ε − z|2. (62)

It follows that

|yA,ε − z| ≤
√

2M

A
,
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where M is a uniform upper bound for ‖ uε ‖L∞([0,T ]×B(0,R)). Now let A → ∞. Then for all ε,

|yA,ε − z| → 0. According to Section 5.3.2, uε are uniformly continuous on space. Thus there

exists h > 0 such that if |yA,ε − z| ≤ h then |uε(s, yA,ε) − uε(s, z)| < η
2
, for all ε. This is in

contradiction with (62). Therefore ξ(s, y) > uε(s, y) for all y ∈ B(0, R). Finally, noting that R

is bounded we deduce that for B large enough, ξ is a super-solution to (44) in [s, T ]×B(0, R).

Since uε is a solution of (44) we have

uε(t, y) ≤ ξ(t, y) = uε(s, z) + η + A|y − z|2 +B(t− s) for all (t, y) ∈ [s, T ]× B(0, R).

Thus (60) is satisfied for t ≥ s. We can prove (61) for t ≥ s analogously. Then we put z = y

and we conclude taking θ < η
B

.

5.4 Convergence to the Hamilton-Jacobi equation with constraint:

the proof of Theorem 5.1

Thanks to the Arzela-Ascoli Theorem, using the regularity estimates obtained in Theorem 5.5,

as ε → 0 and along subsequences, (uε)ε converges locally uniformly to u ∈ C([0,∞) × Rd).

Moreover, thanks to Theorem 5.4, (Iε)ε converges a.e. to I ∈ BV(R+). In order to complete

the proof of Theorem 5.1, it remains to prove that u is a viscosity solution of (45) and to derive

the constraint max
z∈Rd

u = 0.

(i) u is a viscosity solution of (45). Here, we show that u is a viscosity sub-solution of (45)

assuming that (Iε)ε converges locally uniformly to I, being a continuous function. The proof

of the super-solution property is analogous. The interested reader is referred to [PB08] for the

proof of the result in the case where the convergence of (Iε)ε is not uniform, and I is only of

bounded variation, using the notion of viscosity solutions for discontinuous Hamilton-Jacobi

equations [Bar94].

We fix T > 0 and assume that u− ϕ attains a strict maximum point at (t̄, z̄) ∈ (0, T ]× Rd,

with ϕ ∈ C1((0, T ] × Rd). Let (uεK )εK be a subsequence which converges locally uniformly to

u, with εK → 0 as K → +∞. Thanks to Lemma 3.10, there exists a sequence (tK , zK) such

that uεK attains a maximum at (tK , zK) and that (tK , zK) converges to (t̄, z̄) as K → +∞.

Evaluating (44) at (tK , zK) we obtain

∂tuεK (tK , zK)− εK∆uεK (tK , zK) = |∇uεK |2(tK , zK) +R(zK , IεK (tK)).

Moreover, since (tK , zK) ∈ (0, T ]× Rd is a maximum point of uεK , we deduce that

∂tϕ(tK , zK) ≤ ∂tuεK (tK , zK), ∇ϕ(tK , zK) = ∇uεK (tK , zK),
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−∆ϕ(tK , zK) ≤ −∆uεK (tK , zK).

Combining the properties above we find that

∂tϕ(tK , zK)− εK∆ϕ(tK , zK) ≤ |∇ϕ|2(tK , zK) +R(zK , IεK (tK)).

Finally, we pass to the limit K →∞ and use the uniform convergence of IεK to I to obtain

∂tϕ(t̄, z̄) ≤ |∇ϕ|2(t̄, z̄) +R(z̄, I(t̄)),

which means that u is a viscosity sub-solution of (45) at (t̄, z̄).

(ii) max
z∈Rd

u = 0. Assume that for some (t, z) we have 0 < a ≤ u(t, z). Since u is continuous, we

have u(t, y) ≥ a
2

on B(z, r), for some r > 0. This implies that, for any y ∈ B(z, r), nε(t, y)→∞,

as ε→ 0 and hence Iε(t)→∞ as ε→ 0. This is in contradiction with (39).

To prove that max
z∈Rd

u(t, z) = 0, it is then sufficient to show that lim
ε→0

nε(t, z) 6= 0, for some

z ∈ Rd. On the one hand, using (49) we obtain that for M large enough

lim
ε→0

∫
|z|>M

nε(t, z)dz ≤ lim
ε→0

∫
|z|>M

e
A3−A4|z|+Ct

ε dz = 0. (63)

Combining the inequality above and (39) we deduce that

lim
ε→0

∫
|z|≤M

nε(t, z)dz ≥
I ′m
ψM

.

On the other hand, if u(t, z) < 0 for all |z| < M , then lim
ε→0

∫
|z|≤M nε(t, z)dz = 0. This is in

contradiction with (63). We conclude that max
z∈Rd

u(t, z) = 0, ∀t > 0.

5.5 The inclusion properties: the proof of Theorem 5.3

(i) From Theorem 5.4 we deduce that (nε)ε≤ε0(T ) is uniformly bounded in L∞([0, T ];L1(Rd).

It follows that, as ε → 0 along subsequences, (nε) converges in L∞(w ∗ [0, T ];M1(Rd)) to a

measure n such that ∫
ψ(z)n(t, z)dz = I(t) a.e..

We next prove the inclusion properties:

(ii) supp n(t, ·) ⊂ {z |u(t, z) = 0}. Recall that nε = 1
(2πε)d/2

exp(uε
ε

), such that uε converges

locally uniformly to u ∈ C([0,∞) × Rd), with u ≤ 0. Let’s suppose that (t0, z0) ∈ R+ × Rd is

such that u(t0, z0) = −a < 0. Then, there exists ε1 > 0 and r > 0 such that, for all ε ≤ ε1 and
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|z − z0| ≤ r, we have uε(t0, z) ≤ −a
2
. This implies that∫
|z−z0|≤r

nε(t, z)dz → 0,

and consequently z0 /∈ supp n(t, ·).
(iii) {z |u(t, z) = 0} ⊂ {z |R(z, I(t)) = 0}. Let (t0, z0) be such that u(t0, z0) = 0. This means

that (t0, z0) is a maximum point of u. If u is differentiable at this point, we will have

∂tu(t0, z0) = 0, ∇u(t0, z0) = 0.

These properties combined by (46) would imply that R(z0, I(t0)) = 0 at a continuity point of

I.

It then reminds to prove that u is differentiable at (t0, z0). One can indeed prove that any

viscosity solution u to the Hamilton-Jacobi equation (46) is semi-convex [PB08]. Any semi-

convex function is differentiable at its maximum points. It follows that u is differentiable at

(t0, z0).

5.6 Examples

5.6.1 Example of a homogeneous fitness function

Let’s consider the following function for the growth rate:

R(z, I) = r − κI,

and the following initial condition

nε,0 =
ρ0√
4πε

exp
(−z2

4ε

)
.

In this case study, the corresponding Hamilton-Jacobi equation is written
∂
∂t
u(t, z)− | ∂

∂z
u|2(t, z) = r − κI,

maxz u(t, z) = 0,

u(0, z) = − z2

4
.

To solve this equation we will introduce a new function to avoid the dependence of the equation

on the function I:

v(t, z) = u(t, z) + κ

∫ t

0

I(s)ds.
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The function v solves  ∂
∂t
v(t, z)− | ∂

∂z
v|2(t, z) = r,

v(0, z) = − z2

4
.

We can solve the equation above using the method of characteristics. Let’s define

H(p, z) = −|p|2 − r.

Then, the characteristic curves satisfy
ṗ(s) = −DzH(p(s), z(s) = 0,

v̇(s) = DpH(p(s), z(s)) · p(s)−H(p(s), z(s)) = −|p(s)|2 + r,

ż(s) = DpH(p(s), z(s)) = −2p(s).

Let’s fix a point (t, z). One can solve the equations above to find in a unique way a characteristic

curve z : [0, t]→ Rd, such that z(t) = z. This characteristic curve is given by

z(s) =
1 + s

1 + t
z.

Moreover, the value function v(s) is given by

v(s) = −z
2

4

1 + s

(1 + t)2
+ rs.

Evaluating this at time t, we deduce that

v(t, z) = v(t) = − z2

4(1 + t)
+ rt.

We then re-write this result in terms of u:

u(t, z) = − z2

4(1 + t)
+ rt− κ

∫ t

0

I(s)ds. (64)

It remains to identify the function I(t). To this end, we will use the constraint

max
z∈Rd

u(t, z) = 0.
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Note from (64) that the maximum of u(t, ·) is always attained at the point z = 0. Therefore,

we have

max
z
u(t, z) = rt− κ

∫ t

0

I(s)ds.

This implies that for all t ∈ R+,

rt = κ

∫ t

0

I(s)ds,

and consequently

u(t, z) = − z2

4(1 + t)
,

I(t) =
r

κ
, at all the continuity points of I.

Finally, we note that this implies that

n(t, z) = ρ(t)δ(z), ρ(t) =
r

κψ(0)
, a.e. t.

With a homogeneous fitness function, there is indeed no reason for the dominant trait in the

population to evolve and the phenotypic distribution remains concentrated on z = 0 because

of the initial state of the population. Furthermore, as t goes to infinity the phenotypic density

becomes more and more flat since

nε(t, z) ≈
C

(2πε)d/2
exp

(
− z2

4(1 + t)ε

)
.

5.6.2 Example of a linear fitness function

Let’s consider the following function for the growth rate:

R(z, I) = r + z − I, (65)

and the following initial condition

nε,0 =
ρ0√
πε

exp
(
− z2

ε

)
.

In this case study, the corresponding Hamilton-Jacobi equation is written
∂
∂t
u(t, z)− | ∂

∂z
u|2(t, z) = r + z − I,

maxz u(t, z) = 0,

u(0, z) = −z2.
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As above, to solve this equation we will introduce a new function to avoid the dependence of

the equation on the function I:

v(t, z) = u(t, z) +

∫ t

0

I(s)ds.

The function v solves  ∂
∂t
v(t, z)− | ∂

∂z
v|2(t, z) = r + z,

v(0, z) = −z2.

It is possible to solve this equation using the method of characteristics and this is let as an

exercise to the reader. Alternatively, we can look directly for solutions of the following form:

v(t, z) = −A(t)(z −B(t))2 + C(t).

Replacing this in the equation on v we obtain

A′(t) = −4A(t)2,

B′(t)A(t) = 1
2
,

C ′(t) = r +B(t),

A(0) = 1, B(0) = 0, C(0) = 0.

We can solve the equations above to obtain
A(t) = 1

1+4t
,

B(t) = t
2

+ t2,

C(t) = rt+ t2

4
+ t3

3
.

Therefore, the function v is given by

v(t, z) = − 1

1 + 4t
(z − 1

2
t− t2)2 + rt+

t2

4
+
t3

3
,

and hence

u(t, z) = − 1

1 + 4t
(z − 1

2
t− t2)2 + rt+

t2

4
+
t3

3
−
∫ t

0

I(s)ds.

Similarly to the previous subsection, using the constraint maxz u = 0 we obtain that

u(t, z) = − 1

1 + 4t
(z − t

2
− t2)2, r +

t

2
+ t2 = I(t) a.e. t.
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We can also identify the limit phenotypic density

n(t, z) = ρ(t)δ(z − t

2
− t2), ρ(t) =

r + t
2

+ t2

ψ( t
2

+ t2)
a.e. t.

The dominant trait z̄(t) = t
2

+t2 evolves indeed increasingly to reach higher values of the fitness

function. As a consequence, the function I(t) increases with time.

Example of discontinuous I(t).

In the examples above, the functions I(t) was continuous. From the estimates obtained in

Section 5.1 we know that I is at least of bounded variation. One could wonder whether we can

show stronger regularity on the function I(t). Can we show for instance that I is a continuous

function ? Here, we provide a counterexample, given in [PB08], which shows that the function

I(t) may be discontinuous. To this end, we consider the same fitness function as in (65).

However, we consider a different initial condition:

nε,0 =
ρ0

(πε)d/2
exp

(u0(z)

ε

)
,

with

u0(z) = max(−z2,−(z − α)2 − δ).

Then, one can prove that the viscosity solution to the Hamilton-Jacobi equation is given by

u(t, z) =

max
(
− 1

1+4t
(z − t

2
− t2)2,− 1

1+4t
(z − t

2
− t2 − α)2 − δ + αt

)
, for t ≤ δ

α
,

max
(
− 1

1+4t
(z − t

2
− t2)2 + δ − αt,− 1

1+4t
(z − t

2
− t2 − α)2

)
, for t > δ

α
.

Moreover, the competition function I is given by

I(t) =

r + t
2

+ t2, for t ≤ δ
α
,

r + t
2

+ t2 + α, for t > δ
α
.

The function I has indeed a jump at t0 = δ
α

. This discontinuity is indeed due to the jump of

the dominant trait z(t) from z(t−0 ) = t0
2

+ t20 to z(t+0 ) = t0
2

+ t20 + α.

5.6.3 Example of a quadratic fitness function

Let’s consider the following fitness function:

R(z, I) = rmax − sz2 − κI.
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Then, the corresponding Hamilton-Jacobi equation is written
∂
∂t
u(t, z)− | ∂

∂z
u|2(t, z) = rmax − sz2 − κI,

maxz u(t, z) = 0,

u(0, z) = u0(z).

(66)

Exercise 5.8 Let u0 = −a(z−θ0)2. Identify the solution (u, I) to the Hamilton-Jacobi equation

with constraint (66).

Here, we show how to identify the limit (u, I), assuming arbitrary initial condition. In the case

of quadratic fitness function above, one can use an alternative way to identify the phenotypic

density using a method based on cumulated generating functions [?] which provides an explicit

solution for arbitrary ε. This method works particularly well when one considers a quadratic

stabilizing selection. The Hamilton-Jacobi approach has the advantage to apply to arbitrary

forms of growth rates R(z, I) and with possible heterogeneities.

Let’s consider that the maximum of u is attained at a point z. We provide an analytic formula

for the dominant trait z(t):

z(t) =
2e2
√
st

1 + e4
√
st

arg max
C
{u0(C)− C2

√
s

2
tanh

(
2
√
st
)
}.

Note however that depending on the initial condition this may not be defined in a unique way.

Notice also that since

R(z(t), I(t)) = 0 a.e. t,

one can then express the value of I in terms of z(t), if the point z(t) is unique:

I(t) =
1

κ

(
rmax − sz2(t)

)
.

Computation of z(t):

We next show how to identify analytically z(t). Note that the function u solves

∂

∂t
u(t, z)− | ∂

∂z
u|2(t, z) = −sz2 + sz2(t).

The viscosity solution of the above equation is indeed given by the following representation

formula:

u(t, z) = sup
γ∈W 1,∞([0,t])

γ(t)=z

u0(γ(0))−
∫ t

0

( |γ̇|2
4

(τ) + sγ2(τ)− sz2(τ)
)
dτ.
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The maximizing trajectory satisfies the following Euler-Lagrange equation:

γ̈(τ) = 4sγ(τ).

As a consequence γ(τ) can be written as follows

γ(τ) = Ae2
√
s τ + (C − A)e−2

√
s τ , with A and C some constants.

We deduce that

u(t, z) = sup
A,C∈R

Ae2
√
s t+(C−A)e−2

√
s t=z

u0(C)− s
∫ t

0

(
2A2e4

√
s τ + 2(C − A)2e−4

√
s τ − z2(τ)

)
dτ

= sup
A,C∈R

Ae2
√
s t+(C−A)e−2

√
s t=z

u0(C)−
√
s

2

(
A2(e4

√
s t − 1) + (C − A)2(1− e−4

√
s t)
)

+ s
∫ t

0
z2(τ)dτ.

We are interested in identifying the point z(t) which corresponds to the maximum point of

u(t, ·). Let’s define

F (A,C) = u0(C)−
√
s

2

(
A2(e4

√
s t − 1) + (C − A)2(1− e−4

√
s t)
)
.

If the maximum of F is taken at some point (Am, Cm). Then,

z(t) = Ame
2
√
s t + (Cm − Am)e−2

√
s t,

is a maximum point of u(t, ·). Note that the maximum point Am can be expressed in terms of

Cm:

Am = Cm
1− e−4

√
st

e4
√
st − e−4

√
st

= Cm
1

1 + e4
√
st
.

We deduce that

Cm = arg maxC u0(C)− C2
√
s

2

(
e4
√
s t−1

(1+e4
√
st)2 + e8

√
s t−e4

√
s t

(1+e4
√
st)2

)
= arg maxC u0(C)− C2

√
s

2
tanh

(
2
√
st
)
.

This implies that

z(t) =
2e2
√
st

1 + e4
√
st

arg max
C
{u0(C)− C2

√
s

2
tanh

(
2
√
st
)
}.
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6 The concave framework

In this section we assume additionally that R(·, I) and uε,0(·) are strictly concave functions.

We assume indeed that

−2L1 ≤ D2uε,0(z) ≤ −2L1 < 0,

−2K1 ≤ D2R(z, I) ≤ −2K1 < 0.

We will show that such concavity assumptions lead to many nice properties. Under these

assumptions there exists a unique viscosity solution to (45) which is indeed smooth and classical.

Moreover, in this case the solution u remains strictly concave and hence has a unique maximum

point. This property implies that the limit phenotypic density is a single Dirac mass.

We prove indeed the following Theorem.

Theorem 6.1 [LMP11, MR16] In the concave framework, there exists a unique viscosity so-

lution u to (45). This solution is indeed smooth and a classical solution. Moreover, u(t, ·) is a

strictly concave function and hence, for all t ≥ 0, there exists a unique point z(t) such that

max
z
u(t, z) = u(t, z(t)) = 0,

which implies that

n(t, z) = ρ(t)δ(z − z(t)).

Finally, the following equation describes the dynamics of the dominant trait z(t):

ż(t) = (−D2u(t, z(t)))−1∇R(z(t), I(t)). (67)

6.1 Assumptions

• Assumptions on R(z, I). We choose R to be smooth, and we suppose that there is

IM > 0 such that

max
z∈Rd

R(z, IM) = 0, (68)

−K0 −K1|z|2 ≤ R(z, I) ≤ K0 −K1|z|2, for 0 ≤ I ≤ IM , (69)

− 2K1 ≤ D2R(z, I) ≤ −2K1 < 0 as symmetric matrices, (70)

−K2 ≤
∂R

∂I
≤ −K2, (71)

| ∂
2R

∂I∂zi
(z, I)|+ | ∂3R

∂I∂zi∂zj
(z, I)| ≤ K3, for 0 ≤ I ≤ IM , and i, j = 1, 2, · · · , d, (72)

‖D3R(·, I)‖L∞(Rd) ≤ K4, for 0 ≤ I ≤ IM . (73)
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• Assumptions on u0(.) and I0. We assume the existence of positive constants L0, L0, L1, L1

such that

− L0 − L1|z|2 ≤ u0(z) ≤ L0 − L1|z|2, (74)

− 2L1 ≤ D2u0 ≤ −2L1. (75)

Note that this implies

|Du0(z)| ≤ L2(1 + |z|), (76)

for a large constant L2 > 0. We also need that, for a positive constant L3,

‖D3u0‖L∞(Rd) ≤ L3. (77)

Finally we assume that

max
z

u0(z) = u0(z0) = 0, R(z0, I0) = 0. (78)

In the following section we will study an unconstrained Hamilton-Jacobi equation where we

replace R(z, I) by R(t, z). To prove our results on this unconstrained problem we assume same

type of regularity and concavity assumptions on R that we state below:

• Assumptions on R(t, z). We choose R to be continuous in t and to have first and

second derivatives with respect to z, that are continuous both with respect to t and z.

We suppose that

−K0 −K1|z|2 ≤ R(t, z) ≤ K0 −K1|z|2, for t ∈ R+, (79)

− 2K1 ≤ D2R(t, z) ≤ −2K1 < 0 as symmetric matrices, (80)

‖D3R(t, ·)‖L∞(Rd) ≤ K4, for t ∈ R+. (81)

6.2 The concavity assumptions lead to smoothness, uniqueness and

strict concavity of the solution

We will prove the Theorem 6.1 in several steps.

We first study the unconstrained Hamilton-Jacobi equationut = |∇u|2 +R(t, z) (t > 0, z ∈ Rd),

u(0, z) = u0(z),
(82)
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and prove any viscosity solution of such a Hamilton-Jacobi equation, under concavity assump-

tions, stated in the preceding subsection, is indeed smooth, a classical solution and strictly

concave.

Theorem 6.2 (The Cauchy problem) Assume (74)–(77) and (79)–(81). Equation (82) has

a unique viscosity solution u that is bounded from above. Moreover, it is a classical solution:

u ∈ L∞loc
(
R+;W 3,∞

loc (Rd)
)
∩ C1(R+ × Rd), ∇u ∈ C1(R+ × Rd), −max(2L1,

√
K1) ≤ D2u ≤

−min(2L1,
√
K1) and ‖D3u‖L∞([0,T ]×Rd) ≤ L4(T ) where L4(T ) is a positive constant depending

on L1, K1, K4, L3 and T .

We next prove the uniqueness property for the original problem.

Theorem 6.3 (The uniqueness result) Assume (68)–(78). The Hamilton-Jacobi equation

with constraint (46) has a unique solution (u, I). Moreover we have

(u, I) ∈ L∞loc
(
R+;W 3,∞

loc (Rd)
)
∩ C1(R+ × Rd)× C1(R+) and ∇u ∈ C1(R+ × Rd).

The combination of the theorems above imply that there exists a unique viscosity solution to

(46) and that such viscosity solution is indeed smooth, a classical solution and strictly concave.

The main ingredients in the proof of Theorem 6.2 are the variational formulation of the

viscosity solution (22) and the concavity assumptions. Theorem 6.2 implies that the solution

of (46) is classical and smooth. This leads to the equivalence of the Hamilton-Jacobi equation

with constraint with the following ODE-PDE system:
R (z(t), I(t)) = 0, for t ∈ R+,

ż(t) =
(
−D2u

(
t, z̄(t)

))−1∇R
(
z̄(t), I(t)

)
, for t ∈ R+,

∂tu = |∇u|2 +R(z, I), in R+ × Rd,

(83)

with initial conditions

I(0) = I0, u(0, ·) = u0(·), z(0) = z0,

such that maxz u0(z) = u0(z0) = 0 and R(z0, I0) = 0.
(84)

We have indeed

Theorem 6.4 Solving the constrained problem (46) is equivalent to solving the initial value

ODE-PDE problem (83)-(84).

Note that the second equation in (83) corresponds to the differential equation (67) satisfied by

the dominant trait z(t) which is called the canonical equation.

65



This equivalence is the main ingredient to prove Theorem 6.3. Note that (83) is really a

differential system because the assumptions on R imply that I(t) can implicitly be expressed

in terms of z̄(t). And it is slightly nonstandard because z̄ solves an ODE whose nonlinearity

depends on u.

6.3 The Cauchy problem

In this section, we provide the main elements to prove Theorem 6.2.

A first main ingredient is that the only viscosity solution to (82), is given by the following

variational problem:

u(t, z) = sup
γ∈A(t,z)

F ([γ]), (85)

with

F ([γ]) = u0(γ(0)) +

∫ t

0

(
−|γ̇|

2

4
(s) +R(s, γ(s))

)
ds,

A(t, z) :=
{

(s, γ(s)) ∈ [0, t]× Rd, γ ∈ W 1,2([0, t]; Rd), γ(t) = z
}
.

Note that by the density of C1 functions in W 1,2, one would obtain the same quantity if we take

the supremum above in a set Ã(t, z) where we replace the set W 1,2([0, t]; Rd) by C1([0, t]; Rd).

The above function u(t, x) is a viscosity solution to (46). We will prove, in addition, that it

is classical and strictly concave. For more details on the uniqueness of such viscosity solution

and the regularity results see [MR16].

The function u is a classical solution. Let us suppose that (γn)1≤n, with γn ∈ W 1,2([0, t]; Rd)

and γn(t) = z, is such that F (γn) → u(t, z) as n → ∞. Since R and u0 are bounded from

above, we obtain that, for n large enough and some constant C∫ t

0

|γ̇n|2(s)ds < C.

Consequently, from γn(t) = z we deduce, modifying the constant C if necessary, that

‖γn‖W 1,2[0,t] < C.

It follows that, there exists γ ∈ W 1,2([0, t]; Rd), such that as n → ∞, γn → γ strongly in
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C([0, t]; Rd) and weakly in W 1,2([0, t]; Rd). We deduce that, as n→∞,

u0(γn(0))→ u0(γ(0)),

∫ t

0

R(s, γn(s))ds→
∫ t

0

R(s, γ(s))ds,

∫ t

0

|γ̇|2(s)ds ≤ lim inf
n→∞

∫ t

0

|γ̇n|2(s)ds.

We deduce that

u(t, z) ≥ u0(γ(0)) +

∫ t

0

(
−|γ̇|

2

4
(s) +R(s, γ(s))

)
ds.

Since γ ∈ W 1,2([0, t]; Rd) and using (85) we conclude that

u(t, z) = u0(γ(0)) +

∫ t

0

(
−|γ̇|

2

4
(s) +R(s, γ(s))

)
ds. (86)

We claim that such a trajectory is unique, which implies that u ∈ C1(R+ × Rd) is indeed a

classical solution of (82).

We note indeed that such trajectory γ satisfies the following Euler-Lagrange equation
γ̈(s) = −2∇R(s, γ(s)),

γ̇(0) = −2∇u0(γ(0)),

γ(t) = z.

(87)

To justify such an Euler-Lagrange equation, let’s consider an arbitrary trajectory y ∈ W 1,2([0, t]; Rd)

such that y(t) = 0 and define f : R→ R as below

f(τ) = u0(γ(0) + τy(0)) +

∫ t

0

(
−|γ̇ + τ ẏ|2

4
(s) +R

(
s, γ(s) + τy(s)

))
ds.

The function f has a maximum at τ = 0. Therefore its derivative vanishes at τ = 0, that is

f ′(0) = ∇u0

(
γ(0)

)
· y(0) +

∫ t

0

(
− γ̇(s) · ẏ(s)

2
(s) +∇R

(
s, γ(s)

)
· y(s)

)
ds = 0.

Since this equality holds for any function y ∈ W 1,2([0, t]; Rd) such that y(t) = 0, we deduce

that γ is a weak solution to (87). Furthermore, from the elliptic regularity we deduce that γ is

indeed a classical solution of (87).

We then prove that the solution to (87) is unique. To this end, let’s assume that γ1 and γ2

are two distinct solutions to (87). We then compute

γ̈1(s)− γ̈2(s) = −2∇R(s, γ1(s)) + 2∇R(s, γ2(s)).
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We then multiply the equality above by γ1(s)− γ2(s) and integrate with respect to s to obtain∫ t

0

(
γ̈1(s)− γ̈2(s)

)(
γ1(s)− γ2(s)

)
ds = −2

∫ t

0

(
∇R(s, γ1(s))−∇R(s, γ2(s))

)(
γ1(s)− γ2(s)

)
ds

We next integrate by parts in the first term to find

−
∫ t

0

(
γ̇1(s)− γ̇2(s)

)2
ds+

[(
γ̇1(s)− γ̇2(s)

)(
γ1(s)− γ2(s)

)]t
0

= −2
∫ t

0

(
∇R(s, γ1(s))−∇R(s, γ2(s))

)(
γ1(s)− γ2(s)

)
ds.

Using the boundary condition in (87) we deduce that

−
∫ t

0

(
γ̇1(s)− γ̇2(s)

)2
ds+ 2

(
∇u0(γ1(0))−∇u0(γ2(0))

)(
γ1(0)− γ2(0)

)
= −2

∫ t
0

(
∇R(s, γ1(s))−∇R(s, γ2(s))

)(
γ1(s)− γ2(s)

)
ds.

Next, from the concavity conditions on R and u0 we obtain that, for some positive constant C,∫ t

0

(
γ̇1(s)− γ̇2(s)

)2
ds+ C

∫ t

0

(
γ1(s)− γ2(s)

)2
ds+ C

(
γ1(0)− γ2(0)

)2 ≤ 0.

We deduce that γ1 ≡ γ2 and hence the solution is unique.

Strict concavity. We will prove that u(t, z) is uniformly strictly concave, namely that D2u ≤
−2λI in the sense of symmetric matrices, for λ = min

(
L1,

√
K1

2

)
.

To this end, we show that, for all σ ∈ [0, 1] and (z, y) ∈ Rd × Rd:

σu(t, z) + (1− σ)u(t, y) + λσ(1− σ)|z − y|2 ≤ u(t, σz + (1− σ)y). (88)

Let γz and γy be optimal trajectories, solving (87), with γz(t) = z and γy(t) = y. Note from

the choice of γz and γy that we have

u(t, z) = u0(γz(0)) +

∫ t

0

(
−|γ̇z(s)|

2

4
+R(s, γz(s))

)
ds,

u(t, y) = u0(γy(0)) +

∫ t

0

(
−|γ̇y(s)|

2

4
+R(s, γy(s))

)
ds,

and

u(t, σz + (1− σ)y) ≥ u0(σγz(0) + (1− σ)γy(0))

+

∫ t

0

(
−|σγ̇z + (1− σ)γ̇y(s)|2

4
+R(s, σγz(s) + (1− σ)γy(s))

)
ds.
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Furthermore, from the concavity assumptions on R and u0 we have

σu0(t, z) + (1− σ)u0(t, y) + L1σ(1− σ)|γz(0)− γy(0)|2 ≤ u0(t, σz + (1− σ)y),

and

σ

∫ t

0

R(s, γz(s))ds+ (1− σ)

∫ t

0

R(s, γy(s))ds+K1σ(1− σ)

∫ t

0

|γz(s)− γy(s)|2ds

≤
∫ t

0

R(s, σγz(s) + (1− σ)γy(s))ds.

Moreover, from the strict concavity of µ 7→ −|µ|2, we obtain that

σ

∫ t

0

−|γ̇z(s)|
2

4
ds+ (1− σ)

∫ t

0

−|γ̇y(s)|
2

4
ds+ σ(1− σ)

∫ t

0

|γ̇z(s)− γ̇y(s)|2

4
ds

≤
∫ t

0

−|σγ̇z + (1− σ)γ̇y(s)|2

4
ds.

We deduce that

u(t, σz + (1− σ)y)) ≥ σu(t, z) + (1− σ)u(t, y)

+ σ(1− σ)

(∫ t

0

(
1

4
|γ̇z(s)− γ̇y(s)|2 +K1|γz(s)− γy(s)|2)ds+ L1|γz(0)− γy(0)|2

)
(89)

Next we have√
K1

2

∫ t

0

d

ds
|γz(s)− γy(s)|2ds ≤ K1

∫ t

0

|γz(s)− γy(s)|2ds+

∫ t

0

|γ̇z − γ̇y|2

4
(s)ds.

Writing

|z − y|2 = |γz(t)− γy(t)|2 = |γz(0)− γy(0)|2 +

∫ t

0

d

ds
|γz(t)− γy(t)|2ds

we find

|z − y|2 ≤ |γz(0)− γy(0)|2 + 2

√
K1

∫ t

0

|γz(s)− γy(s)|2ds+
1

2
√
K1

∫ t

0

|γ̇z − γ̇y|2(s)ds.

Combing the above line with (89), we obtain (88) for λ = min
(
L1,

√
K1

2

)
.
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6.4 Equivalence with the ODE-PDE problem; the proof of Theorem

6.4

In this subsection we prove that the constrained Hamilton-Jacobi problem implies (83). For

the proof of the converse argument see [MR16].

Let (u, I) be a solution of (46) with initial datum (u0, I0), the function I being continuous,

and u a solution of the Hamilton-Jacobi equation in the sense of (85). Theorem 6.2 is applicable,

and yields a solution u(t, z) which has at least three locally bounded spatial derivatives, locally

uniformly in time. Moreover, the D2u is bounded uniformly in time and in z, and finally the

function u(t, .) is strictly concave. This allows a lot.

First note that the last equation in (83) immediately holds thanks to (46). Here we derive

respectively the second and the first equation in (83). Note that the first equation in (83) was

obtained in the previous section, in the limiting procedure. Here we provide an independent

proof which does not rely on the viscous problem.

• There is, at each time, a unique z(t) maximising u(t, .) over Rd. Thus, because ∇u ∈
C1(R +×Rd), the trivial identity

∇u(t, z(t)) = 0 (90)

can (use differential quotients) be differentiated with respect to t, to yield that (i) z(t) ∈
C1(R+) and (ii) the (a priori less trivial) identity

∂t(∇u)(t, z(t)) +D2u(t, z(t)).
dz

dt
(t) = 0. (91)

• The function u(t, z) has enough regularity so that we may take the gradient of (46) with re-

spect to z, and evaluate the result at z = z(t). Because of (90) we haveD2u(t, z(t)).∇u(t, z(t)) =

0 and, because of (91), we have

−D2u(t, z(t)).
dz

dt
(t) = ∇R(z(t), I(t)). (92)

Therefore, the second equation in (83) is proved.

• The last item to take into account is the constraint

u(t, z(t)) = 0,

which we may (still with the use of differential quotients) differentiate with respect to
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time, in order to yield

∂tu(t, z(t)) +∇u(t, z(t)).
dz

dt
(t) = 0,

thus entailing

∂tu(t, z(t)) = 0.

This yields, from (46),

R(z(t), I(t)) = 0. (93)

Gathering (93), (46) and (92) shows that the constrained problem implies (83).

6.5 Proof of the uniqueness result

We fix T > 0. To prove that (46) has a unique solution (u, I) in [0, T ] × Rd, it is enough to

prove that there exists a unique solution to (83)–(84).

We provide the main elements to prove such uniqueness result. We prove this using the

Banach fixed point Theorem in a small interval and then iterate. To this end, we introduce the

mapping Φ : X(·)→ Y (·) as follows:

X(·) −−−−−−→
R(X,I)=0

IX(·) −−−−−−−−−−→
∂tu=|∇u|2+R(x,IX)

uX

−−−−−−−−−−−−−−−−−−−−−→
Ẏ (t)=

(
−D2uX

(
t,X(t)

))−1

∇R
(
X(t),IX(t)

) Y (·).

Define

A =
{
x(·) ∈ C

(
[0, δ];B

(
x0, rδ

)) ∣∣∣x(0) = x0

}
.

For δ and rδ well-chosen constants, Φ : A → A is well-defined and we have the following lemma:

Lemma 6.5 The mapping Φ is a strict contraction from A into itself.

This allows to use the Banach fixed point Theorem for Φ : A → A.

To be able to iterate to obtain uniqueness in the whole domain we use a monotony property

stated in the following lemma.

Lemma 6.6 Let (x, I, u) be the unique solution of the differential system (83)–(84) in [0, τ ].

Then, I(t) is increasing with respect to t in [0, τ ].
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6.6 Moments of the phenotypic distribution and the interpretation

of the canonical equation

In the concave framework, and under regularity assumptions, one can indeed show that

uε(t, z) = u(t, z) + εv(t, z) + o(ε), Iε(t) = I(t) + εJ(t) + o(ε).

These asymptotic expansions lead to the following approximation of the phenotypic density:

nε(t, z) ≈
1

(2πε)d/2
exp

(u(t, z) + εv(t, z)

ε

)
.

It also allows to provide analytic approximations of the moments of the phenotypic distribution.

In particular, we can compute the covariance matrix of the phenotypic distribution as follows

Vε,t = ε(−D2u)−1(t, z(t)) + o(ε),

where Vε,t = (vi,j(t)) with vi,j =
∫
zizj

nε(t,z)
ρε(t)

dx − (
∫
zi
nε(t,z)
ρε(t)

dz)(
∫
zj
nε(t,z)
ρε(t)

dz). Note that here

we find again the term (−D2u)−1(t, z(t)) which also appeared in equation (67). This property

allows to provide a biological interpretation of this equation and in particular to compare it to

the so-called canonical equation in Adaptive Dynamics [Die04, DL96] or to Lande’s equation

in Quantitative Genetics [Lus37, Lan79, LA83]. In these equations, which are very related

equations under different formalisms, the change in the dominant/average trait is given by the

product of the gradient of the fitness and a term that scales the rate of evolutionary change

(proportional to mutational variance or genetic variance respectively in adaptive dynamics

and quantitative genetics). In (67), the dynamics of the dominant trait ż(t) is also given by

the product of the gradient of the fitness ∇zR and the term
(
−D2u

(
t, z̄(t)

))−1
which, when

multiplied by ε, approximates well the phenotypic covariance matrix (note that here we do not

consider any environmental contribution in the phenotype, therefore the phenotypic variance is

equal to the genetic variance). In this way, (67) may be seen as a generalization of the canonical

equation or Lande’s equation to a case where the mutations are not assumed to be very rare

(on the contrary to adaptive dynamics) and such that the evolution of the genetic variance is

included in the dynamics (the phenotypic density is not assumed to be of Gaussian type with

fixed variance).
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