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bInstitut de Mathématiques de Toulouse, UMR 5219,

118, route de Narbonne, 31062 Toulouse Cedex, France

Abstract

The article is devoted to a regression setting where both, the response and the
predictor, are random functions defined on some compact sets of R. We consider
functional linear (auto)regression and we face the estimation of a bivariate functional
parameter. Conditions for existence and uniqueness of the parameter are given and
an estimator based on a B-splines expansion is proposed using the penalized least
squares method. A simulation study is provided to illustrate performance of the
estimator. Some convergence results concerning the error of prediction are given as
well.

Key words: Functional linear regression, functional response, ARH(1), penalized
least squares, B-splines.

∗ The research of L. Prchal was partially supported by the Grant No. 201/05/H007
of the Grant Agency of the Czech Republic, and by the Research Project No. MSM
0021620839 of the Ministry of Education of the Czech Republic.

Email addresses: lubos.prchal@mff.cuni.cz (Luboš Prchal), sarda@cict.fr
(Pascal Sarda).

Preprint submitted to Elsevier 18 November 2007



1 Introduction

Henceforth a lot of data sets is collected on dense grids and thus more and
more information is available. Whereas one has mainly used adaptations of
classical statistical methods for these data (see Frank and Friedman [1]), an
increasing amount of literature considers rather functional models. It is the
merit of the book by Ramsay and Silverman [2] to have shown the way of
a new field of research where both new performance of computers and modern
probability theory play their role. See also Ferraty and Vieu [3], who introduce
fully nonparametric models for functional data and provide their theoretical
background.

Among the numerous problems in functional statistics, an important one in the
applications is the study of links between two (or eventually more) variables.
More precisely, the scope of this paper is to analyze the effect of one variable
(a predictor) on a response, i.e. to investigate a problem of regression. The
particularity of the task is that both the predictor and the response variables
are functional.

We consider two different settings. The first one is the case, where the predic-
tors and the responses come from a sample of independent and identically dis-
tributed random (functional) variables defined on the same probability space.
As in the vectorial case (when the predictor is a vector of scalars), a common
tool to investigate the link between the predictor and the response is to es-
timate the linear regression. Hence, we consider the natural extension of the
linear regression model to the functional setting. However, in several situations
independence of the couples of curves is not realistic. For instance, they may
come from a cut-out continuous time process, as it happens when for instance
one deals with electricity consumption registered continuously over the time
(see Antoch et al. [4]). Therefore, we discuss an extension of an autoregressive
process of order 1 to the functional setting as well.

For both situations we adopt the same framework in the following sense. We
consider a sample

{
Xi(s), Yi(t), s ∈ I1, t ∈ I2

}
, i = 1, . . . , n, of random vari-

ables defined on the same probability space (Ω,A, P ) and taking respectively
values in the separable real Hilbert spaces L2(I1) and L2(I2) of square inte-
grable functions defined on the compact intervals I1 ⊂ R and I2 ⊂ R with
possibly I1 = I2. We focus on the functional linear relation between Yi(t) and
Xi(s)

Yi(t) = α(t) +
∫

I1
Xi(s)β(s, t) ds+ εi(t), t ∈ I2, i = 1, . . . , n, (1)

where α(t) ∈ L2(I2) and β(s, t) ∈ L2(I1 × I2) are unknown functional param-
eters and ε1(t), . . . , εn(t) stay for a sample of i.i.d. centered random variables
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taking values in L2(I2), εi(t) and Xi(s) being uncorrelated. In what follows, we
often omit arguments of the functional variables and parameters and simply
write Xi, Yi, εi and β instead of

{
Xi(s), s ∈ I1

}
,
{
Yi(t), t ∈ I2

}
,
{
εi(t), t ∈ I2

}

and
{
β(s, t), s ∈ I1, t ∈ I2

}
, respectively.

Exact conditions on variables involved in model (1) are put in Section 2. The
regression setting with (Xi, Yi), i = 1, . . . , n, being an i.i.d sample distributed
according to (X,Y ) and the autoregressive setting with the underlying sta-
tionary process (Zi, i ∈ Z) implying Xi ≡ Zi and Yi ≡ Zi+1, i = 1, . . . , n, are
treated separately there.

The model (1) has been studied by several authors. Ramsay and Silverman
[2] and He et al. [5] among others have considered the regression case, while
Bosq [6] has introduced, and further studied in the monograph Bosq [7], the
so-called Autoregressive Hilbertian process of order 1, ARH(1). There exists
also a broad literature concerning functional linear regression with the scalar
response, see e.g. Ramsay and Dalzell [8], Cardot et al. [9] and Cai and Hall
[10] among others.

Our main interest lies in estimating the functional coefficient β(·, ·) since we
will consider centered variables which leads to “eliminate” the functional in-
tercept α. Once β is estimated, it is straightforward to estimate the intercept
α as well. First we look at the identifiability of the model or in other words
we look at the existence and the uniqueness of the parameter β. Indeed, un-
like in the real-valued vectorial case, the model (1) is not always identifable.
The main theoretical difficulty comes from the fact that a bounded inverse of
the functional covariance operator of the predictors does not exist. Therefore,
some restrictions have to be imposed on (Xi, Yi) to obtain a theoretical for-
mula for β and then its estimation pertains to the class of ill-posed inverse
problems.

Direct estimation procedure of β based on functional principal components, as
proposed by Bosq [7], He et al. [5] or Mas [11], deals with the inversion of the
covariance operator in a low dimensional space. To avoid the inversion, Sec-
tion 3 is devoted to an alternative spline estimator of β. We assume a certain
degree of smoothness for this functional coefficient, that allows to consider β
in a subspace of L2(I1 × I2) of functions having a given number of derivatives.
It then motivates approximation of β in terms of a smooth basis, e.g. regres-
sion splines and specially B-splines considered in our work. The flexibility and
easiness of computation of regression splines is now well known, see Marx and
Eilers [12] or Cardot et al. [13].

As we need to estimate the bivariate parameter β(s, t), our estimator takes the
form of a tensor product splines minimizing a least squares criterion. Moreover,
a penalization term has to be added to the criterion in order to control the
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smoothness of the estimator. A similar idea has been adopted by Ramsay and
Silverman [2], who, however, express (approximate) not only the parameter
but also the observed curves in a suitable function basis. Moreover, we show in
Section 5 that the suggested penalized spline estimator converges with respect
to the error of prediction.

To provide some insight into the estimator’s performance, results of a simu-
lation study are discussed in Section 4. Computational aspects, comments on
“tuning” estimator parameters and some remarks on discretization and even-
tual curve pre-smoothing are given as well. The simulation study was focused
on the i.i.d. case, whereas we refer to Antoch et al. [4] for a real data example
modelled by an ARH(1) process.

2 Functional linear (auto)regression model

As we have introduced, linear relation (1) between two variables is consid-
ered in the independent regression case and the autoregressive setting, respec-
tively. The following paragraph first discusses the regression case in detail to
give some additional conditions for the ARH(1) situation later in Section 2.2.
Before, we just recall that, for a given compact set I ⊂ R, the separable
Hilbert space of square integrable functions defined on I, L2(I), is equipped
with its usual inner product 〈φ, ψ〉 =

∫
I φ(t)ψ(t)dt, φ, ψ ∈ L2(I), and the

associated norm ‖φ‖ = 〈φ, φ〉1/2. Throughout the paper we keep the same no-
tation 〈·, ·〉 for the inner product in all three function spaces L2(I1), L

2(I2) and
L2(I1 × I2), respectively. If necessary, function arguments are explicitly given
to avoid misunderstanding. Further, we implicitly assume I1 = I2 = [0, 1] that
(technically) simplifies some ideas and notation. Of course, it does not touch
applicability of the models and suggested estimator in a general setting of two
compact intervals I1, I2.

2.1 Functional linear regression.

We suppose that the available data sample (Xi, Yi), i = 1, . . . , n, consists
of independent identically distributed observations of the underlying random
couple (X,Y ). Moreover, we assume that both variables have a finite second
moment, i.e.

E‖X ‖2= E

∫

I1
X2(s) ds <∞ and E‖Y ‖2= E

∫

I2
Y 2(t) dt <∞,
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and, as the model (1) implies

Y (t) − EY (t) =
∫

I1

(
X(s) − EX(s)

)
β(s, t) ds+ ε(t), ∀t ∈ I2,

we consider X,Y to be centered, i.e. EX(s) = EY (t) = 0 for s ∈ I1, t ∈ I2,
a.e. Thus, the functional linear relation takes the form of

Y (t) =
∫

I1
X(s)β(s, t) ds+ ε(t), ∀t ∈ I2, (2)

where the random term ε ∈ L2(I2), Eε = 0, E‖ε‖2<+∞, is uncorrelated with
X in the sense that EX(s)ε(t) = 0 for s ∈ I1, t ∈ I2, a.e.

Denote by ΓX = EX ⊗ X and ΓY = EY ⊗ Y the covariance operators of X
and Y , respectively, as well as ∆ = EX ⊗ Y the cross-covariance operator
of X and Y . We recall that ΓX , ΓY are integral operators whose kernels are
the covariance functions of X and Y, where ⊗ stays for a tensor product. It
is well-known that these operators are non-negative, self-adjoint and Hilbert-
Schmidt. We then introduce the spectral decomposition ΓX =

∑∞
j=1 λjvj⊗vj in

the space of Hilbert-Schmidt operators, where {vj} is the orthonormal system
of the eigenfunctions associated with the eigenvalues {λj} of ΓX .

The fact, that X and ε are not correlated, implies that the parameter β must
satisfy functional normal equation

EX(s)Y (t) = ΓXβ(·, t). (3)

Indeed,

EX(s)Y (t) = EX(s)
∫

I1
X(w)β(w, t)dw + EX(s)ε(t) = ΓXβ(·, t).

Furthermore, one easily obtains that β minimizes E ‖Y −
∫
I1
X(s)ϕ(s, ·) ds‖2

among all ϕ ∈ L2(I1 × I2). The normal equation (3) shows that estimation
of β pertains to the class of ill-posed inverse problems. Indeed, it appears
that estimation of β is linked with the inversion of the covariance operator
ΓX whereas this operator is an Hilbert-Schmidt operator for which a bounded
inverse does not exist.

First, we note that the parameter β(s, t) as a function of s is identifiable only

in a subspace
(
Ker ΓX

)⊥
. Indeed, if β(·, t) satisfies (2) then β(·, t) + βK(·, t),

βK(·, t) ∈ Ker ΓX , also satisfies (2). Hence, to simplify further developments
we suppose from now on that ΓX is strictly positive, i.e.

Ker ΓX =
{
φ ∈ L2(I1) : ΓXφ = 0

}
= {0}. (4)
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Second, if β(s, t) is a solution of (2) and since β(s, t) =
∑

j

〈
β(·, t), vj

〉
vj(s)

and
〈
EXY (t), vj

〉
= λj

〈
β(·, t), vj

〉
, it can be expressed as

β(s, t) =
∞∑

j=1

〈EXY (t), vj〉

λj

vj(s) =
∞∑

j=1

Eλ−1
j 〈X, vj〉 vj(s)Y (t). (5)

It implies that a solution β belonging to L2(I1 × I2) exists if and only if

‖β ‖2=
∫

I2

∞∑

j=1

[
Eλ−1

j 〈X, vj〉Y (t)
]2
dt <∞, (6)

and it is unique if and only if Ker ΓX = {0}. Condition (6) has in other words
been derived such as in He et al. [5]. It is known, e.g., as the Picard condition
in the field of linear inverse problems (see e.g. Kress [14]).

2.2 Autoregressive setting.

Alternatively to the regression setting with observed i.i.d couples, one can
consider data to come from an underlying functional process (Zi, i ∈ Z) in
such a way that

Xi ≡ Zi, Yi ≡ Zi+1, i = 1, . . . , n.

Precisely, let Zi =
{
Zi(s), s ∈ I1

}
, i ∈ Z, be a functional process valued in

L2(I1) with a zero mean, i.e. EZi = 0, and a finite fourth moment

E‖Zi ‖
4= E

∫

I1
Z4

i (s) ds <∞.

Moreover, the process (Zi, i ∈ Z) is assumed stationary, i.e. its cross-covariance
operator satisfies EZi+h ⊗ Zj+h = EZi ⊗ Zj,∀i, j, h.

The model (1), which reads

Xi+1(t) =
∫

I1
Xi(s)β(s, t) ds+ εi(t), t ∈ I1, i = 1, . . . , n, (7)

is then identifiable under the “regression” condition (6) in the autoregressive
form

‖β ‖2=
∫

I1

∞∑

j=1

[
Eλ−1

j 〈X0, vj〉X1(t)
]2
dt <∞. (8)

Remark. For given β and white noise (εi, i ∈ Z), Bosq [7] claims that there
exists unique stationary process (Xi, i ∈ Z) satisfying (7), if there is an integer

6



j0 ≥ 1 such that

sup
φ∈L2(I1),‖φ‖≤1

‖ρj0φ‖ < 1

for the continuous linear operator ρ defined as ρφ =
∫
I1
β(s, ·)φ(s) ds.

3 B-splines estimator

We have seen that under condition (6) or (8) the parameter β is identifiable. Its
analytical form (5) enables plug-in estimation for which, however, one needs
to estimate the spectral representation of ΓX . Further, one has to decide,
how many principal components should be involved, as of course, one cannot
estimate the complete spectral representation with a finite data sample: see
He et al. [5], Bosq [7] or Mas [11] for details on this approach.

To avoid these difficulties, we propose to approximate the functional parameter
in a suitable finite-dimensional basis and estimate the corresponding real-
valued basis coefficients. Among possible function basis we have chosen the
B-splines. As underfitting may occur, we compensate minimization of the least
squares criterion by a penalty term. In fact, we control the smoothness of the
parameter by the penalty proportional to the norm of a given order derivative
of the parameter estimator.

First of all, let us define the finite-dimensional space of splines that approxi-
mates L2(I1× I2) sufficiently accurate to define the estimator of β within that
subspace. Suppose q and k to be some integers and let a real interval I =
[r0, rk] ⊂ R contain k− 1 equidistant interior knots r0 < r1 < · · · < rk−1 < rk.
Denote the space of splines of the degree q defined on the interval I by Sqk(I),
i.e. the set Sqk(I) consists of functions f satisfying:

• f is a polynomial of degree q on each interval [ri−1, ri], i = 1, . . . , k;
• f is q − 1 times continuously differentiable on I.

The space Sqk(I) has the finite dimension q + k and one can consider nor-
malized B-splines as its basis (see Dierckx [15]). Of course, the assumption of
equispaced knots (simplifying notation and proofs) can be relaxed, if necessary,
provided however that a sufficiently dense grid of knots is taken.

Let us denote by Bj = (Bj1, . . . Bjdj
)′ the normalized B-splines basis of the

spline space Sqjkj
(Ij) with the dimension dj = qj + kj and by B

(m)
j the vec-

tor of the corresponding m-th derivatives, m ∈ N,m < qj, j = 1, 2. Every
bivariate spline f(s, t) ∈ Sq1k1,q2k2

(I1 × I2) then has a unique tensor product
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representation

f(s, t) =
d1∑

k=1

d2∑

l=1

θklB1k(s)B2l(t) = B1
′(s)ΘB2(t), s ∈ I1, t ∈ I2,

where Θ = (θkl) ∈ R
d1 × R

d2 represents a matrix of real coefficients. From
now on, we typically omit the arguments s, t in matrix expressions.

Therefore, we can define the B-spline estimator of the functional parameter β
as

β̂(s, t) =
d1∑

k=1

d2∑

l=1

θ̂klB1k(s)B2l(t) = B1
′Θ̂B2, s ∈ I1, t ∈ I2, (9)

where Θ̂ stays for a suitable estimator of the B-splines coefficients. As we
aim to obtain a smooth estimator of β, a penalty term has to be added to
the standard least squares criterion. We consider a penalty term Pen(m,Θ)
of order m < min {q1, q2} common for thin plate splines (see e.g. Green and
Silverman [16]) that takes the form

Pen(m,Θ) =
m∑

m1=0

m!

m1!(m−m1)!

∫

I2

∫

I1

[
∂m

∂sm1∂tm−m1

B1
′(s)ΘB2(t)

]2

dsdt.

Hence, the coefficients Θ̂ are chosen to minimize the penalized least squares
criterion

Θ̂ = arg min
Θ∈Rd1×d2

1

n

n∑

i=1

∣∣∣
∣∣∣Yi − 〈Xi,B1

′ΘB2〉
∣∣∣
∣∣∣
2
+ ̺Pen(m,Θ), (10)

with a penalty parameter ̺ > 0.

Introducing the empirical versions ∆n, Γn of the cross-covariance and covari-
ance operators

∆nφ =
1

n

n∑

i=1

〈Xi, φ〉Yi, φ ∈ L2(I1),

Γnφ =
1

n

n∑

i=1

〈Xi, φ〉Xi, φ ∈ L2(I1),

the solution Θ̂ of the problem (10) must satisfy the matrix equation

D̂ = ĈΘ̂P
(0)
2 + ̺

m∑

m1=0

m!

m1!(m−m1)!
P

(m1)
1 ΘP

(m−m1)
2 , (11)
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where

D̂ = (d̂kl) ∈ R
d1 × R

d2 , d̂kl = 〈∆nB1k, B2l〉,

Ĉ = (ĉkk′) ∈ R
d1 × R

d1 , ĉkk′ = 〈ΓnB1k, B1k′〉,

P
(m1)
j = (pj

kk′) ∈ R
dj × R

dj , pj
kk′ = 〈B(m1)

jk , B
(m1)
jk′ 〉, j = 1, 2.

However, the matrix equation (11) doesn’t allow to express an explicit an-
alytical form of its solution. Therefore, we rearrange it using the Kronecker
product notation (Graham [17]) into the following vectorial form

vec D̂ =
[
P

(0)
2

′
⊗ Ĉ + ̺

m∑

m1=0

m!

m1!(m−m1)!
P

(m−m1)
2

′
⊗ P

(m1)
1

]
vec Θ̂. (12)

and, furthermore, equivalently as

vec D̂ =
[
Ĉ̺ + ̺P (m)

]
vec Θ̂, (13)

where

Ĉ̺ = P
(0)
2

′
⊗
(
Ĉ + ̺P

(m)
1

)
,

P (m) =
m−1∑

m1=0

m!

m1!(m−m1)!
P

(m−m1)
2

′
⊗ P

(m1)
1 .

Hence, the solution Θ̂ can be expressed as

vec Θ̂ =
[
Ĉ̺ + ̺P (m)

]−1

vec D̂, (14)

providing the inverse of Ĉ̺+̺P (m) exists. Theorem 1 in Section 5 states that

the involved matrix Ĉ̺+̺P (m) is practically always invertible. Moreover, one
can regularize the penalty matrix in the way discussed by Crambes et al. [18]
to avoid eventually difficulties with computing its inversion.

4 Computational aspects and simulations

The following paragraphs provide some computational remarks on the pro-
posed estimator and illustrate its behavior by the means of simulations. Prac-
tical situation of discretized observations and the impact of their eventual
pre-smoothing are discussed as well.
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4.1 Approximative matrix solution

The considered minimization problem (10) does not allow to express its so-
lution Θ̂ in a compact matrix form but requires solving the vectorial equiv-
alent (12). Thus, to obtain d1 × d2 parameters Θ̂ one faces inverting the
(d1×d2)× (d1×d2) matrix Ĉ̺ +̺P (m), which may be quite time consuming.
Therefore, we provide an approximative matrix solution for a slightly modified
minimization task.

Let β̃ = B1
′Θ̃B2 be the B-spline estimator with the parameters Θ̃ obtained

from the penalized least squares minimization

Θ̃ = arg min
Θ∈Rd1×d2

1

n

n∑

i=1

∣∣∣
∣∣∣Yi − 〈Xi,B1

′ΘB2〉
∣∣∣
∣∣∣
2
+ ̺ P̃en(m,Θ) (15)

with the penalty parameter ̺ > 0 and the penalty term

P̃en(m,Θ) =
∫

I2

∫

I1

{[
B

(m)
1

′ΘB
(0)
2

]2
+
[
B

(0)
1

′ΘB
(m)
2

]2}
dsdt.

We point out, that with the common choice of cubic splines q1 = q2 = 4, m = 2,
the penalty P̃en(m,Θ) comparing to Pen(m,Θ) ignores the cross-derivative

term B
(1)
1

′ΘB
(1)
2 (s, t) and regard separately the second order smoothness of

the basis.

The minimization (15) then yields

D̂ =
[
Ĉ + ̺P

(m)
1

]
Θ̃P

(0)
2 + ̺P

(0)
1 Θ̃P

(m)
2 , (16)

or equivalently

ÃΘ̃B̃ − Θ̃ + C̃ = 0, (17)

where

Ã =−
[
Ĉ + ̺P

(m)
1

]−1
P

(0)
1 ,

B̃ = P
(m)
2 P

(0)
2

−1
,

C̃ =
[
Ĉ + ̺P

(m)
1

]−1
D̂P

(0)
2

−1
.

The equation (17) is known as the discrete Sylvester equation and its iterative
numerical solution is discussed by e.g. Benner et al. [19]. The following Smith
iteration is suggested with the starting values Ã0 = Ã, B̃0 = B̃ and Θ̃0 = C̃

Θ̃k+1 = ÃkΘ̃kB̃k + Θ̃k, Ãk+1 = Ã
2

k, B̃k+1 = B̃
2

k, k = 1, 2, . . . (18)
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However, performed simulations experiments indicate that one iteration is
often sufficient to obtain a “reasonable” solution, i.e. we can estimate the
unknown parameters Θ as

Θ̃
∗

= ÃC̃B̃ + C̃ (19)

and obtain the approximative B-spline estimator

β̃∗
0 = B1

′Θ̃
∗
B2. (20)

4.2 Parameters set up

Several parameters are involved in the B-spline procedures. Concerning the
B-spline basis, the order q is usually chosen q = 3 or q = 4 corresponding
to the quadratic and cubic splines, respectively. On the other hand, to find
the optimal number of knots k and their positions, it is a quite complex task.
Fortunately, it does not seem to significantly influence the estimator once k is
taken reasonably large, i.e. number of knots between 15 and 30. Sometimes,
when the true parameter is sufficiently smooth, even k = 3, 5, 8 may work well.
Moreover, as small number of knots speeds up the exact vectorial calculation
of the estimator, it is worth trying several values of k in practice.

For the penalty term, the order m is usually taken as m = q − 2. Then the
most important parameter ̺ controlling the smoothness of the estimator is
chosen to minimize the leave-one-out cross-validation criterion

cv(̺) =
n∑

i=1

∫

I2

[
Yi(t) −

∫

I1
β̂i(s, t)Xi(s) ds

]2
dt. (21)

The exact vectorial estimator β̂i(s, t) is obtained from the data set with the
i-th pair (Xi, Yi) omitted.

For large sample sizes n or large number of B-spline knots k one can perform
approximative matrix estimation and choose ̺ as the minimizer of

c̃v(̺) =
n∑

i=1

∫

I2

[
Yi(t) −

∫

I1
β̃∗

i (s, t)Xi(s) ds
]2
dt, (22)

where the estimator β̃∗
i (s, t) is given by (20) with the i-th data pair omitted.

The approximative criterium is considerably faster from the computational
point of view and often provides practically same smoothing parameter value.
At least, it can be used to set up a pivot parameter for the exact cross-
validation method (21).
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4.3 Simulations

A short simulation study has been performed to regard behavior of the pro-
posed estimator when dealing with data “under control.” For the computa-
tional clarity and simplicity we have chosen I1 = I2 = [0, 1] discretized in
p = 101 equidistant points sj = j/(p− 1), and tj = j/(p− 1), j = 0, . . . , p− 1.

Independent Brownian motion trajectories have been simulated as the predic-
tors Xi(s), i = 1, . . . , n, i.e. each Xi(s) is a zero-mean gaussian process with

the covariance structure cov

(
Xi(sk), Xi(sl)

)
= min(sk, sl). Two functional pa-

rameters

β1(s, t) = 5 sin(2πs) cos(2πt), β2(s, t) = 20 exp
{
−100(s− t)2

}
,

have been considered and true signal responses obtained as

Y ∗
1i(tk) =

1

p

p∑

j=1

β1(sj, tk)Xi(sj) =
5 cos(πk/50)

p

p∑

j=1

sin(πj/50)Xi(sj),

Y ∗
2i(tk) =

1

p

p∑

j=1

β2(sj, tk)Xi(sj) =
20

p

p∑

j=1

exp
{
−(j − k)2/100

}
Xi(sj),

for k = 0, . . . , p, i = 1, . . . , n. In the first case, we see that the true signal is
the cosine function with a random amplitude, while the second parameter β2

provides the “bell-shape” transformation of less than one third of the predictor
as, effectively, β2(sj, tk) ≈ 0 for |j−k| > 30. As cubic polynomials approximate
quite well the sine and cosine functions, one can expect reasonable performance
of the proposed estimator in the β1 case. On contrary, some boundary effect
problems for (s, t) close to (0, 0) and (1, 1) are predictable for the estimator
of β2.

Pointwise gaussian white-noise ε1ik, ε2ik ∼ N (0, σε) has been simulated and
added to the true signal in order to obtain measured responses

Y1i(tk) = Y ∗
1i(tk) + ε1ik, Y2i(tk) = Y ∗

2i(tk) + ε2ik.

The moderate sample size n = 100 has been considered, i.e. the estimation
procedure has been run on samples (X1, Y1), . . . , (X100, Y100), each curve being
discretized in p = 101 equidistant points.

Both exact and approximative estimators have been calculated with the penalty
parameter ̺ chosen by the corresponding cross-validation criterium, fixed B-
spline orders q1 = q2 = 4, fixed derivative order m = 2 and different numbers
of knots k1 = k2 = 3, 5, 8 for β1 and k1 = k2 = 5, 8, 11 for β2, respectively.
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Moreover, three different values of σε = 0.1, 0.5, 1 have been used. For each
setup combination, 500 runs have been performed.

To present the results, we consider relative residual measures for the noisy
data, the true signal and the parameter estimator, respectively, i.e. we define

κ=
1

n

n∑

i=1

κi, κ2
i =

∑p
j=0

(
Yi(tj) − Ŷi(tj)

)2

∑p
j=0 Y

2
i (tj)

,

κ∗ =
1

n

n∑

i=1

κ∗i , κ∗2i =

∑p
j=0

(
Y ∗

i (tj) − Ŷi(tj)
)2

∑p
j=0 Y

∗2
i (tj)

,

κβ
ǫ =

1

p




⌊(1−ǫ)p⌋∑

j,k=⌊pǫ⌋+1

(
β(sj, tk) − β̂(sj, tk)

)2




1/2 (∫ 1−ǫ

ǫ

∫ 1−ǫ

ǫ
β2(s, t) ds dt

)−1/2

.

4.3.1 Results for β1(s, t)

We start with relative residuals presented in Figure 1 as these quantities can be
measured in real data situations. Both, the exact and the matrix estimators,
perform quite similarly for all considered settings with relative residual errors
varying between satisfactory values 3 to 10 per cents.

However, further analysis of (unobservable) true signal fit indicate some dif-
ferences between the estimators. Figure 2 shows “instability” of the matrix
solution for higher number of knots, which is even more evident on Figure 3
concerning errors in parameter estimation. The reason lies in fact that the ap-
proximative solution, when calculated for unnecessarily many knots, provides
a more fluctuating parameter estimator – still well performing for the noisy
data fit but potentially quite far from the true parameter.

4.3.2 Results for β2(s, t)

Regarding Figures 4 and 5 one recognizes, that number of knots play more
important role for β2 estimator than in the previous β1 case. Eight knots seem
to be optimal for both methods to provide reasonable data fit, which similarly
to the previous case is “resistant” to increasing noise variability.

Concerning parameter estimation, both methods are competitive and achieve
reasonably small errors. Figure 7 shows estimators for one particular simula-
tion and we see that estimators capture the character of the true parameter
even if they do not reach exact values. Despite some difficulties in estimating
the parameter, the relative true signal error about 2 per cents (for σǫ = 0.1)
does not indicate “much space” to improve the methods’ performance. One

13



also recognizes (expected) boundary-effect problems of the estimators, espe-
cially the matrix one. However, we see that 10 % cut-off causes approx. 40 %
decrease of the relative parameter, i.e. estimators behave reasonably in the
[0.05, 0.95] × [0.05, 0.95] square.

4.3.3 Comments on simulations

The performed simulation study show that the approximative matrix solution
is competitive to the exact estimator and, as concerns data fitting, behaves
satisfactorily. If one primary focuses on the functional parameter estimation,
the exact solution should be preferred as it is more stable concerning tuning
parameters of the method. The matrix approach, however, can still be used
throughout the cross-validation procedure at least as the pivot parameter,
whose neighborhood is then looked over by the exact method.

Surprisingly, in some situations small number of knots can be sufficient to
obtain good estimators. As the matrix method behaves well and fast, it is
worth performing estimation for several knot setups – eventually a kind of
cross-validation can be used for the knots as well.

4.4 Discrete data, smoothing, and identifiability

The functional variables and parameters involved in the simulation study were
considered discretized in the same equidistant points, which simplifies practical
implementation of the methods and simulations themselves. However, this is
not always the case in real-life applications and therefore we give some heuristic
remarks on discretization, curves pre-smoothing and consequent impacts on
the identifiability of the model.

First, let us mention that the B-splines approach does not require the sample
curves to be observed in the same discrete points. Indeed, individual observa-
tions Xi(s), Yi(t) contribute to the estimation procedure through inner prod-
ucts with the B-splines basis functions and hence the individual integrals can
be evaluated with respect to the points in which the particular curve is ob-
served. Of course, it complicates the practical implementation of the method
as the B-splines basis has to be repeatedly evaluated for each curve in the
corresponding points.

When dealing with functional data, observed discretized curves are often pre-
smoothed in order to obtain the same (equidistant) discrete design for all
curves, which is further used for the analysis of interest. However, curves
should not be oversmoothed or even fitted parameterically as this may cause
severe identifiability problems in the linear model context. Suppose that the
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predictor X(s) = X0(s) + σηηi(s) consists of a random smooth drift X0(s)
from some finite dimensional functional space (e.g. a polynomial function)
and irregular path noise η(s) (e.g. a Brownian motion). If the noise term
compared to the drift is negligible and smoothing applied, it may happen that
the smooth curve belongs no more to the infinite-dimensional space and hence
one looses identifiability of the parameter β.

To illustrate the problem, let us consider X0(s) = a + bs with random coef-
ficients a, b and Y (t) to follow the linear model with the parameter β1(s, t).
If the “variance” ση is small, the drift X0(s) can be considered as a smooth
version of X(s) and as

∫ 1

0
sin(2πs)X0(s) ds =

∫ 1

0

3

π
(1 − 2s)X0(s) ds,

the use of smooth predictors instead of “noisy” ones may result into the esti-
mated parameter far away from the true one. The reduction of the predictor’s
dimensionality plays a crucial (negative) role in parameter estimation even if
it does not necessarily influence data fit and/or prediction results.

Of course, the situation changes if Y (t) follow the model with true predictor
signal X0(s) and η(s) presents error-in-variable due to e.g. unexact predictors
registering. In the case, η(s) makes the estimator less accurate and other esti-
mating techniques, such as functional total least squares, might be involved,
see Cardot et al. [20].
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Fig. 1. Relative residuals κ for the exact (v) and matrix (m) estimators of β1(s, t), i.e.
5(m) stays for 5 knots and matrix estimator. Values of the noise standard deviation
σε = 0.1, 0.5, 1 range from left to right.
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Fig. 2. True signal relative residuals κ∗ for the exact (v) and matrix (m) estimators
of β1(s, t), i.e. 5(m) stays for 5 knots and matrix estimator. Values of the noise
standard deviation σε = 0.1, 0.5, 1 range from left to right.
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Fig. 3. Relative parameter error κ
β
ǫ for the exact (top) and matrix (bottom) esti-

mators of β1(s, t), different values of noise standard deviation σε = 0.1, 0.5, 1 (left
to right) and different cut-off values ǫ = 0, 0.05, 0.1.
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Fig. 4. Relative residuals κ for the exact (v) and matrix (m) estimators of β2(s, t), i.e.
5(m) stays for 5 knots and matrix estimator. Values of the noise standard deviation
σε = 0.1, 0.5, 1 range from left to right.
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Fig. 5. True signal relative residuals κ∗ for the exact (v) and matrix (m) estimators
β2(s, t), i.e. 5(m) stays for 5 knots and matrix estimator. Values of the noise standard
deviation σε = 0.1, 0.5, 1 range from left to right.
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Fig. 6. Relative parameter error κ
β
ǫ for the exact (top) and matrix (bottom) esti-

mators of β2(s, t), different values of noise standard deviation σε = 0.1, 0.5, 1 (left
to right) and different cut-off values ǫ = 0, 0.05, 0.1.
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True parameter β1 True parameter β2

Exact estimator β̂1 Exact estimator β̂2

Matrix estimator β̃1 Matrix estimator β̃2

Fig. 7. Illustration of the estimators for one simulation run. True parameters β1(s, t)
and β2(s, t) and the both the exact vectorial and matrix estimators for σε = 0.5
and 5 knots for β1(s, t) and 8 knots for β2(s, t), respectively.
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5 Some convergence results

First, the following Theorem 1 investigates the existence and uniqueness of
a solution of the minimization problem (10). Actually, it comes to show that
the matrix Ĉ̺ +̺P (m) is invertible. In a general setting the null spaces of Ĉ̺

and of the penalty matrix P (m) may have a non empty intersection. A way to
assure invertibility is to modify the penalty matrix by adding some projection
matrix on the null space of P (m) in a similar way as proposed by Crambes et
al. [18]. However, Theorem 1 shows that the non-invertibility problem occurs
only in marginal situations. It is stated in general setting, i.e. for both the
functional linear regression model (2) and the case of an ARH(1) process (7).
The following condition is assumed to hold

(C.1) ‖X‖ ≤ C1 <∞, a.s.

Theorem 1 Let ̺ ∼ n(1−δ0)/2 for some 0 < δ0 < 1. Then, under condition
(C.1) and identifiability conditions (4) and (6), a unique solution of the min-
imization problem (10) exists, except on an event whose probability tends to
zero as n→ ∞.

The following paragraphs are devoted to the asymptotic behavior of the B-
splines estimator β̂ with respect to the error of prediction. We examine first
the case of model (2) for an i.i.d. sample (Xi, Yi). The behavior of the estimator
is studied in the L2 semi-norm in L2(I1 × I2) with respect to the distribution
of X defined as

‖ϕ‖2
ΓX

=
∫

I2
〈ΓXϕ(·, t), ϕ(·, t)〉 dt,

for all ϕ(s, t) ∈ L2(I1×I2). Evaluating the error of estimation in this semi-norm
equals to evaluating the error of prediction, since for any random curve Xn+1

possessing the same distribution as X and being independent of X1, . . . , Xn,
we have

∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣
ΓX

=
∫

I2
E

([〈
Xn+1, β̂(·, t)

〉
−
〈
Xn+1, β(·, t)

〉]2
| β̂(t)

)
dt.

Let X = (X1, . . . , Xn)′, EX be the conditional expectation E(·|X), varX the
conditional variance given X, and

‖ϕ‖2
Γn

=
∫

I2
〈Γnϕ(·, t), ϕ(·, t)〉 dt =

1

n

n∑

i=1

∫

I2
〈Xi, ϕ(·, t)〉2 dt,

be the empirical version of the norm ‖·‖2
ΓX
. Let p1, p2 be two positive integers

such that p1 ≤ q1 and p2 ≤ q2 and let m ≤ p1 + p2. We assume the following
regularity condition on the functional parameter β(s, t).

(C.2)
∂α1+α2

∂sα1∂tα2

β(s, t) ∈ L2(I1 × I2), for all 0 ≤ αj ≤ pj, j = 1, 2.
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Moreover, we need the integrated variance to be bounded, i.e.

(C.3)
∫

I2
varX

{
Y (t)

}
dt ≤ C2 <∞.

Theorem 2 Under the linear regression model (2), conditions of Theorem 1,
(C.2), (C.3), and if k1k2/(n̺) = o(1), we have

EX

∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣
ΓX

= oP (1).

The next theorem shows that the one-step ahead prediction 〈β̂(., t), Xn〉 in
the case of an ARH(1) model (7) is a consistent estimator of 〈β(., t), Xn〉
considering the standard L2 norm.

Theorem 3 Assume conditions (C.1), (C.2). Moreover, let the error term εi

be independent of Xi in (7) and k1k2/(n̺) = o(1). Then, the prediction in an
ARH(1) model (7) is consistent, i.e.

∫

I2

(
〈β̂(., t), Xn〉 − 〈β(., t), Xn〉

)2
dt = oP (1).

6 Final remarks

We have studied quite a general setting enabling to analyze a (linear) rela-
tion between two functional variables that are supposed either to follow a
regression model or to come from one underlying process, ARH(1). Although
these two situations are often treated separately in the literature, we have
suggested the same B-spline estimator of the involved functional parameter
for both cases. Performed experiments on simulated provide quite promising
results concerning both quality of prediction and estimation of the functional
parameter itself. The obtained results seem to be fully competitive with other
existing methods as far as we know.

Of course, there are several open problems connected with the presented esti-
mator. From the practical point of view, it is mainly the automatic procedure
for choosing the penalty parameter that it is worth studying more deeply.
For the scalar response, the generalized cross-validation has been successfully
adapted and although it is not straightforwardly applicable in the fully func-
tional setting, it is a possible direction to look at. Concerning theoretical
aspects, the recent work by Crambes et al. [18] provides a spline-estimator
with the optimal rate of convergence in a scalar response functional linear
regression model. It is challenging to establish (optimal) convergence rates for
the suggested B-spline estimator as well.
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A Proofs

Presented proofs of Theorems 1 and 2 follow the main lines of the proofs of
analogous theorems by Cardot et al. [13]. The details are hence often omitted.

Proof of Theorem 1

Let C̺ = P
(0)
2

′
⊗
(
C + ̺P

(m)
1

)
stay for the population version of the matrix

Ĉ̺, where d1 ×d1 matrix C consists of 〈ΓXB1i, B1j〉. Lemma 6.1. of Cardot et
al. [13] with the inequality (12) of Stone [21] result, for any arbitrary vector
u ∈ R

d1×d2 , ‖u‖= 1, and a constant C3 > 0, into

u′
(
C̺ + ̺P (m)

)
u = u′C̺u + ̺u′P (m)u ≥ u′C̺u ≥ C3̺k

−1
1 k−1

2 .

Then, as Cardot et al. [13] and Bosq [7] provide

∥∥∥P (0)
2

∥∥∥ = O(k−1
2 ) and

∥∥∥C − Ĉ
∥∥∥ = oP

(
k−1

1 n(δ−1)/2
)
,

one obtains, for 0 < δ < 1

∣∣∣∣
∣∣∣∣C̺ − Ĉ̺

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣P

(0)
2

′
⊗
(
C − Ĉ

)∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣P

(0)
2

∣∣∣∣
∣∣∣∣
∣∣∣∣
∣∣∣∣C − Ĉ

∣∣∣∣
∣∣∣∣ = oP

(
k−1

1 k−1
2 n(δ−1)/2

)
.

The result follows if one takes δ0 > δ and recognizes that the minimal eigen-
value ξ̂min of Ĉ̺ + ̺P (m) satisfies

ξ̂min ≥ C3̺k
−1
1 k−1

2 + oP

(
k−1

1 k−1
2 n(δ−1)/2

)
. (A.1)

2

Proof of Theorem 2

Denote d = n× d2. The spline estimator β̂ defined by (9) can be written as

β̂ =
(
B2

′ ⊗ B1
′

)[
Ĉ̺ + ̺P (m)

]−1 1

n

(
I ⊗ A

)
vecY B =

d∑

j=1

WjY
B
j , (A.2)
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where I is an d2 × d2 identity matrix, A is the d1 × n matrix with elements
〈B1k, Xi〉 and Y B is the n× d2 matrix with elements 〈Yi, B2l〉. Further, let us
denote f(X) = E[Y |X]. Consider β̃ the solution of the minimization problem
(10), where Yi is replaced by f(Xi). Analogously to (A.2), β̃ can be expressed
as

β̃ =
(
B2

′ ⊗ B1
′

)[
Ĉ̺ + ̺P (m)

]−1 1

n

(
I ⊗ A

)
vecfB =

d∑

j=1

Wjf
B
j , (A.3)

where fB is the n× d2 matrix with elements 〈f(Xi), B2l〉. First, we have

d∑

j=1

‖Wj ‖
2 =

d∑

j=1

∣∣∣∣
∣∣∣∣
(
B2

′ ⊗ B1
′

)[
Ĉ̺ + ̺P (m)

]−1 1

n

(
I ⊗ A

)
j

∣∣∣∣
∣∣∣∣
2

≤
1

n

∣∣∣
∣∣∣B2

′ ⊗ B1
′

∣∣∣
∣∣∣
2
∣∣∣∣
∣∣∣∣
[
Ĉ̺ + ̺P (m)

]−1∣∣∣∣
∣∣∣∣
2 1

n

d∑

j=1

‖Aj ‖
2,

which, due to the condition (C.1), the properties of the Kronecker product
and (A.1), leads to

d∑

j=1

‖Wj ‖
2 = oP (1) . (A.4)

Now, as

EX

[
〈Yi − f(Xi), B2l〉

2
]
≤‖B2l ‖

2
∫

I2
varX

{
Yi(t)

}
dt,

and noting that EX

[
Yi − f(Xi)

]
= 0, we obtain

EX

∣∣∣
∣∣∣β̂ − β̃

∣∣∣
∣∣∣
2

ΓX

≤
d∑

j=1

EX

[
vec(Y − f)B

j

]2
‖Wj ‖

2
E ‖X ‖2

≤E ‖X ‖2
n∑

i=1

d2∑

l=1

‖B2l ‖
2‖W(l−1)n+i ‖

2
∫

I2
varX

{
Yi(t)

}
dt.

Conditions (C.1), (C.3), and (A.4) result into

EX

∣∣∣
∣∣∣β̂ − β̃

∣∣∣
∣∣∣
2

ΓX

= oP (1). (A.5)

Let

ln(a) =
1

n

n∑

i=1

∣∣∣
∣∣∣f(Xi) − 〈Xi, a〉

∣∣∣
∣∣∣
2
, ∀a ∈ L2(I1 × I2)

and suppose f(X) = 〈X, β〉. Let a, a1, a2 be elements of L2(I1 × I2) and take
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t ∈ [0, 1]. Then, denoting a[t] = ta+ (1 − t)β, one obtains

d2

dt2
ln
(
ta1 + (1 − t)a2

)
= 2 ‖a1 − a2 ‖

2
n≥ 0

and
d

dt
ln
(
a[t]
)∣∣∣∣

t=0
= 0.

As evidently ln(β) = 0, we arrive at

ln(a) − ln(β) =
∫ 1

0
(1 − t)

d2

dt1
ln
(
a[t]
)
dt =‖a− β ‖2

Γn
.

From Theorem 12.7 in Schumaker [22], there exists s ∈ Sq1k1,q2k2
such that

‖ s − β ‖≤ C4k
−p1

1 k−p2

2 , where C4 is a positive constant. Consequently, one
obtains ‖ s − β ‖2

Γn
+̺ Pen(m,Θs) ≤ C5δn, a.s., where Θs is a matrix of

B-splines coefficients of s and {δn} is a sequence of positive numbers tend-
ing to zero as n tends to infinity. Let C6 be a positive constant such that
‖ s − β ‖2

Γn
+̺ Pen(m,Θs) < C6δn, a.s. Hence, one has almost surely ln(s) +

̺ Pen(m,Θs) < ln(a) + ̺ Pen(m,Θa) for all a ∈ Sq1k1,q2k2
such that ‖a −

β‖2
Γn

+ ̺ Pen(m,Θa) = C6δn. By Theorem 1, ln,̺ has a unique minimum β̃ in
Sq1k1,q2k2

and is strictly convex except on a set whose probability tends to zero
when n tends to infinity. Using convexity arguments, one deduces

∣∣∣
∣∣∣β̃ − β

∣∣∣
∣∣∣
2

Γn

= oP (1). (A.6)

Let us now consider β = 0. The estimator β̃ given by (A.3) can be written as

β̃ =
(
B2

′ ⊗ B1
′

)[
Ĉ̺ + ̺P (m)

]−1

d̃,

where d̃ = vec D̃, the matrix D̃ consisting of generic elements 〈∆̃nB1k, B2l〉
with ∆̃n = n−1∑n

i=1Xi ⊗ f(Xi). Further, straightforward calculations lead to

∣∣∣
∣∣∣β̃
∣∣∣
∣∣∣
2

Γn

≤
∣∣∣
∣∣∣d̃d̃

′∣∣∣
∣∣∣Tr

([
B2

2 ⊗ Ĉ
] [

Ĉ̺ + ̺P (m)
]−1

) ∣∣∣∣
∣∣∣∣
[
Ĉ̺ + ̺P (m)

]−1∣∣∣∣
∣∣∣∣.

Then, since ∆ is a null operator and with arguments similar to those in Lemma
5.2 of Cardot et al. [9], one gets

∣∣∣
∣∣∣d̃d̃

′∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣∆̃n − ∆

∣∣∣
∣∣∣
2

∞

∥∥∥∥
∫

I1
B1

′(s)B1(s) ds
∥∥∥∥
∥∥∥∥
∫

I2
B2

′(t)B2(t) dt
∥∥∥∥ = OP

(
n

k1k2

)
,

and using conditions on k1, k2 and ̺ we arrive at (A.6) for β = 0. Since

f(X) = 〈X, β〉 + f(X) − 〈X, β〉,
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relation (A.6) holds in all situations. Now, one obtains

∣∣∣
∣∣∣β̃ − β

∣∣∣
∣∣∣
2

ΓX

≤ 2‖Γn − Γ‖
(
‖β̃‖2 + ‖β‖2

)
+ 2

∣∣∣
∣∣∣β̃ − β

∣∣∣
∣∣∣
2

Γn

.

The same arguments based on Taylor’s development used for proof of Theorem
3.1 by Cardot et al. [13] provides

‖β̃‖2 =
∫

I2

∣∣∣
∣∣∣β̃(·, t)

∣∣∣
∣∣∣
2
dt = OP (1). (A.7)

Lemma 5.3 of Cardot et al. [9], (A.6) and (A.7) yield

∣∣∣
∣∣∣β̃ − β

∣∣∣
∣∣∣
2

ΓX

= oP (1). (A.8)

Finally, combining (A.5) and (A.8) the statement of Theorem follows. 2

Proof of Theorem 3

It is easy to see that EXΘ̂ minimizes

1

n

n∑

i=1

∣∣∣
∣∣∣〈β,Xi〉 − 〈B1

′ΘB2, Xi〉
∣∣∣
∣∣∣
2
+ ̺Pen(m,Θ),

over Θ ∈ R
d1×d2 . Consequently

1

n

n∑

i=1

∣∣∣
∣∣∣〈β,Xi〉 − 〈EXβ̂, Xi〉

∣∣∣
∣∣∣
2
+ ̺Pen(m,EXΘ̂) ≤ ̺Pen(m,β),

which leads with condition (C.2) to

∥∥∥β − EXβ̂
∥∥∥
2

Γn

= oP (1). (A.9)

We have

∥∥∥β − EXβ̂
∥∥∥
2

ΓX

≤ 2
∥∥∥β − EXβ̂

∥∥∥
2

Γn

+ 2 ‖ΓX − Γn‖
2
∥∥∥β − EXβ̂

∥∥∥
2
.

Using Theorem 4.2 in Bosq [7] and again arguments based on Taylor’s devel-
opment (see Cardot et al. [13]) we get

∥∥∥β − EXβ̂
∥∥∥
2

ΓX

= oP (1). (A.10)

Now, by the Cauchy-Schwarz inequality and using (6) and (A.10), one obtains
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∣∣∣〈EXβ̂ − β, β〉
∣∣∣=

∞∑

j=1

∫

I2

〈
EXβ̂(·, t) − β(·, t), vj

〉〈
β(·, t), vj

〉
dt

≤




∞∑

j=1

∫

I2
λj〈EXβ̂ − β, vj〉

2




1/2


∞∑

j=1

∫

I2

〈β, vj〉
2

λj




1/2

≤
∣∣∣
∣∣∣EXβ̂ − β

∣∣∣
∣∣∣
ΓX




∞∑

j=1

∫

I2

〈β, vj〉
2

λj




1/2

= oP (1).

Once again, Taylor’s expansion arguments lead to

∥∥∥β − EXβ̂
∥∥∥
2
≤
∣∣∣∣
∣∣∣
∣∣∣β
∣∣∣
∣∣∣
2
−
∣∣∣
∣∣∣EXβ̂

∣∣∣
∣∣∣
2
∣∣∣∣+ 2

∣∣∣〈EXβ̂ − β, β〉
∣∣∣ = oP (1). (A.11)

Now, with (A.4) and the independence between Xi and εi, we have

EX

∥∥∥β̂ − EXβ̂
∥∥∥
2

= EX

∥∥∥∥∥∥

d∑

j=1

Wj

(
vec εB

)
j

∥∥∥∥∥∥

2

= oP (1), (A.12)

where εB is the n× d2 matrix with elements 〈εi, B2l〉. Combining (A.12) with
(A.11) results into

∥∥∥β − β̂
∥∥∥
2

= oP (1). (A.13)

The conclusion of Theorem 3 is a direct consequence of (A.13) using the same
arguments as in the proof of Corollary 8.3 in Bosq [7]. 2
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