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Abstract

This document is a companion paper to Ferraty et al. (2013) in which an

exploratory tool has been developed for detecting structural changes in some

functional dataset. Its aim is to develop asymptotic theory for the method

described in the previous paper. However, it is written in some self-contained

way in order to be used for people who are only interested with technical aspects

linked with cross-validation theopry with functional variables. The proofs are

presented with all details, with main hope to overpass the specific problem of the

paper (structural change detection) in order to be helpful for the future in any

situation involving cross-validation and infinite dimensional random variables.

Key Words: Functional data; Asymptotics; Cross-validation; Hidden struc-

ture detection.
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1 INTRODUCTION

In recent literature, many works have focused on the functional regression model with

scalar response from both parametric viewpoint (Ramsay and Silverman 2005) and

nonparametric one (Ferraty and Vieu 2006). In this paper, the general nonparametric

framework has been chosen and the regression model given by

Y = r(X) + ǫ,

has been studied, where Y is a real random variable, X is a random variable valued

in a separable Hilbert space (H, 〈·, ·〉), r : H → R is the regression operator, and ǫ is

a real random variable such that E(ǫ|X) = 0 and E(ǫ2|X) = σ2
ǫ (X) <∞. Sometimes,

one is confronted with complex regression structures, which are unlikely detectable

using standard graphical or descriptive techniques, such as the existence of different

subsamples of functional covariates or different regression models in the sample. In

Ferraty et al. (2013) an exploratory tool, based on cross-validation ideas, has been

developed and its nice behaviour on finite curve datasets (simulated or real) have

been highlighted. The aim of this report is to complete the understanding of this

method by studying its asymptotic behaviour.

Section 2 recalls the methodology while some specific notations are staetd in Sec-

tion 3. The method is based on the behaviour of some specific nonparametric estimate

constructed by taking in consideration some structural change. So, the main theoreti-

cal advances are divided into two parts. Firstly, in Section 4, one states as preliminary

results some asymptotic theorems (with rates) for this new estimate. Then, in Sec-

tion 5, we will validate the exploratory structural analysis tool given in Ferraty et al.

(2013). The end of the paper contains the proofs.
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2 RECALLING THE METHODOLOGY

2.1 Kernel nonparametric estimates

From now on, let {(Xi, Yi)}
n
i=0 be a sample of independent and identically distributed

(i.i.d.) pairs as (X, Y ). The key of the procedure is to rewrite the regression operator

given by r(x) = E(Y |X = x) as a finite sum of operators as follows. First of all, let

Ψ be a function such that Ψ : H×R → E , being E a beforehand fixed space, and let

{(Eυ
1 , . . . , E

υ
NE

)}υ∈Υ be an indexed family of sets such that NE is a fixed integer such

that 1 < NE <∞ and, for all υ ∈ Υ,





Eυ
s ⊂ E ∀s ∈ S, Eυ

s1
∩ Eυ

s2
= ∅ ∀s1, s2 ∈ S such that s1 6= s2,

P(Ψ(X, Y ) ∈ Eυ
s ) > 0 ∀s ∈ S, and P(Ψ(X, Y ) ∈

⋃
s∈S E

υ
s ) = 1,

where S = {1, . . . , NE}. From now on such a function Ψ will be called structural

function.

For each s ∈ S, the next definitions can be introduced Y υ
s = Y I{Ψ(X,Y )∈Eυ

s } being

I the indicator function, rυs (x) = E(Y υ
s |X = x), and ǫυs = ǫI{Ψ(X,Y )∈Eυ

s }. Thus, one

gets that Y =
∑

s∈S Y
υ
s , r(x) =

∑
s∈S r

υ
s (x), and ǫ =

∑
s∈S ǫ

υ
s . Consequently, the

regression model can be expressed as

∑

s∈S

Y υ
s =

∑

s∈S

rυs (X) +
∑

s∈S

ǫυs .

Once the regression operator r(·) is written as the sum of the operators rυs , each

component rυs can be estimated separately, using the sample {(Xi, Y
υ
i,s)}

n
i=1, where

Y υ
i,s = YiI{Ψ(Xi,Yi)∈Eυ

s } for i = 1, . . . , n. Thus, an indexed family of estimates can be
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built by means of

r̂υ(x) =
∑

s∈S

r̂υs (x), ∀υ ∈ Υ.

Specifically, for each s ∈ S, the following kernel–type estimator

r̂υs (x) =

∑n
i=1 Y

υ
i,sK(h−1

s ‖Xi − x‖)∑n
i=1K(h−1

s ‖Xi − x‖)

has been taken, where ‖ · ‖ = 〈·, ·〉1/2 is the induced norm of H, K(·) is a kernel

function, and hs = hs(n) is a sequence of strictly positive real bandwidths such that

hs ∈ Hn ⊂ R
+ for all s ∈ S. Hence, the estimator r̂υ previously introduced can be

expressed as

r̂υ(x) =
∑

s∈S

∑n
i=1 Y

υ
i,sK(h−1

s ‖Xi − x‖)∑n
i=1K(h−1

s ‖Xi − x‖)
. (2.1)

Note that, when the same bandwidth is selected for all the components r̂υs in the

estimator r̂υ, that is, when exists h ∈ Hn such that hs = h for all s ∈ S, the proposed

estimator (2.1) is just the standard kernel–type estimator given by

r̂h(x) =

∑n
i=1 YiK(h−1‖Xi − x‖)∑n
i=1K(h−1‖Xi − x‖)

, (2.2)

which has been studied in detail during the last few years (see, for instance, Ferraty

and Vieu 2006; Ferraty et al. 2007, 2010).

2.2 A special case

To fix the idea let us consider the simple situation when H = L2[a, b] and when the

hidden structure is just acting as a splitting of the data into two subsamples. This
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can be modelled by means of strutural function Ψ in which:

E = R,Υ ⊂ R and NE = 2.

In this case the indexed family of pairs {(Eυ
1 , E

υ
2 )}υ∈Υ is given by Eυ

1 = (−∞, υ] and

Eυ
2 = (υ,+∞) for each υ ∈ Υ.

2.3 The Cross-validation structural detection method

. From now on, the following notation is going to be used: ({hs}s∈S) ≡ (h1, . . . , hNE
),

(υ, {hs}s∈S) ≡ (υ, h1, . . . , hNE
), HNE

n ≡ Hn×
NE

· · · ×Hn, and Υ ×HNE

n ≡ Υ×Hn×
NE

· · ·

×Hn. The idea is to look at the predictive performance of the estimator r̂υ. At this

end, one of the most widespread techniques in the literature is a cross-the validation

method. This technique has been firstly investigated (and theoretically motivated)

by Härdle and Marron 1985 for bandwidth selection in multivariate problems and

extended to functional data in Benhenni et al. 2007 and to other parameters than

bandwidths in Ait-Säıdi et al. 2008. In this case, the aim is to find (υ, {hs}s∈S) ∈

Υ×HNE

n minimizing the criterion

CV(υ, {hs}s∈S) =
1

n

n∑

j=1

(Yj − r̂υ,(−j)(Xj))
2, (2.3)

where r̂υ,(−j)(x) =
∑

s∈S r̂
υ,(−j)
s (x) being

r̂υ,(−j)
s (x) =

∑
i 6=j Y

υ
i,sK(h−1

s ‖Xi − x‖)∑
i 6=j K(h−1

s ‖Xi − x‖)
.
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Minimizing the CV criterion defined in (2.3), the model parameters (υ, {hs}s∈S) in

the estimator (2.1) will be estimated by

(υCV, {hs,CV}s∈S) = arg min
(υ,{hs}s∈S)∈Υ×H

NE
n

CV(υ, {hs}s∈S).

This criterion serves as exploratory tool for dtecting (or not) some possible changes

in the structure in the data, as illustrated in Ferraty et al. (2013). The main aim our

paper is to study its assymptotic optimality property (see Section 5).

3 SOME NOTATIONS

3.1 The general setting.

Let K̃s,i be K̃s,i(x) = K(h−1
s ‖Xi − x‖), and introduce the following terms

r̂υs,N(x) =
1

n

n∑

i=1

Y υ
i,sK̃s,i(x)

E(K̃s,0(x))
and r̂υs,D(x) =

1

n

n∑

i=1

K̃s,i(x)

E(K̃s,0(x))
.

Hence, the estimator r̂υ can be expressed as

r̂υ(x) =
∑

s∈S

∑n
i=1 Y

υ
i,sK̃s,i(x)∑n

i=1 K̃s,i(x)
=
∑

s∈S

r̂υs,N(x)

r̂υs,D(x)
.

Analogously, adopting the following notation

r̂
υ,(−j)
s,N (x) =

1

n− 1

∑

i 6=j

Y υ
i,sK̃s,i(x)

E(K̃s,0(x))
and r̂

υ,(−j)
s,D (x) =

1

n− 1

∑

i 6=j

K̃s,i(x)

E(K̃s,0(x))
,
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then r̂υ,(−j) can be built by means of the next expression

r̂υ,(−j)(x) =
∑

s∈S

∑
i 6=j Y

υ
i,sK̃s,i(x)∑

i 6=j K̃s,i(x)
=
∑

s∈S

r̂
υ,(−j)
s,N (x)

r̂
υ,(−j)
s,D (x)

.

In the following C will denote a generic positive constant which may take on different

values even in the same formula.

3.2 A particular scenario

Suppose that

(H.1) there exists a compact set C of H such that P(X ∈ C) = 1.

Moreover, assume that E is a metric space, provided with a metric ρE(·, ·), and Ψ is

only related to the covariate X such that

(H.2) Ψ : H× R → E with Ψ(x, y) = Ψ̃(x) for all (x, y) ∈ H × R, where Ψ̃ : H → E

is continuous on C.

Note that when the change only depends on X

Y υ
s = Y I{Ψ̃(X)∈Eυ

s } and rυs (X) = E(Y υ
s |X) = E(Y |X)I{Ψ̃(X)∈Eυ

s }
= r(X)I{Ψ̃(X)∈Eυ

s }.

(3.1)

Given that Ψ̃ is continuous on a compact set C, Ψ̃ is uniformly continuous on C by

Heine–Cantor theorem. Thus, for any ε > 0, there is a δ > 0 such that

∀x1, x2 ∈ C satisfying ‖x1 − x2‖ < δ, the inequality ρE(Ψ̃(x1), Ψ̃(x2)) < ε holds.

(3.2)
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On the other hand, let {(Eυ
1 , . . . , E

υ
NE

)}υ∈Υ be an indexed family of sets such that

NE is finite and

(H.3)





Eυ
s ⊂ E ∀s ∈ S, Eυ

s1 ∩ Eυ
s2 = ∅ ∀s1, s2 ∈ S such that s1 6= s2,

P(Ψ̃(X) ∈ Eυ
s ) ≥ c0 > 0 ∀s ∈ S, and P(Ψ̃(X) ∈

⋃
s∈S E

υ
s ) = 1,

which also satisfies the following condition

(H.4) there exists D > 0 such that

D = min
s1,s2∈S,s1 6=s2

ρE(E
υ
s1
, Eυ

s2
), where ρE(E

υ
s1
, Eυ

s2
) = inf

e1∈Eυ
s1

,e2∈Eυ
s2

ρE(e1, e2).

It is important to highlight that, since Ψ̃ is uniformly continuous (see (3.2)) and

D > 0, there exists δD > 0 such that for all x1, x2 ∈ C verifying ‖x1 − x2‖ < δD,

ρE(Ψ̃(x1), Ψ̃(x2)) < D, and as result, Ψ̃(x1) and Ψ̃(x2) belongs to the same subset of

{(Eυ
1 , . . . , E

υ
NE

)}υ∈Υ. Hence,

∀x1, x2 ∈ C satisfying ‖x1 − x2‖ < δD, I{Ψ̃(x1)∈Eυ
s }

= I{Ψ̃(x2)∈Eυ
s }
, ∀s ∈ S. (3.3)

Therefore, in the situation that has just been described, if the bandwidth hs

satisfies hs < δD, (3.1) and (3.3) imply that r̂υs (x) is indeed

r̂υs (x) =

∑n
i=1 YiI{Ψ̃(Xi)∈Eυ

s }
K̃s,i(x)∑n

i=1 K̃s,i(x)
=

∑n
i=1 YiK̃s,i(x)∑n
i=1 K̃s,i(x)

I{Ψ̃(x)∈Eυ
s }

= r̂hs
(x)I{Ψ̃(x)∈Eυ

s }
,

(3.4)
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where r̂hs
is the standard kernel estimator with bandwidth hs (recall that the standard

kernel estimator is defined as

r̂h(x) =

∑n
i=1 YiK(h−1‖Xi − x‖)∑n
i=1K(h−1‖Xi − x‖)

, (3.5)

where h is the smoothing parameter or bandwidth). In addition, since there is only

a sx ∈ S such that Ψ̃(x) ∈ Eυ
sx, r̂

υ
sx(x) is the only non–null component of r̂υ(x) and,

consequently, r̂υ(x) =
∑

s∈S r̂
υ
s (x) = r̂υsx(x) = r̂hsx

(x).

Remark 3.1. In a certain sense, r̂υ(x) can be seen as a kernel–type estimate with

“local” bandwith which depends on the value Ψ̃(x): for all x ∈ C such that Ψ̃(x) ∈ Eυ
1 ,

the kernel estimate is computed using the bandwidth h1; for all x ∈ C such that

Ψ̃(x) ∈ Eυ
2 , the kernel estimate is computed using the bandwidth h2,. . .

4 Mean square convergence of kernel estimate

In the following, let x ∈ C be a fixed element, such that sx denotes the only sx ∈ S

such that Ψ̃(x) ∈ Eυ
sx. Expectation and variance of each component r̂υs of the proposed

estimator r̂υ are given in this section for the scenario described above. Hence, the

expectation and the variance of r̂υ can be obtained as a corollary.

Next, before formulating the theoretical results of this section, the following func-

tions are introduced

ψx(t) = E ((r(X)− r(x)) | ‖X − x‖ = t) , ∀t ∈ R,

and

τx,h(t) =
ϕx(ht)

ϕx(h)
, ∀t ∈ [0, 1],
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where ϕx is the small ball probability given by ϕx(h) = P(‖X − x‖ ≤ h). Moreover,

the following assumptions are also required for stating the results below:

(H.5) ϕx(0) = 0, and τx,h(t) → τx,0(t) as h→ 0 for all t ∈ [0, 1].

(H.6) r(·) and σ2
ǫ (·) are continuous in a neighborhood of x.

(H.7) ψ′
x(0) exists.

(H.8) For all s ∈ S, the sequence of bandwiths hs verifies that limn→+∞ hs = 0,

limn→+∞ nϕx(hs) = +∞, and hs < δD (with δD defined as in (3.3)).

(H.9) K(·) is a kernel supported on [0, 1] with a continuous derivative on [0, 1) such

that K(1) > 0 and K ′(t) < 0.

Theorem 4.1. Under (H.1)–(H.4), if (H.5)–(H.9) are satisfied, then for all s ∈ S

E(r̂υs (x)) =

(
r(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }
,

Var(r̂υs (x)) =

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }
,

Cov(r̂υs1(x), r̂
υ
s2(x)) = 0,

with Mx,0 = K(1)−
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1)−

∫ 1

0
K ′(t)τx,0(t)dt and Mx,2 =

K2(1)−
∫ 1

0
(K2)′(t)τx,0(t)dt.
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Corollary 4.1. Under the assumptions of Theorem 4.1, one gets

E(r̂υ(x)) = r(x) + ψ′
x(0)

Mx,0

Mx,1

∑

s∈S

hsI{Ψ̃(x)∈Eυ
s }

+
∑

s∈S

(
O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }
,

Var(r̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

∑

s∈S

1

nϕx(hs)
I{Ψ̃(x)∈Eυ

s }
+
∑

s∈S

(
o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }
,

with Mx,0 = K(1)−
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1)−

∫ 1

0
K ′(t)τx,0(t)dt and Mx,2 =

K2(1) −
∫ 1

0
(K2)′(t)τx,0(t)dt. In particular, if sx denotes the only sx ∈ S such that

Ψ̃(x) ∈ Eυ
sx, then

E(r̂υ(x)) = r(x) + ψ′
x(0)

Mx,0

Mx,1
hsx +O

(
1

nϕx(hsx)

)
+ o(hsx),

Var(r̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hsx)
+ o

(
1

nϕx(hsx)

)
.

5 ASYMPTOTIC STUDY OF CV CRITERION

5.1 Introduction

Recall the CV criterion that was proposed in Section 2 in order to choose the param-

eters involved in the proposed estimator: (υ, {hs}s∈S). The theoretical results below

are focused on showing the optimality of this data-driven selection regarding to the

mean integrated squared error given by

MISE(υ, {hs}s∈S) = E((r(X)− r̂υ(X))2),

which depends on the unknown regression operator and it is incalculable in practice.

The first optimality result ensures that (υCV, {hs,CV}s∈S) approximates the optimal
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choice in terms of MISE criterion, that is, (υCV, {hs,CV}s∈S) approximates

(υ∗, {h∗s}s∈S) = arg min
(υ,{hs}s∈S)∈Υ×H

NE
n

MISE(υ, {hs}s∈S).

5.2 Technical assumptions

First of all, it is necessary to introduce the definition of the Kolmogorov’s ζ–entropy

and certain assumptions. Given a subset S ⊂ H and ζ > 0, the Kolmogorov’s ζ–

entropy of S is defined as HS(ζ) = logNζ(S), where Nζ(S) is the minimal number of

open balls in H of radius ζ such that S is covered, that is,

Nζ(S) = min{N ∈ N : ∃(x1, . . . , xN) ∈ H× N. . . ×H such that S ⊂
N⋃

k=1

B(xk, ζ)},

with B(xk, ζ) = {x ∈ H : ‖x− xk‖ ≤ ζ}. Besides, the conditions which are required

are the following:

(H.10) ϕx(0) = 0 and τx,h(t) → τx,0(t) as h → 0 for all t ∈ [0, 1], for all x ∈ C.

Furthermore, for h > 0, 0 < c1φ(h) ≤ ϕx(h) ≤ c2φ(h) < +∞ for all x ∈ C,

being c1, c2 > 0 and φ a bijective increasing function satisfying that ∃c3 > 0

and ∃h0 > 0 such that φ′(h) < c3 for all h < h0.

(H.11) For all s ∈ S, there exist c4, c5 > 0 such that c4 n
−ν2 < φ(hs) < c5 n

−ν1, with

0 < ν1 < ν2 < 1 (thus, limn→+∞ nφ(hs) = +∞).

(H.12) There exist c6 > 0 and β > 0 such that |r(x1)− r(x2)| ≤ c6‖x1 − x2‖
β, for all

x1, x2 ∈ C.

(H.13) For all p ≥ 1, E(|Y |p |X = x) ≤ c7 < +∞ for all x ∈ C.
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(H.14) There exists c8 > 0 such that E(Y 2|X = x) = σ(x) ≥ c8, with σ continuous on

C.

(H.15) K(·) is an asymmetric, bounded and Lipschitz kernel supported on [0, 1] with

a continuous derivative on [0, 1) such that K(1) > 0 and K ′(t) < 0 for all

t ∈ [0, 1).

(H.16) For all s ∈ S, the sequence of bandwiths hs verifies that limn→+∞ hs = 0 and

hs < δD (with δD defined as in (3.3)).

(H.17) For n large enough, (log n)2/(nφ(hs)) < HC(logn/n) < (nφ(hs))/ logn, for all

s ∈ S (note that this fact implies that limn→+∞HC(log n/n)/(nφ(hs)) = 0 and

limn→+∞ logn/(nφ(hs)) = 0). Furthermore, the Kolmogorov’s entropy of C

verifies for some c9 > 1 that

+∞∑

n=1

exp

{
(1− c9)HC

(
logn

n

)}
< +∞.

(H.18) card(Υ×HNE

n ) = nα with α > 0.

5.3 Asymptotic optimality of the cross-validated parameters

The first result is the main one of this paper since it states the asymptotic optimality,

with respect to Mean Square Error, of the parameters obtained by the cross-validation

procedure.

Theorem 5.1. Under (H.1)–(H.4) and (H.10)–(H.18), one gets

MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)
→ 1 a.s.
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5.4 Additional asymptotics

In addition, if ({h∗s(υ)}s∈S) is defined as

({h∗s(υ)}s∈S) = arg min
({hs}s∈S)∈H

NE
n

MISE(υ, {hs}s∈S),

then Theorem 5.2 indicates that ({h∗s(υ)}s∈S) can be approximated by ({hs,CV(υ)}s∈S),

whereas Theorem 5.3 shows that both CV and MISE criteria have similar profile.

Theorem 5.2. Under hypotheses of Theorem 5.1, one has

MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)
→ 1 a.s.

for each υ ∈ Υ.

Theorem 5.3. Under hypotheses of Theorem 5.1, one has

sup
υ∈Υ

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣→ 0 a.s.

where σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j .

6 PROOFS OF RESULTS OF SECTION 4

6.1 Proof of Theorem 4.1

As commented in (3.4), r̂υs (x) = r̂hs
(x)I{Ψ̃(x)∈Eυ

s }
, where r̂hs

is the standard kernel

estimator (2.2). The required assumptions in this theorem guarantee that Theorem 1

by Ferraty et al. (2007) can be applied, which stated the following asymptotics for
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the standard kernel estimator

E(r̂hs
(x)) = r(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs), (6.1)

and

Var(r̂hs
(x)) = σ2

ǫ (x)
Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

)
, (6.2)

for all s ∈ S, withMx,0 = K(1)−
∫ 1

0
(tK(t))′τx,0(t)dt, Mx,1 = K(1)−

∫ 1

0
K ′(t)τx,0(t)dt

and Mx,2 = K2(1) −
∫ 1

0
(K2)′(t)τx,0(t)dt. Therefore, the expectation of r̂υs (x) comes

from (6.1) as follows

E(r̂υs (x)) = E

(
r̂hs

(x)I{Ψ̃(x)∈Eυ
s }

)
= E(r̂hs

(x))I{Ψ̃(x)∈Eυ
s }

=

(
r(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }
,

whereas the expression for variance is obtained using (6.2)

Var(r̂υs (x)) = Var(r̂hs
(x)I{Ψ̃(x)∈Eυ

s }
) = Var(r̂hs

(x))
(
I{Ψ̃(x)∈Eυ

s }

)2

=

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }
.

Furthermore, for all s1, s2 ∈ S such that s1 6= s2, one has

Cov(r̂υs1(x), r̂
υ
s2(x)) = Cov

(
r̂hs1

(x)I{Ψ̃(x)∈Eυ
s1

}, r̂hs2
(x)I{Ψ̃(x)∈Eυ

s2
}

)

= Cov(r̂hs1
(x), r̂hs2

(x))I{Ψ̃(x)∈Eυ
s1

}I{Ψ̃(x)∈Eυ
s2

} = Cov(r̂hs1
(x), r̂hs2

(x))I{Ψ̃(x)∈Eυ
s1

∩Eυ
s2

} = 0,

since Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2 due to (H.3).
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6.2 Proof of Corollary 4.1

Given that r̂υ(x) =
∑

s∈S r̂
υ
s (x), one has that E(r̂υ(x)) =

∑
s∈S E(r̂

υ
s (x)) and

Var(r̂υ(x)) =
∑

s∈S

Var(r̂υs (x)) +
∑

s1∈S

∑

s1 6=s2

Cov(r̂υs1(x), r̂
υ
s2
(x)).

Hence, applying Theorem 4.1, one has that

E(r̂υ(x)) =
∑

s∈S

E(r̂υs (x))

=
∑

s∈S

(
r(x) + ψ′

x(0)
Mx,0

Mx,1
hs +O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }

= r(x) + ψ′
x(0)

Mx,0

Mx,1

∑

s∈S

hsI{Ψ̃(x)∈Eυ
s }

+
∑

s∈S

(
O

(
1

nϕx(hs)

)
+ o(hs)

)
I{Ψ̃(x)∈Eυ

s }
,

and for its variance one gets

Var(r̂υ(x)) =
∑

s∈S

Var(r̂υs (x)) +
∑

s1∈S

∑

s1 6=s2

Cov(r̂υs1(x), r̂
υ
s2(x))

=
∑

s∈S

(
σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hs)
+ o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }

= σ2
ǫ (x)

Mx,2

M2
x,1

∑

s∈S

1

nϕx(hs)
I{Ψ̃(x)∈Eυ

s }
+
∑

s∈S

(
o

(
1

nϕx(hs)

))
I{Ψ̃(x)∈Eυ

s }
.

Furthermore, if sx denotes the only sx ∈ S such that Ψ̃(x) ∈ Eυ
sx , then

E(r̂υ(x)) = r(x) + ψ′
x(0)

Mx,0

Mx,1
hsx +O

(
1

nϕx(hsx)

)
+ o(hsx),

and

Var(r̂υ(x)) = σ2
ǫ (x)

Mx,2

M2
x,1

1

nϕx(hsx)
+ o

(
1

nϕx(hsx)

)
.

16



7 PROOFS OF RESULTS OF SECTION 5

7.1 Proof of Theorem 5.1

The theorem will be proven by showing that

∣∣∣∣
MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣→ 0 a.s.

Let σ̂2
ǫ be defined as σ̂2

ǫ = n−1
∑n

j=1 ǫ
2
j , and note that MISE(υCV, {hs,CV}s∈S) ≥

MISE(υ∗, {h∗s}s∈S) and CV(υ∗, {h∗s}s∈S) ≥ CV(υCV, {hs,CV}s∈S). Thus, one has that

|MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)| ≤ | − CV(υCV, {hs,CV}s∈S)

+ MISE(υCV, {hs,CV}s∈S) + σ̂2
ǫ + CV(υ∗, {h∗s}s∈S)−MISE(υ∗, {h∗s}s∈S)− σ̂2

ǫ |.

As a result, one gets

∣∣∣∣
MISE(υCV, {hs,CV}s∈S)−MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

≤

∣∣∣∣
CV(υCV, {hs,CV}s∈S)−MISE(υCV, {hs,CV}s∈S)− σ̂2

ǫ

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

+

∣∣∣∣
CV(υ∗, {h∗s}s∈S)−MISE(υ∗, {h∗s}s∈S)− σ̂2

ǫ

MISE(υ∗, {h∗s}s∈S)

∣∣∣∣
∣∣∣∣

MISE(υ∗, {h∗s}s∈S)

MISE(υCV, {hs,CV}s∈S)

∣∣∣∣

≤ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣,

where the last inequality is true since MISE(υ∗, {h∗s}s∈S) ≤ MISE(υCV, {hs,CV}s∈S).

Hence, the convergence is deduced from Lemma 7.1.

Remark 7.1. Ait-Säıdi et al. (2008) showed the asymptotic optimality of the cross–

validation techniques in the single–functional index model. The procedure and rea-

sonings which they proposed in their paper were mimicked in the proof of the technical

lemmas which are necessary to get Theorem 5.1 and obtain the theoretical properties
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of the cross–validation method.

7.2 Proof of Theorem 5.2

This theorem can be proven mimicking the proof of Theorem 5.1 as follows. Given that

MISE(υ, {hs,CV(υ)}s∈S) ≥ MISE(υ, {h∗s(υ)}s∈S) and CV(υ, {h∗s(υ)}s∈S) ≥ CV(υ, {hs,CV(υ)}s∈S),

it can be shown that

|MISE(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)| ≤ | − CV(υ, {hs,CV(υ)}s∈S)

+ MISE(υ, {hs,CV(υ)}s∈S) + σ̂2
ǫ + CV(υ, {h∗s(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ |

with σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j as usual. Then

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

≤

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

+

∣∣∣∣
CV(υ, {h∗s(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣
∣∣∣∣

MISE(υ, {h∗s(υ)}s∈S)

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

≤ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣.

Consequently, the theorem is proven due to Lemma 7.1.

7.3 Proof of Theorem 5.3

In this case, one has that

|CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2
ǫ | = |MISE(υ, {hs,CV(υ)}s∈S)

−MISE(υ, {h∗s(υ)}s∈S) + CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2
ǫ |.
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Therefore,

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {h∗s(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣

≤

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)
− 1

∣∣∣∣

+

∣∣∣∣
CV(υ, {hs,CV(υ)}s∈S)−MISE(υ, {hs,CV(υ)}s∈S)− σ̂2

ǫ

MISE(υ, {hs,CV(υ)}s∈S)

∣∣∣∣

·

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣

≤

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)
− 1

∣∣∣∣

+ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣

·

∣∣∣∣
MISE(υ, {hs,CV(υ)}s∈S)

MISE(υ, {h∗s(υ)}s∈S)

∣∣∣∣ .

Hence, Theorem 5.2 and Lemma 7.1 allow to finish the proof.

7.4 Technical lemmas

7.4.1 Formulation and Proof of Lemma 7.1

The main aim of the next lemma is to allow to show the optimality of the CV

procedure with respect to the MISE criterion. For proving this lemma, one needs

to introduce some other quadratic distances such as the average squared error

ASE(υ, {hs}s∈S) =
1

n

n∑

j=1

(r(Xj)− r̂υ(Xj))
2 (7.1)

and the following two terms

ÃSE(υ, {hs}s∈S) =
1

n

n∑

j=1

(r(Xj)− r̂υ,(−j)(Xj))
2, and (7.2)
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CT(υ, {hs}s∈S) =
1

n

n∑

j=1

ǫj(r̂
υ,(−j)(Xj)− r(Xj)). (7.3)

Lemma 7.1. Under hypotheses of Theorem 5.1,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where σ̂2
ǫ = n−1

∑n
j=1 ǫ

2
j .

Proof. First of all, note that the CV criterion can be expressed as

CV(υ, {hs}s∈S) =
1

n

n∑

j=1

(Yj − r̂υ,(−j)(Xj))
2 =

1

n

n∑

j=1

((r(Xj)− r̂υ,(−j)(Xj)) + ǫj)
2

=
1

n

n∑

j=1

(r(Xj)− r̂υ,(−j)(Xj))
2 +

2

n

n∑

j=1

(r(Xj)− r̂υ,(−j)(Xj))ǫj +
1

n

n∑

j=1

ǫ2j

= ÃSE(υ, {hs}s∈S)− 2CT(υ, {hs}s∈S) + σ̂2
ǫ

= ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S) + ASE(υ, {hs}s∈S)− 2CT(υ, {hs}s∈S) + σ̂2
ǫ .

Therefore, one has

|CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2
ǫ | ≤ |ÃSE(υ, {hs}s∈S)− ASE(υ, {hs}s∈S)|

+ |ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)|+ 2|CT(υ, {hs}s∈S)|.
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Taking into account this fact, one gets

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CV(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)− σ̂2

ǫ

MISE(υ, {hs}s∈S)

∣∣∣∣

≤ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE(υ, {hs}s∈S)− ASE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣

+ sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣

+ 2 sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CT(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣.

Then, the theorem is proven due to Lemma 7.2, Lemma 7.7 and Lemma 7.9.

7.4.2 Formulation and Proof of Lemma 7.2

Recall that C will denote a generic positive constant which may take on different

values even in the same formula.

Lemma 7.2. Under hypotheses of Theorem 5.1,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE(υ, {hs}s∈S)−ASE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣→ 0 a.s.

where ÃSE(υ, {hs}s∈S) and ASE(υ, {hs}s∈S) are defined at (7.2) and (7.1), respec-

tively.

Proof. This proof is analogous to the proof of Lemma 3 by Ait-Säıdi et al. (2008).
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By Lemma 7.3, the following expression for ASE(υ, {hs}s∈S) can be obtained

ASE(υ, {hs}s∈S) =
1

n

n∑

j=1

(r(Xj)− r̂υ(Xj))
2 =

1

n

n∑

j=1

(
∑

s∈S

(rυs (Xj)− r̂υs (Xj))

)2

=
1

n

n∑

j=1

(
∑

s∈S

(r̂υs,D(Xj)(r
υ
s (Xj)− r̂υs (Xj)) + (1− r̂υs,D(Xj))(r

υ
s (Xj)− r̂υs (Xj)))

)2

=
1

n

n∑

j=1

(
∑

s∈S

(r̂υs,D(Xj)r
υ
s (Xj)− r̂υs,N(Xj))

)2

+ oa.co.(ASE(υ, {hs}s∈S))

= ASE∗(υ, {hs}s∈S) + oa.co.(ASE(υ, {hs}s∈S)),

where ASE∗(υ, {hs}s∈S) = n−1
∑n

j=1 (
∑

s∈S (r̂
υ
s,D(Xj)r

υ
s (Xj)− r̂υs,N(Xj)))

2. Analo-

gously, it can be seen that

ÃSE(υ, {hs}s∈S) = ÃSE
∗
(υ, {hs}s∈S) + oa.co.(ÃSE(υ, {hs}s∈S)),

with ÃSE
∗
(υ, {hs}s∈S) = n−1

∑n
j=1 (

∑
s∈S (r̂

υ,(−j)
s,D (Xj)r

υ
s (Xj)− r̂

υ,(−j)
s,N (Xj)))

2. In or-

der to finish the proof of the lemma, the equivalence between ASE∗(υ, {hs}s∈S) and

ÃSE
∗
(υ, {hs}s∈S) can be found by means of a similar procedure to that given by

Härdle and Marron (1985) as follows.

First of all, note that

r̂
υ,(−j)
s,N (Xj) =

1

n− 1

∑

i 6=j

Y υ
i,sK̃s,i(Xj)

E(K̃s,0(Xj))
=

n

n− 1
r̂υs,N(Xj)−

1

n− 1

Y υ
j,sK(0)

E(K̃s,0(Xj))
,

r̂
υ,(−j)
s,D (Xj) =

1

n− 1

∑

i 6=j

K̃s,i(Xj)

E(K̃s,0(Xj))
=

n

n− 1
r̂υs,D(Xj)−

1

n− 1

K(0)

E(K̃s,0(Xj))
.
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Hence, one has that

ÃSE
∗
(υ, {hs}s∈S) =

1

n

n∑

j=1

(
∑

s∈S

(r̂
υ,(−j)
s,D (Xj)r

υ
s (Xj)− r̂

υ,(−j)
s,N (Xj))

)2

=
1

n

n∑

j=1

(
n

n− 1

∑

s∈S

(r̂υs,D(Xj)r
υ
s (Xj)− r̂υs,N(Xj)) +

K(0)

n− 1

∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)2

=
n2

(n− 1)2
ASE∗(υ, {hs}s∈S)

+ 2
n

(n− 1)2
K(0)

1

n

n∑

j=1

(
∑

s∈S

(r̂υs,D(Xj)r
υ
s (Xj)− r̂υs,N(Xj))

)

·

(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)
+

1

(n− 1)2
K2(0)

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)2

,

and, consequently,

|ÃSE
∗
(υ, {hs}s∈S)− ASE∗(υ, {hs}s∈S)| ≤

2n− 1

(n− 1)2
ASE∗(υ, {hs}s∈S)

+ 2
n

(n− 1)2
K(0)

∣∣∣∣∣
1

n

n∑

j=1

(
∑

s∈S

(r̂υs,D(Xj)r
υ
s (Xj)− r̂υs,N(Xj))

)(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)∣∣∣∣∣

+
1

(n− 1)2
K2(0)

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)2

.

(7.4)

Using the Cauchy–Schwarz inequality, it can be found that

∣∣∣∣∣
1

n

n∑

j=1

(
∑

s∈S

(r̂υs,D(Xj)r
υ
s (Xj)− r̂υs,N(Xj))

)(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)∣∣∣∣∣

≤ (ASE∗(υ, {hs}s∈S))
1/2


 1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)2



1/2

.

(7.5)
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In addition, the SLLN ensures that

1

n

n∑

j=1

(
∑

s∈S

Y υ
j,s − rυs (Xj)

E(K̃s,0(Xj))

)2

→ E



(
∑

s∈S

Y υ
s − rυs (X)

E(K̃s,0(X))

)2

 a.s., (7.6)

whereas Lemma 7.4 states that

E



(
∑

s∈S

Y υ
s − rυs (X)

E(K̃s,0(X))

)2

 ≤ C

(
∑

s∈S

1

φ(hs)

)2

. (7.7)

Therefore, (7.4), (7.5), (7.6) and (7.7) ensure that

|ÃSE
∗
(υ, {hs}s∈S)−ASE∗(υ, {hs}s∈S)| ≤

2n− 1

(n− 1)2
ASE∗(υ, {hs}s∈S)

+ 2C1/2 n

(n− 1)2
K(0)(ASE∗(υ, {hs}s∈S))

1/2

(
∑

s∈S

1

φ(hs)

)
(1 + oa.s.(1))

+ C
1

(n− 1)2
K2(0)

(
∑

s∈S

1

φ(hs)

)2

(1 + oa.s.(1)).

By the previous expression and Lemma 7.6, it can be found that

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣
ÃSE

∗
(υ, {hs}s∈S)−ASE∗(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣∣→ 0 a.s.

which leads to Lemma 7.2.

7.4.3 Formulation and Proof of Lemma 7.3

For the lemma below, it is necessary to introduce the definition of the almost com-

pletely convergence. Let {Zn}n∈N be a sequence of real random variables, and let

{un}n∈N be a deterministic sequence of positive real numbers. Then Zn = Oa.co.(un)

if and only if ∃ε > 0 such that
∑

n∈N P(|Zn| > εun) < ∞. In addition, note that
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Borel–Cantelli Lemma ensures that if Zn = Oa.co.(un) then Zn = Oa.s.(un).

Lemma 7.3. Under (H.1), (H.10), (H.15) and (H.17), one gets

sup
x∈C

|r̂υs,D(x)− 1| = Oa.co.

(√
HC(log n/n)

nφ(hs)

)
, ∀s ∈ S,

and

sup
x∈C

|r̂
υ,(−j)
s,D (x)− 1| = Oa.co.

(√
HC(logn/n)

nφ(hs)

)
, ∀s ∈ S.

Proof. Ferraty et al. (2010) studied rates of uniform consistency for a generalized

nonparametric regression context in terms of almost completely convergence. In par-

ticular, the first statement in the lemma corresponds to Lemma 8 in Ferraty et al.

(2010). Furthermore, the result still hold if r̂υs,D is replaced with r̂
υ,(−j)
s,D , since the

second statement can be seen as a corollary of the first one.

7.4.4 Formulation and Proof of Lemma 7.4

Recall that C will denote a generic positive constant which may take on different

values even in the same formula.

Lemma 7.4. Under hypotheses of Theorem 5.1,

(i) for p = 1, 2, . . ., there exists c10,p > 0 such that

E

(∣∣∣∣∣
∑

s∈S

Y υ
s − rυs (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
≤ c10,p

(
∑

s∈S

1

φ(hs)

)p

.

(ii) for p = 1, 2, . . ., there exists c11,p > 0 such that

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s − rυs (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ c11,p

(
∑

s∈S

1

φ(hs)

)p

a.s.
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(iii) for p = 1, 2, . . ., there exists c12,p > 0 such that for all i 6= j

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ c12,p

(
∑

s∈S

1

φ(hs)

)p−1

a.s.

(iv) there exists c13 > 0 such that for all i 6= j

E



(
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi


 ≥ c13

∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

φ(hs)
a.s.

Proof. Proof of item (i). First of all, note that (3.1) ensures that

Y υ
s − rυs (X) = Y I{Ψ̃(X)∈Eυ

s }
− r(X)I{Ψ̃(X)∈Eυ

s }
= (Y − r(X))I{Ψ̃(X)∈Eυ

s } = ǫI{Ψ̃(X)∈Eυ
s }
.

(7.8)

Using (7.8), and the fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, one gets

E

(∣∣∣∣∣
∑

s∈S

Y υ
s − rυs (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
= E

(
|ǫ|p

∣∣∣∣∣
∑

s∈S

I{Ψ̃(X)∈Eυ
s }

E(K̃s,0(X))

∣∣∣∣∣

p)

= E

(
E(|ǫ|p|X)

∑

s∈S

I{Ψ̃(X)∈Eυ
s }

(E(E(K̃s,0(X)|X))p

)
.

Then, by assumption (H.13) and Lemma 7.5,

E

(∣∣∣∣∣
∑

s∈S

Y υ
s − rυs (X)

E(K̃s,0(X))

∣∣∣∣∣

p)
≤ CE

(
∑

s∈S

I{Ψ̃(X)∈Eυ
s }

(φ(hs))p

)
= C

∑

s∈S

E(I{Ψ̃(X)∈Eυ
s })

(φ(hs))p

= C
∑

s∈S

P(Ψ̃(X) ∈ Eυ
s )

(φ(hs))p
≤ C

∑

s∈S

1

(φ(hs))p
≤ C

(
∑

s∈S

1

φ(hs)

)p

.

Proof of item (ii). By (3.1), (H.13) and the fact that Eυ
s1
∩ Eυ

s2
= ∅ for all s1 6= s2,
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one has

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s − rυs (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
= E

(
|ǫi|

p

(
∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }
K(0)

E(K̃s,0(Xi))

)p

|Xi

)

≤ CE(|ǫi|
p|Xi)

(
∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

E(K̃s,0(Xi))

)p

≤ C
∑

s∈S

1

(E(K̃s,0(Xi)))p

= C
∑

s∈S

1

(E(E(K̃s,0(Xi)|Xi)))p
.

Thus, Lemma 7.5 leads to

E

(∣∣∣∣∣
∑

s∈S

(Y υ
i,s − rυs (Xi))K̃s,i(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ C

∑

s∈S

1

(φ(hs))p
≤ C

(
∑

s∈S

1

φ(hs)

)p

.

Proof of item (iii). If i 6= j and ‖Xi − Xj‖ ≤ hs, then (3.1), (3.3), (7.8) and

assumption (H.12) lead to

|Y υ
j,s − rυs (Xi)| ≤ |Y υ

j,s − rυs (Xj)|+ |rυs (Xj)− rυs (Xi)|

= |ǫj|I{Ψ̃(Xj)∈Eυ
s }

+ |r(Xj)− r(Xi)|I{Ψ̃(Xj)∈Eυ
s }

≤ (|ǫj |+ Chβs )I{Ψ̃(Xj)∈Eυ
s }
.

(7.9)

Using (7.9), (H.13), (H.16) and the fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, it can be

27



shown that

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)

≤ E

(
(|ǫj|+ C)p

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }
K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)

≤ E

(
E((|ǫj |+ C)p|Xj)

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }
K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)

≤ CE

((
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }
K̃s,j(Xi)

E(K̃s,0(Xi))

)p

|Xi

)
≤ CE

(
∑

s∈S

K̃p
s,j(Xi)

(E(K̃s,0(Xi)))p
|Xi

)

= C
∑

s∈S

E(K̃p
s,j(Xi)|Xi)

(E(K̃s,0(Xi)))p
= C

∑

s∈S

E(K̃p
s,j(Xi)|Xi)

(E(E(K̃s,0(Xi)|Xi)))p
.

Hence, using Lemma 7.5,

E

(∣∣∣∣∣
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

∣∣∣∣∣

p

|Xi

)
≤ C

∑

s∈S

φ(hs)

(φ(hs))p
= C

∑

s∈S

1

(φ(hs))p−1

≤ C

(
∑

s∈S

1

φ(hs)

)p−1

.

Proof of item (iv). Using the reasonings presented in (7.9), (3.3), the fact that
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Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, and (H.14), then

E



(
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi




= E

(
∑

s∈S

(ǫj + (r(Xj)− r(Xi)))
2
I{Ψ̃(Xi)∈Eυ

s }
K̃2

s,j(Xi)

(E(K̃s,0(Xi)))2
|Xi

)

=
∑

s∈S

E(E((ǫj + (r(Xj)− r(Xi)))
2|Xj)K̃

2
s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ

s }

(E(K̃s,0(Xi)))2

=
∑

s∈S

E((E(ǫ2j |Xj) + (r(Xj)− r(Xi))
2)K̃2

s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ
s }

(E(K̃s,0(Xi)))2

≥ C
∑

s∈S

E(K̃2
s,j(Xi)|Xi)I{Ψ̃(Xi)∈Eυ

s }

(E(E(K̃s,0(Xi)|Xi)))2
.

Therefore, using Lemma 7.5

E



(
∑

s∈S

(Y υ
j,s − rυs (Xi))K̃s,j(Xi)

E(K̃s,0(Xi))

)2

|Xi


 ≥ C

∑

s∈S

I{Ψ̃(Xi)∈Eυ
s }

φ(hs)
.

7.4.5 Formulation and Proof of Lemma 7.5

Lemma 7.5. Under (H.1), (H.10) and (H.15), for all γ > 0 and for all i 6= j, there

exist c14,γ, c15,γ > 0 such that

c14,γφ(hs) ≤ E(K̃γ
s,j(Xi)|Xi) ≤ c15,γφ(hs) a.s., ∀s ∈ S.

Proof. Note that (H.15) ensures that there exist c, c′ > 0 such that

cI{t∈[0,1]} ≤ K(t) ≤ c′I{t∈[0,1]}, ∀t ∈ [0, 1]. (7.10)
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For all γ > 0, using (7.10) with t = h−1
s ‖Xj −Xi‖, one gets

cγI{‖Xj−Xi‖≤hs} ≤ K̃γ
s,j(Xi) ≤ (c′)γI{‖Xj−Xi‖≤hs}.

Therefore, applying the conditional expectation, one has

cγP(‖Xj −Xi‖ ≤ hs|Xi) ≤ E(K̃γ
s,j(Xi)|Xi) ≤ (c′)γP(‖Xj −Xi‖ ≤ hs|Xi),

and, consequently,

cγc1φ(hs) ≤ E(K̃γ
s,j(Xi)|Xi) ≤ (c′)γc2φ(hs),

since (H.10) holds. Hence, the proof is finished by taking c14,γ = cγc1 and c15,γ =

(c′)γc2.

7.4.6 Formulation and Proof of Lemma 7.6

Recall that C will denote a generic positive constant which may take on different

values even in the same formula.

Lemma 7.6. Under hypotheses of Theorem 5.1,

MISE(υ, {hs}s∈S) ≥ c16
∑

s∈S

1

nφ(hs)
.

Proof. This proof is analogous to the proof of Lemma 1 by Ait-Säıdi et al. (2008).

For each (υ, {hs}s∈S) ∈ Υ×HNE

n , one gets

MISE(υ, {hs}s∈S) = E((r(X)− r̂υ(X))2) = E(E((r(X)− r̂υ(X))2|X))

= E((r(X)− E(r̂υ(X)|X))2) + E(Var(r̂υ(X)|X)) ≥ E(Var(r̂υ(X)|X)).
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Note that hypotheses of Theorem 5.1 ensure that Corollary 4.1 can be applied. Thus,

Corollary 4.1, assumptions (H.3), (H.10), (H.14) and (H.15) lead to

E(Var(r̂υ(X)|X)) ≥ C
∑

s∈S

1

nφ(hs)
E

(
I{Ψ̃(X)∈Eυ

s }

)
= C

∑

s∈S

1

nφ(hs)
P(Ψ̃(X) ∈ Eυ

s )

≥ C
∑

s∈S

1

nφ(hs)
,

which completes the proof of Lemma 7.6.

7.4.7 Formulation and Proof of Lemma 7.7

Lemma 7.7. Under hypotheses of Theorem 5.1,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE(υ, {hs}s∈S)−MISE(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where ASE(υ, {hs}s∈S) is defined at (7.1).

Proof. This lemma is analogous to Lemma 2 by Ait-Säıdi et al. (2008). Recall that

it was shown in the proof of Lemma 7.2 that

ASE(υ, {hs}s∈S) = ASE∗(υ, {hs}s∈S) + oa.co.(ASE(υ, {hs}s∈S)),

with ASE∗(υ, {hs}s∈S) = n−1
∑n

j=1 (
∑

s∈S (r̂
υ
s,D(Xj)r

υ
s (Xj)− r̂υs,N(Xj)))

2. Similar cal-
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culations and Lemma 7.3 allow to obtain the following expression for MISE

MISE(υ, {hs}s∈S) = E((r(X)− r̂υ(X))2) = E



(
∑

s∈S

(rυs (X)− r̂υs (X))

)2



= E



(
∑

s∈S

(r̂υs,D(X)(rυs (X)− r̂υs (X)) + (1− r̂υs,D(X))(rυs (X)− r̂υs (X)))

)2



= E



(
∑

s∈S

(r̂υs,D(X)rυs (X)− r̂υs,N(X))

)2

+ oa.co.(MISE(υ, {hs}s∈S))

= MISE∗(υ, {hs}s∈S) + oa.co.(MISE(υ, {hs}s∈S)),

where MISE∗(υ, {hs}s∈S) = E

((∑
s∈S (r̂

υ
s,D(X)rυs (X)− r̂υs,N(X))

)2)
. Therefore, the

lemma can be proven by showing the equivalence between ASE∗(υ, {hs}s∈S) and

MISE∗(υ, {hs}s∈S). Specifically, it is enough to show that

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
ASE∗(υ, {hs}s∈S)−MISE∗(υ, {hs}s∈S)

MISE∗(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s. (7.11)

For that, first of all, assume that s0 ∈ S is selected, and υ ∈ Υ and hs ∈ Hn for all

s ∈ S with s 6= s0 are fixed. In addition, consider λ ∈ Λ = {1/φ(hs0)+
∑

s 6=s0
1/φ(hs) :

hs0 ∈ Hn}. Then, a delta sequence estimator ĝλ : H → R can be defined as follows

ĝλ(x) =
1

n

n∑

i=1

δλ(x,Xi, Yi),

where

δλ(x,Xi, Yi) =
(rυs0(x)− Y υ

i,s0
)K(f(λ)−1‖Xi − x‖)

E(K(f(λ)−1‖X0 − x‖))
+
∑

s 6=s0

(rυs (x)− Y υ
i,s)K̃s,i(x)

E(K̃s,0(x))
,

with f(λ) = φ−1((λ− (
∑

s 6=s0
1/φ(hs)))

−1), being φ−1 the inverse function of φ (note
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that (H.10) ensures that φ is a bijective function, so there is a unique inverse function

φ−1 which is also a bijection). Given that f(λ) = hs0 , in fact, δλ(x,Xi, Yi) is

δλ(x,Xi, Yi) =
∑

s∈S

(rυs (x)− Y υ
i,s)K̃s,i(x)

E(K̃s,0(x))
. (7.12)

In this situation, ĝλ(x) =
∑

s∈S (r̂
υ
s,D(x)r

υ
s (x)− r̂υs,N(x)), and it may be considered

that ĝλ estimates the operator g : H → R defined as g(x) = 0 for all x ∈ H. Besides,

computing the mean integrated squared error and the average squared error for ĝλ

(denoted by MISEĝ(λ) and ASEĝ(λ), respectively), one has

MISEĝ(λ) = E((g(X)− ĝλ(X))2) = E((ĝλ(X))2) = MISE∗(υ, {hs}s∈S), (7.13)

and

ASEĝ(λ) =
1

n

n∑

j=1

(g(Xj)− ĝλ(Xj))
2 =

1

n

n∑

j=1

(ĝλ(Xj))
2 = ASE∗(υ, {hs}s∈S). (7.14)

On the other hand, (H.11), (H.18) and Lemma 7.8 indicate that the assumptions

of the theoretical results for delta sequence estimators in Marron and Härdle (1986)

hold. Thus, applying Theorem 2 by Marron and Härdle (1986), one gets

sup
λ∈Λ

∣∣∣∣
ASEĝ(λ)−MISEĝ(λ)

MISEĝ(λ)

∣∣∣∣→ 0 a.s. (7.15)

Taking into account (7.13) and (7.14), it can be seen

∣∣∣∣
ASE∗(υ, {hs}s∈S)−MISE∗(υ, {hs}s∈S)

MISE∗(υ, {hs}s∈S)

∣∣∣∣ ≤ sup
λ∈Λ

∣∣∣∣
ASEĝ(λ)−MISEĝ(λ)

MISEĝ(λ)

∣∣∣∣.

Hence, (7.11) is verified due to (7.15), and consequently the proof of the lemma is
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complete.

7.4.8 Formulation and Proof of Lemma 7.8

Recall that C will denote a generic positive constant which may take on different

values even in the same formula.

Lemma 7.8. Under hypotheses of Theorem 5.1,

(i) ∀p = 1, 2, . . ., ∀q = 2, . . . , 2p,

∣∣∣∣∣E
(

q∏

i=1

q∏

j=1

(δλ(Xi, Xj, Yj))
aij

)∣∣∣∣∣ ≤ c17,p

(
∑

s∈S

1

φ(hs)

)p−q/2

,

where aij ∈ {0, . . . , p},
∑q

i=1

∑q
j=1 aij = p, and, for each i ∈ {1, . . . , q}, there

exists j 6= i such that either aij 6= 0 or aji 6= 0,

(ii)
∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2)∣∣ ≤ c18
∑

s∈S
1

φ(hs)
,

(iii) |E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ c19,

(iv) E
(
(δλ(X1, X2, Y2))

2) ≥ c20
∑

s∈S
1

φ(hs)
,

(v) ∀p = 1, 2, . . ., E
(
(E (δλ(X1, X2, Y2)|X1))

2p) ≤ c21,p,

(vi) ∀p = 1, 2, . . ., E
(
(δλ(X1, X1, Y1))

2p) ≤ c22,p

(∑
s∈S

1
φ(hs)

)2p
,

where the operator δλ is defined at (7.12).

Proof. This lemma is analogous to Lemma 6 by Ait-Säıdi et al. (2008).

Proof of item (i). By Jensen’s inequality, (7.9), the assumption (H.13) and the
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fact that Eυ
s1 ∩ Eυ

s2 = ∅ for all s1 6= s2, it can be seen that

∣∣∣∣∣E
(

q∏

i=1

q∏

j=1

(δλ(Xi, Xj , Yj))
aij

)∣∣∣∣∣ ≤ E

(
q∏

i=1

q∏

j=1

|δλ(Xi, Xj, Yj)|
aij

)

≤ E

(
q∏

i=1

q∏

j=1

(
∑

s∈S

|rυs (Xi)− Y υ
j,s|K̃s,j(Xi)

E(K̃s,0(Xi))

)aij)

≤ E

(
q∏

i=1

q∏

j=1

(
∑

s∈S

(|ǫj |+ C)I{Ψ̃(Xj)∈Eυ
s }
K̃s,j(Xi)

E(K̃s,0(Xi))

)aij)

≤ CE

(
q∏

i=1

q∏

j=1

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }
K̃s,j(Xi)

E(K̃s,0(Xi))

)aij)

≤ CE

(
q∏

i=1

q∏

j=1

(
∑

s∈S

I{Ψ̃(Xj)∈Eυ
s }
K̃

aij
s,j (Xi)

(E(K̃s,0(Xi)))aij

))

≤ CE

(
∑

s∈S

(
q∏

i=1

q∏

j=1

I{Ψ̃(Xj)∈Eυ
s }
K̃

aij
s,j (Xi)

(E(K̃s,0(Xi)))aij

))

≤ C
∑

s∈S

E

(
q∏

i=1

q∏

j=1

K̃
aij
s,j (Xi)

(E(E(K̃s,0(Xi)|Xi)))aij

)
.

(7.16)

On the other hand, Lemma 7.5 guarantees that

E

(
q∏

i=1

q∏

j=1

K̃
aij
s,j (Xi)

(E(K̃s,0(Xi)))aij

)
≤ C

1

(φ(hs))p
E

(
q∏

i=1

q∏

j=1

K̃
aij
s,j (Xi)

)
.

Besides, the restrictions on the definition of the pairs (i, j) and aij imply that there

are q/2 separated pairs (i, j) with aij 6= 0. This fact and Lemma 7.5 allow to deduce

E

(
q∏

i=1

q∏

j=1

K̃
aij
s,j (Xi)

(E(K̃s,0(Xi)))aij

)
≤ C

1

(φ(hs))p
(φ(hs))

q/2 = C
1

(φ(hs))p−q/2
. (7.17)
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Consequently, by (7.16) and (7.17), one has,

∣∣∣∣∣E
(

q∏

i=1

q∏

j=1

(δλ(Xi, Xj, Yj))
aij

)∣∣∣∣∣ ≤ C
∑

s∈S

1

(φ(hs))p−q/2
≤ C

(
∑

s∈S

1

φ(hs)

)p−q/2

.

Proof of item (ii). It can be shown that

∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2)∣∣

≤ E (E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)δλ(X4, X1, Y1)δλ(X4, X2, Y2)||X1, X2))

= E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)δλ(X4, X1, Y1)δλ(X4, X2, Y2)|) .

Hence, due to (7.9), the fact that Eυ
s1
∩ Eυ

s2
= ∅ for all s1 6= s2, and (H.13), it can be

found that

∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2)∣∣

≤ E

(
∑

s1∈S

∑

s2∈S

∑

s3∈S

∑

s4∈S

(
|rυs1(X3)− Y υ

1,s1
||rυs2(X3)− Y υ

2,s2
||rυs3(X4)− Y υ

1,s3
|

· |rυs4(X4)− Y υ
2,s4

|
K̃s1,1(X3)K̃s2,2(X3)K̃s3,1(X4)K̃s4,2(X4)

E(K̃s1,0(X3))E(K̃s2,0(X3))E(K̃s3,0(X4))E(K̃s4,0(X4))

))

≤ E

(
∑

s1∈S

∑

s2∈S

∑

s3∈S

∑

s4∈S

(
(|ǫ1|+ C)2(|ǫ2|+ C)2I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X3)∈Eυ

s2
}I{Ψ̃(X4)∈Eυ

s3
}

· I{Ψ̃(X4)∈Eυ
s4

}

K̃s1,1(X3)K̃s2,2(X3)K̃s3,1(X4)K̃s4,2(X4)

E(K̃s1,0(X3))E(K̃s2,0(X3))E(K̃s3,0(X4))E(K̃s4,0(X4))

))

≤ E

(
E((|ǫ1|+ C)2(|ǫ2|+ C)2|X1, X2, X3, X4)

∑

s1∈S

∑

s3∈S

(
I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X4)∈Eυ

s3
}

·
K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4)K̃s3,2(X4)

(E(K̃s1,0(X3)))2(E(K̃s3,0(X4)))2

))

≤ CE

(
∑

s1∈S

∑

s3∈S

(
I{Ψ̃(X3)∈Eυ

s1
}I{Ψ̃(X4)∈Eυ

s3
}

K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4)K̃s3,2(X4)

(E(K̃s1,0(X3)))2(E(K̃s3,0(X4)))2

))
.
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Given that K̃s3,2(X4) ≤ C for all s ∈ S (since (H.15) holds), K̃s,i(Xj) = K̃s,j(Xi), the

indicator functions are bounded, and Lemma 7.5 can be applied, one gets

∣∣E
(
(E (δλ(X3, X1, Y1)δλ(X3, X2, Y2)|X1, X2))

2)∣∣

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)K̃s1,2(X3)K̃s3,1(X4))

(E(E(K̃s1,0(X3)|X3)))2(E(E(K̃s3,0(X4)|X4)))2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)E(K̃s1,2(X3)|X1, X3, X4)K̃s3,1(X4))

(φ(hs1))
2(φ(hs3))

2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3)E(K̃s3,1(X4)|X1, X3))

φ(hs1)(φ(hs3))
2

≤ C
∑

s1∈S

∑

s3∈S

E(K̃s1,1(X3))

φ(hs1)φ(hs3)

≤ C
∑

s∈S

1

φ(hs)
.

Proof of item (iii). Regarding to this item, Jensen’s inequality, (3.3), (7.9), the

fact that Eυ
s1
∩ Eυ

s2
= ∅ for all s1 6= s2, and (H.13) imply

|E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ E (|δλ(X3, X1, Y1)δλ(X3, X2, Y2)|)

≤ E

(
∑

s1∈S

∑

s2∈S

|rυs1(X3)− Y υ
1,s1

||rυs2(X3)− Y υ
2,s2

|K̃s1,1(X3)K̃s2,2(X3)

E(K̃s1,0(X3))E(K̃s2,0(X3))

)

≤ E

(
∑

s∈S

(|ǫ1|+ C)(|ǫ2|+ C)I{Ψ̃(X3)∈Eυ
s }
K̃s,1(X3)K̃s,2(X3)

(E(K̃s,0(X3)))2

)

=
∑

s∈S

E(E((|ǫ1|+ C)(|ǫ2|+ C)|X1, X2, X3)I{Ψ̃(X3)∈Eυ
s }
K̃s,1(X3)K̃s,2(X3))

(E(K̃s,0(X3)))2

≤ C
∑

s∈S

E(I{Ψ̃(X3)∈Eυ
s }
K̃s,1(X3)K̃s,2(X3))

(E(K̃s,0(X3)))2

= C
∑

s∈S

E(I{Ψ̃(X3)∈Eυ
s }
E(K̃s,1(X3)|X3)E(K̃s,2(X3)|X3))

(E(E(K̃s,0(X3)|X3)))2
.
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Hence, the application of Lemma 7.5 leads to

|E (δλ(X3, X1, Y1)δλ(X3, X2, Y2))| ≤ C
∑

s∈S

P(Ψ̃(X3) ∈ Eυ
s ) ≤ CNE ≤ C.

Proof of item (iv). This item comes from Lemma 7.4 and (H.3) as follows

E
(
(δλ(X1, X2, Y2))

2) = E



(
∑

s∈S

(rυs (X1)− Y υ
2,s)K̃s,2(X1)

E(K̃s,0(X1))

)2



= E


E



(
∑

s∈S

(rυs (X1)− Y υ
2,s)K̃s,2(X1)

E(K̃s,0(X1))

)2

|X1






≥ C
∑

s∈S

P(Ψ̃(X1) ∈ Eυ
s )

φ(hs)
≥ C

∑

s∈S

1

φ(hs)
.

Proof of item (v). By Jensen’s inequality and Lemma 7.4,

|E (δλ(X1, X2, Y2)|X1)| ≤ E (|δλ(X1, X2, Y2)| |X1)

= E

(∣∣∣∣∣
∑

s∈S

(rυs (X1)− Y υ
2,s)K̃s,2(X1)

E(K̃s,0(X1))

∣∣∣∣∣ |X1

)
≤ C.

Thus, E
(
(E (δλ(X1, X2, Y2)|X1))

2p) ≤ C.

Proof of item (vi). This item is a direct consequence of Lemma 7.4 given that

E
(
(δλ(X1, X1, Y1))

2p) = E



(
∑

s∈S

(rυs (X1)− Y υ
1,s)K(0)

E(K̃s,0(X1))

)2p



≤ CE



(
∑

s∈S

rυs (X1)− Y υ
1,s

E(K̃s,0(X1))

)2p

 ≤ C

(
∑

s∈S

1

φ(hs)

)2p

.
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7.4.9 Formulation and Proof of Lemma 7.9

Recall that C will denote a generic positive constant which may take on different

values even in the same formula.

Lemma 7.9. Under hypotheses of Theorem 5.1,

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣
CT(υ, {hs}s∈S)

MISE(υ, {hs}s∈S)

∣∣∣∣→ 0 a.s.

where CT(υ, {hs}s∈S) is defined at (7.3).

Proof. The proof of this lemma can be obtained following the proof of Lemma 4 in

Ait-Säıdi et al. (2008), which in turn is based on the ideas proposed by Härdle and

Marron (1985), as follows. By the second statement in Lemma 7.3, one can see that

CT(υ, {hs}s∈S) =
1

n

n∑

j=1

ǫj(r̂
υ,(−j)(Xj)− r(Xj))

=
1

n

n∑

j=1

ǫj

(
∑

s∈S

(r̂υ,(−j)
s (Xj)− rυs (Xj))

)

=
1

n

n∑

j=1

ǫj

(
∑

s∈S

(r̂
υ,(−j)
s,D (Xj)(r̂

υ,(−j)
s (Xj)− rυs (Xj)))

)

+
1

n

n∑

j=1

ǫj

(
∑

s∈S

((1− r̂
υ,(−j)
s,D (Xj))(r̂

υ,(−j)
s (Xj)− rυs (Xj)))

)

=
1

n

n∑

j=1

ǫj

(
∑

s∈S

(r̂
υ,(−j)
s,N (Xj)− r̂

υ,(−j)
s,D (Xj)r

υ
s (Xj))

)
+ oa.co(CT(υ, {hs}s∈S))

= CT∗(υ, {hs}s∈S) + oa.co(CT(υ, {hs}s∈S)),

with CT∗(υ, {hs}s∈S) = n−1
∑n

j=1 ǫj

(∑
s∈S (r̂

υ,(−j)
s,N (Xj)− r̂

υ,(−j)
s,D (Xj)r

υ
s (Xj))

)
. This
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fact and Lemma 7.6 allow to deduce that it is enough to show

sup
(υ,{hs}s∈S)∈Υ×H

NE
n

∣∣∣∣∣∣

(
∑

s∈S

1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣∣
→ 0 a.s.

in order to prove the lemma. In addition, note that if i 6= j and ‖Xi − Xj‖ ≤ hs,

(3.1) and (3.3) imply that

(Y υ
i,s−r

υ
s (Xj)) = (Y υ

i,s−r
υ
s (Xi))+(rυs (Xi)−r

υ
s (Xj)) = (ǫi + (r(Xi)− r(Xj))) I{Ψ̃(Xj)∈Eυ

s }
.

Therefore,

|CT∗(υ, {hs}s∈S)| =

∣∣∣∣∣
1

n

n∑

j=1

ǫj

(
∑

s∈S

(r̂
υ,(−j)
s,N (Xj)− r̂

υ,(−j)
s,D (Xj)r

υ
s (Xj))

)∣∣∣∣∣

=

∣∣∣∣∣
∑

s∈S

(
1

n(n− 1)

n∑

j=1

∑

i 6=j

ǫj(Y
υ
i,s − rυs (Xj))K̃s,i(Xj)

E(K̃s,0(Xj))

)∣∣∣∣∣

≤
∑

s∈S

(
1

n(n− 1)

n∑

j=1

∑

i 6=j

|ǫj ||ǫi|I{Ψ̃(Xi)∈Eυ
s }
K̃s,i(Xj)

E(K̃s,0(Xj))

)

+
∑

s∈S

(
1

n(n− 1)

n∑

j=1

∑

i 6=j

|ǫj ||r(Xi)− r(Xj)|I{Ψ̃(Xj)∈Eυ
s }
K̃s,i(Xj)

E(K̃s,0(Xj))

)

≤
∑

s∈S

(
1

n(n− 1)

n∑

j=1

∑

i 6=j

Uυ
i,j,s +

1

n(n− 1)

n∑

j=1

∑

i 6=j

V υ
i,j,s

)
,

where

Uυ
i,j,s =

|ǫj||ǫi|K̃s,i(Xj)

E(K̃s,0(Xj))
and V υ

i,j,s =
|ǫj ||r(Xi)− r(Xj)|K̃s,i(Xj)

E(K̃s,0(Xj)),
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for i, j ∈ {1, . . . , n} such that i 6= j. Furthermore, note that

∣∣∣∣∣∣

(
∑

s∈S

1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣∣
≤

∣∣∣∣∣

(
1

nφ(hs)

)−1

CT∗(υ, {hs}s∈S)

∣∣∣∣∣

≤
∑

s∈S

(∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

Uυ
i,j,s

∣∣∣∣∣

+

∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

V υ
i,j,s

∣∣∣∣∣

)
.

Consequently, the lemma will be established as soon as, for each s ∈ S, one states

that

sup
(υ,hs)∈Υ×Hn

∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

Uυ
i,j,s

∣∣∣∣∣→ 0 a.s. (7.18)

and

sup
(υ,hs)∈Υ×H

NE
n

∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

V υ
i,j,s

∣∣∣∣∣→ 0 a.s. (7.19)

In order to prove (7.18), note that by (H.18) and Chebyshev’s inequality, given

η > 0 and for all p = 1, 2, . . ., one has

P

(
sup

(υ,hs)∈Υ×Hn

∣∣∣∣∣

(
1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

Uυ
i,j,s

∣∣∣∣∣ > η

)

≤ η−2pcard(Υ×Hn) sup
(υ,hs)∈Υ×Hn

E



((

1

nφ(hs)

)−1
1

n(n− 1)

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p



≤ η−2pnα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E



(

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p




.

Hence, it is enough to show that, for p large enough,

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E



(

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p




 <∞, (7.20)
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to prove (7.18) due to Borel–Cantelli Lemma. Analogously, it can be found that

(7.19) can be verified by showing that

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E



(

n∑

j=1

∑

i 6=j

V υ
i,j,s

)2p




 <∞. (7.21)

To obtain (7.20), note that using Lemma 7.5 it can be seen that

E



(

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p

 =

∑

I2p

E

(
2p∏

l=1

Uυ
il,jl,s

)

≤ Cφ(hs)
−2p

4p∑

q=2

∑

Jq

E

(
q∏

l=1

|ǫrl|
alK̃bl

s,ul
(Xwl

)

)
,

where I2p = {(i1, . . . , i2p, j1, . . . , j2p) ∈ {1, . . . , n}2p, such that i1 6= j1, . . . , i2p 6= j2p},

Jq ⊂ I2p is the subset which contains the elements of I2p with only q different integers,

and
∑q

l=1 al = 4p (al ≥ 1) and
∑q

l=1 bl = 2p. It can be shown that

E

(
q∏

l=1

|ǫrl|
alK̃bl

s,ul
(Xwl

)

)
= E

(
E

(
q∏

l=1

|ǫrl |
alK̃bl

s,ul
(Xwl

)|Xr1, . . . , Xrq

))

= E

(
q∏

l=1

E(|ǫrl |
al |Xrl)

q∏

l=1

K̃bl
s,ul

(Xwl
)

)
.

This last quantity vanishes when q > 2p. Using this fact and Lemma 7.5, and taking

into account that there are q/2 separated pairs with q different integers, one can

obtain

E



(

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p

 ≤ Cφ(hs)

−2p

2p∑

q=2

nqφ(hs)
q/2 ≤ Cn2pφ(hs)

−p,
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where the last inequality is due to (H.11). Therefore, using (H.11) again, one has

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E



(

n∑

j=1

∑

i 6=j

Uυ
i,j,s

)2p




 ≤ C

∞∑

n=1

nα−ν1p,

so (7.20) holds for p large enough, and consequently (7.18) is proven.

Analogously, it can be checked (7.21) as follows in order to show the convergence

for the term related to V υ
i,j,s. Firstly, Lemma 7.5 and (H.12) can be used to get

E



(

n∑

j=1

∑

i 6=j

V υ
i,j,s

)2p

 =

∑

I2p

E

(
2p∏

l=1

V υ
il,jl,s

)

≤ Cφ(hs)
−2p

4p∑

q=2

∑

Jq

E

(
q∏

l=1

|ǫrl |
alK̃bl

s,ul
(Xwl

)

)
,

with I2p and Jq defined as above, and
∑q

l=1 al =
∑q

l=1 bl = 2p. Then, similar argu-

ments to those used for the case Uυ
i,j,s above lead to

∞∑

n=1

nα sup
(υ,hs)∈Υ×Hn





φ(hs)
2p

(n− 1)2p
E



(

n∑

j=1

∑

i 6=j

V υ
i,j,s

)2p




 ≤ C

∞∑

n=1

nα−ν1p.

Consequently, one gets (7.21) for p large enough, and thus (7.19) is shown.
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