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Abstract. We classify linearly normal surfaces S ⊆ Pr+1 of degree d such that 4g −4 6 d 6 4g +4,
where g > 1 is the sectional genus (it is a classical result that for larger d there are only cones).
We apply this to the study of the extension theory of pluricanonical curves and genus 3 curves
whenever they have property N2, using and slightly expanding the theory of integration of ribbons
of the authors and Sernesi. We compute the corank of the relevant Gaussian maps, and we show
that all ribbons over such curves are integrable, and thus there exists a universal extension.

We carry out a similar programme for linearly normal hyperelliptic curves of degree d > 2g +3.
We classify surfaces having such a curve C as a hyperplane section, compute the corank of the
relevant Gaussian maps, and prove that all ribbons over C are integrable if and only if d = 2g +3.
In the latter case we obtain the existence of a universal extension.
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1. Introduction

In this article we study the extensions of certain non-special curves of genus g > 2. We shall consider
smooth, irreducible, linearly normal projective curves C of genus g > 2 and degree d in Pr ; it will always be
the case that d > 2g − 2, hence r = d − g . The extensions we want to study are surfaces S ⊆ Pr+1 having C
as a hyperplane section, and more generally (c+1)-dimensional varieties X ⊆ Pr+c having the curve C as
a section by a linear space. An extension of C is non-trivial if it is not a cone. In this article we will be
interested in non-trivial extensions.

A classical theorem by C. Segre says that if a surface extension of C is a scroll, then it is actually a cone
over C. We shall give this theorem a modern proof in the present text; see [Seg86, Section 2] for the original
proof. On the other hand, a theorem by Hartshorne [Har69, Theorem (4.1)] says that if d > 4g +4, then S is
a scroll; together with the previous result by C. Segre, this implies that it is a cone. The upshot is that for
our study, we can assume without loss of generality that d 6 4g +4. Our first result is the classification of
surface extensions of a curve as above in the range 4g − 4 6 d 6 4g +4.

The following notation will be used throughout the text.

Notation 1.1. For all e ∈N, we let Fe be the rational ruled surface P(OP1 ⊕OP1(−e)), and we denote by E the
section with self-intersection −e (in the case e = 0, this has to be taken with a grain of salt) and by F the
class of the fibres, and we set H = E + eF.

Theorem 1.2. Let S ⊆ Pr+1 be a non-degenerate irreducible, projective surface of degree d > 4g − 4 whose general
hyperplane section C is smooth, of genus g > 2, and linearly normal. If S is not a cone, then one of the following
holds:

(a) S is the image by the Veronese map v2 of a cone over an elliptic normal curve of degree g − 1, and the
hyperplane sections of S are bielliptic bicanonical curves, as in Example 3.1.

(b) S is a rational surface represented by a linear system of smooth plane δ-ics, 4 6 δ 6 6, as in Example 3.2.
(c) S is the image by the Veronese map v2 of a Del Pezzo surface, as in Example 3.3.
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(d) S is a rational surface with hyperelliptic sections, represented by a linear subsystem of |2H + (g +1− e)F|
on Fe, as in Example 3.4;

(e) S is a rational surface with trigonal sections, represented by a linear subsystem of
|3H + 1

2 (g − 3e+2)F| on Fe, and g 6 10, as in Example 3.5.

In the above statement, linear (sub)systems (in cases (b), (d), and (e)) are defined by simple base points,
possibly infinitely near but along a curvilinear scheme. Our proof of Theorem 1.2 is based on a careful
analysis of the adjoint system of C on S .

On the other hand, if C ⊆ Pr has property N2 (see Theorem 2.2), then its extension theory is governed
by ribbons. The latter are non-reduced schemes supported on C that are potential first infinitesimal
neighbourhoods of C in an extension S ⊆ Pr+1. The salient points of the theory, which we recall from
[CDS20] and slightly expand in Section 6, are the following: (i) isomorphism classes of non-trivial ribbons
are parametrized by the projective space P(ker(TγC,L)), where L = OPr (1)|C and γC,L is a Gaussian map,
the definition of which is recalled in Section 5.1; (ii) each ribbon may be the first infinitesimal neighbourhood
of C in at most one extension; in particular, C may have a non-trivial extension only if γC,L is not surjective;
(iii) if all ribbons in P(ker(TγC,L)) can be realized as first infinitesimal neighbourhoods of C in an extension,
then there exists a universal extension of C, i.e. a (c+1)-dimensional variety X ⊆ Pr+c, c = cork(γC,L), having
C as a curve section and such that all surface extensions of C are realized in a unique way as a section of X
by some (r +1)-dimensional linear space containing C.

We shall apply our classification theorem, Theorem 1.2, to study the existence of non-trivial exten-
sions of polarized curves and, in favourable cases, prove the existence of universal extensions, as follows.
First, we have found some situations in which we can compute the dimension of P(ker(TγC,L)), which
in general is a very difficult task. Then our idea is to consider the family of all possible extensions of
the curve C, using our classification theorem, which gives the dimension of the locus in P(ker(TγC,L))
of those ribbons corresponding to an actual extension of (C,L) by the unicity property (ii) above. When
the two dimensions match, we can conclude that there exists a universal extension by the general Theo-
rem 6.8.

The dimension of the space P(ker(TγC,L)) is cork(γC,L) − 1, where cork(γC,L) denotes the corank of
the map γC,L, i.e. the codimension of its image in H0(C,2KC + L); see Section 5.1. We compute it in the
following situations.

Theorem 1.3. Let C be a smooth projective curve of genus g > 2 and L a line bundle on C of degree d.

(a) Assume C is hyperelliptic; if either d > 2g +3, or d > g +4 and L is general, then cork(γC,L) = 2g +2.
(b) Assume g = 3 and C is non-hyperelliptic; if either d > 2g = 6, or d > g + 1 = 4 and L is general, then

cork(γC,L) = h0(C,4KC −L).

In fact the above result is an application of Proposition 5.5, which enables one to compute the corank of
γC,L in virtually any situation, provided C either is hyperelliptic or has genus 3. For the genus 3 case, we
essentially give another proof to an earlier result by Knutsen and Lopez [KL07, Proposition 2.9(a)]. The
following, on the other hand, is essentially a compilation of previously known results.

Theorem 1.4. Let C be a smooth projective curve of genus g > 5, non-hyperelliptic, and L =mKC for some integer
m > 1. Then cork(γC,mKC ) = 0 if m > 2 or Cliff(C) > 2.
If Cliff(C) = 1, then either

(a) C is trigonal, and then cork(γC,2KC ) = h
0(KC − (g − 4)g), with g the class of the g13 ; or

(b) C is a plane quintic, and then cork(γC,2KC ) = h
0(P2,−2KP2 −C) = 3.

If Cliff(C) = 2, then cork(γC,mKC ) = 0 except in the following cases:

(a) g = 5, and then cork(γC,2KC ) = 3;
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(b) C is a bi-anticanonical divisor in a Del Pezzo surface X, and then we have cork(γC,2KC ) =
h0(X,−2KX −C) = 1;

(c) C is bielliptic, and then cork(γC,2KC ) = 1.

The case of curves of genus g 6 4 is elementary; see (9.4).

The next stage of our programme is to examine in all three cases above (genus 3 curves, hyperelliptic
curves, and pluricanonical curves) the families of all surface extensions of a given polarized curve (C,L). For
pluricanonical curves, Theorem 1.2 above tells us all the surfaces we need to consider. In general we will
assume that deg(L) > 2g + 3, in order for property N2 for (C,L) (which is needed to apply the theory of
ribbons and extensions) to hold by Green’s theorem, Theorem 2.2. For pluricanonical curves, this condition
is automatic except for a few sporadic cases in genus g 6 3. For an arbitrary polarized curve of genus 3, this
condition is stronger than deg(L) > 4g − 4, so that again Theorem 1.2 tells us all the surfaces we need to
consider.

For a polarized hyperelliptic curve (C,L) of arbitrary genus, however, we need a stronger classification
result. We prove the following, which extends classical results by Castelnuovo, cf. [Cas90a], and more recent
ones by Serrano, cf. [Ser87], and Sommese–Van de Ven, cf. [SVdV87] (see Section 4.6 for more comments
on these results).

Theorem 1.5. Let C ⊆ Pd−g be a linearly normal hyperelliptic curve of genus g > 2 and degree d > 10, unless
g = 2 or 3, in which case we only make the looser assumption that d > 2g +3. For all surfaces S ⊆ Pd−g+1 having
C as a hyperplane section, if S is not a cone, then it is rational and ruled by conics. In particular, its general
hyperplane section is hyperelliptic.

Corollary 1.6. In the setting of Theorem 1.5, the surface S is represented by a linear subsystem of |2H+(g+1−e)F|
on Fe, as in case (d) of Theorem 1.2.

Our main tool in proving Theorem 1.5 is the Reider and Beltrametti–Sommese theorem, Theorem 4.1.

Finally, we can complete our programme, to the effect that we obtain the following results.

Theorem 1.7. Let (C,L) be a non-hyperelliptic polarized curve of genus g = 3 and degree d > 2g +3 = 9. Then
the following hold:

(i) There exists a non-trivial extension of the polarized curve (C,L) if and only if there exist points
p1, . . . ,p16−d ∈ C such that L = 4KC −

∑16−d
i=1 pi (in particular, d 6 16).

(ii) Every ribbon in P(ker(TγC,L)) is the first infinitesimal neighbourhood of C in some extension of (C,L);
hence there exists a universal extension of (C,L).

We refer to Section 7.7 for a discussion of the universal extensions of polarized genus 3 curves. We also
include an analysis of what happens for degrees below 2g+3, in which case property N2 is no longer implied
by Green’s theorem, and many results about ribbons and extensions are no longer available; in particular,
a given ribbon may a priori be the first infinitesimal neighbourhood of C in several different extensions.
Notably we give examples of polarized curves having two distinct families of extensions, one of the expected
dimension cork(γC,L)− 1 and one superabundant, which would be impossible if property N2 held.

Theorem 1.8. Let (C,L) be a polarized hyperelliptic curve of genus g and degree d > 2g +3.

(a) If d 6 4g +4, then there exists a non-trivial extension of (C,L).
(b) If d = 2g +3, then every ribbon in P(ker(TγC,L)) is the first infinitesimal neighbourhood of C in some

extension of (C,L), hence there exists a universal extension of (C,L), of degree 2g + 3 and dimension
2g +3 in P3g+5.

(c) If d > 2g +3, then for general (C,L) there exist ribbons in P(ker(TγC,L)) which may not be realized as
first infinitesimal neighbourhoods of C in some extension of (C,L).
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When d = 4g + 4, (C,L) in general has only finitely many extensions but more than one; thus there
cannot exist a universal extension of (C,L). Also, in this case we analyze briefly the situation for degrees
below 2g +3, and we find that in this case the extensions form a superabundant family; i.e. this family has
dimension greater than cork(γC,L)− 1. This would be impossible if property N2 held.

Theorem 1.9. Let (C,mKC) be a pluricanonical curve, and assume that either g > 4 and m > 2, or g = 3 and
m > 3. Then there exists a non-trivial extension of the polarized curve (C,mKC) if and only if (C,mKC) falls
into one of the cases of Theorem 1.4 or Section 9.3 in which cork(γC,mKC ) , 0 (in particular, either g 6 10, or C
is bielliptic).
Every ribbon in P(ker(TγC,mKC )) is the first infinitesimal neighbourhood of C in some extension of (C,mKC);

hence there exists a universal extension of (C,mKC).

We refer to Section 9.3 for a discussion of the universal extensions of pluricanonical curves. Except in the
trigonal case, we provide an explicit construction.

The organization of the text is as follows. In Section 2 we recall general results on projective curves,
revisit the C. Segre theorem, and recall the Hartshorne bound. Section 3 is devoted to the proof of the
classification theorem, Theorem 1.2, and Section 4 to that of the classification theorem for hyperelliptic
curves, Theorem 1.5. In Section 5 we recall the definition of the Gaussian map γC,L and compute its
corank in a number of cases, thus proving Theorem 1.3. In Section 6 we recall the theory of ribbons and
extensions, and provide all necessary material for its application as described in the introduction. These
applications are to polarized genus 3 curves (in Section 7), to polarized hyperelliptic curves (in Section 8),
and to pluricanonical curves (in Section 9).

We work over the field C of complex numbers throughout. We use the symbols ’≡’ and ’∼’ to denote
numerical and linear equivalence, respectively.

Acknowledgments

We thank Andreas Knutsen and Angelo Lopez for useful comments.

2. General preliminary results

2.1. Results on projective curves

We will need the following results. The first one is an improvement on a theorem by Castelnuovo; see
[Cas93] and [Cil83, Theorem (1.11)].

Theorem 2.1 (Castelnuovo). Let C be a smooth curve and L→ C be a globally generated line bundle. If the
image of the map associated to the complete linear series |L| is not a rational curve, or if |L| is a pencil, then the
multiplication map

H0(L)⊗H0(KC) −→H0(KC +L)

is surjective.

The other one is due to Green.

Theorem 2.2 (cf. [Gre84, Theorem 4.a.1]). Let C be a smooth curve of any genus g and L→ C a line bundle of
degree d. For all k > 0, if

d > 2g +1+ k,

then L has property Nk , i.e.

(i) L defines a projectively normal embedding of C, and
(ii) if k > 1, the ideal of C in this embedding is generated by quadrics and all syzygies are generated by linear

syzygies up to the kth step.
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2.2. Scrolls as extensions of linearly normal curves

The main object of this subsection is to discuss Theorem 2.3 below. We distinguish between ruled surfaces,
by which me mean “abstract ruled surfaces”, i.e. surfaces S equipped with a locally trivial morphism S→ C
onto a smooth curve whose fibres are P1, and scrolls, by which we mean a ruled surface embedded in some
projective space in such a way that the fibres are lines.

Theorem 2.3. Let C ⊆ Pn−1 be a smooth linearly normal and non-degenerate curve of genus g > 0. Assume there
exists a scroll Σ ⊆ Pn such that C is a hyperplane section of Σ. Then the scroll Σ is necessarily a cone.

This first appeared in [Seg86, Section 2] by C. Segre, and also later in [Seg89, Section 14] by the same
author, under the additional assumption that OC(1) is non-special. In the particular case when C is a
canonical curve, this is [Epe84, Theorem III.2.1].

We shall need the following lemma for the proof.

Lemma 2.4 (cf. [BM87, Lemme 1]). Let C be a smooth curve, and let

(2.1) 0 −→ E′ −→ E −→ E′′ −→ 0

be an exact sequence of vector bundles on C. Assume that

(i) the boundary map ∂ : H0(E′′)→H1(E′) is zero, and
(ii) the multiplication map α : H0(E′′)⊗H0((E′)∨ ⊗ωC)→H0(E′′ ⊗ (E′)∨ ⊗ωC) is surjective.

Then the exact sequence (2.1) is split.

Proof of Theorem 2.3. Let f : S→ Σ be the minimal resolution of singularities. The surface S is ruled with C
as a section of the ruling, and Σ is a scroll. Hence there exists a rank 2 vector bundle E on C such that
S � P(E) and the map S→ Σ ⊆ Pn is given by a linear subsystem of |H0(OP(E)(1))|. Moreover, there is the
following exact sequence of locally free sheaves on C:

(2.2) 0 −→ OC(1)⊗N−1C/S −→ E −→OC(1) −→ 0;

OC
see [Har77, Proposition V.2.6]. We shall use Lemma 2.4 to show that this exact sequence is split. Then
E = OC ⊕OC(1), the linear system |H0(OP(E)(1))| contracts the section corresponding to the trivial quotient
E →OC , and Σ is a cone, which is the result we wanted to prove.

It thus only remains to apply Lemma 2.4 to the exact sequence (2.2). Condition (ii) is satisfied by
Castelnuovo’s theorem, Theorem 2.1; i.e. the multiplication map H0(L)⊗H0(KC)→ H0(KC + L), where
L = OC(1), is surjective. To see that condition (i) of the lemma holds as well, we write the long exact
sequence associated to (2.2):

0 −→H0(OC) −→ H0(E) −→H0(OC(1)) −→ H1(OC) −→ H1(E) −→H1(OC(1)) −→ 0;

H0(OS(1)) H1(OS ) H1(OS(1))

for the vertical identifications, see e.g. [Har77, Lemma V.2.4]; OS(1) stands for OP(E)(1). It follows from
the fact that C ⊆ Pn−1 is linearly normal that H0(OΣ(1))→H0(OC(1)) is surjective, hence H0(OS(1))→
H0(OC(1)) is surjective, and thus the boundary map H0(OC(1))→H1(OC) is zero; i.e. condition (i) holds.
We may thus apply Lemma 2.4, and, as explained above, this concludes the proof of the theorem. �

2.3. The Hartshorne bound

Theorem 2.5 (cf. [Har69]). Let C be a smooth curve of genus g sitting in a smooth surface S . If C2 > 4g +5,
then there exist a ruled surface Σ having C as a section and a birational map Sd Σ which is an isomorphism on
an open subset containing C.
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If C2 = 4g +5, the only other possibility is that there is a birational map Sd P2 which is an isomorphism on
an open subset containing C and identifies C with a cubic curve.

This result is also a particular case of [Hor83, Theorem A].

Corollary 2.6. Let C ⊆ Pn be a smooth curve of genus g > 1 and degree d, non-degenerate and linearly normal.
If d > 4g +4, then every extension of C is trivial.
If g = 1 and d = 4g + 5, the only possibility for C to have a non-trivial extension is that it is a hyperplane

section of the Veronese surface v3(P2) ⊆ P9.

Proof. Let S ⊆ Pn+1 be a surface having C as a hyperplane section. Then deg(S) = deg(C) = d; hence
C2 = d as a divisor in S . We consider a minimal desingularization π : S ′→ S, and, abusing notation, we
still denote by C its proper transform on S ′ . Note that S may have at most isolated singularities, and by the
minimality of the resolution, there is no irreducible (−1)-curve Γ on S ′ such that C · Γ = 0.

By Hartshorne’s theorem, Theorem 2.5 above, there are two cases to be considered. First assume that
there exists a birational map S ′d P(E) which is an isomorphism on an open subset U ⊆ S ′ containing C,
where E is a rank 2 vector bundle over C. The pull-back to S ′ of the linear system |C| on S is the complete
linear system |C| on S ′ because C ⊆ Pn is linearly normal, and it is base-point-free. In turn, the image on
P(E) of this system is again the complete linear system |C| because S ′d P(E) is an isomorphism on U . The
upshot is that S is the image of P(E) defined by this linear system, and by Theorem 2.3 this is a cone.

In the remaining case of Hartshorne’s theorem, which may occur only if g = 1 and d = 4g +5 = 9, similar
arguments show that S is the image of P2 by the complete linear system of plane cubics. �

3. Classification of extensions with high degree

This section is devoted to Theorem 1.2. We first expand on the description of the items in the classification
and then give the proof.

3.1. Detailed description of the items in the classification

Let S ⊆ PN be a degree d surface, of sectional (geometric) genus g . We call simple internal projection
of S a surface S ′ ⊆ PN

′
obtained by projecting S from a curvilinear subscheme Z of length b supported

on the smooth locus of S, where N ′ =N −dim(〈Z〉), such that the projection map is birational. We recall
that a scheme Z is curvilinear if for all points p in the support of Z , the Zariski tangent space of Z at p has
dimension at most 1.

For a simple internal projection S ′ of S as above, one has deg(S ′) = d − b, and S ′ has the same sectional
genus g as S . Note that if d − b > 2g +1 and S is regular and linearly normal, then any projection from a
curvilinear subscheme Z of length b supported on the smooth locus of S is a simple internal projection, and
N ′ =N − b, for in this case the linear system of hyperplane sections of S passing through Z restricts on its
general member to a complete, non-special, very ample linear system.

Example 3.1. Let C be a bielliptic curve of genus g > 4. Then the canonical model of C in Pg−1 sits on a
cone X with vertex a point p over a normal elliptic curve E of degree g − 1 in a hyperplane Π of Pg−1 not
containing p, and C is the complete intersection of X with a quadric in Pg−1. The bielliptic involution is the
restriction to C of the projection from p to Π.

Note that the minimal resolution of X is the projective bundle P(OE ⊕L), where L is the hyperplane
bundle of E in Π � Pg−2. The map P(OE ⊕L)→ X is induced by the O(1) bundle on P(OE ⊕L).

Consider the 2-Veronese image S of X. Since

h0(E,Sym2(OE ⊕L)) = h0(E,OE) + h0(E,L) + h0(E,L⊗2) = 3g − 2,
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the surface S is linearly normally embedded in P3(g−1). The bicanonical image of C is a hyperplane section
of S , and it is linearly normally embedded with degree d = 4(g − 1). In this case we will say that S presents
the bicanonical bielliptic case.

Example 3.2. Consider the linear system |OP2(δ)| of plane curves of degree δ whose self-intersection is δ2

and whose genus is

g =
(δ − 1)(δ − 2)

2
.

We assume δ > 4 so that g > 1. One has δ2 > 4g − 4 if and only if δ 6 6. This means that for 4 6 δ 6 6,
the degree of the δ-Veronese image of P2 (and suitable simple internal projections of it) is in the range
[4g − 4,4g +4].

More precisely, in the case δ = 4. one has δ2 = 4g +4, which is the maximum possible degree with respect
to the sectional genus. We still have degree in the above range if we make simple internal projections of the
4-Veronese of P2 from b 6 8 points.

If δ = 5, we have δ2 = 4g +1, and the degree is in the above range if we make simple internal projections
of the 5-Veronese of P2 from b 6 5 points.

Finally, if δ = 6, we have δ2 = 4g − 4.
In all these cases we will say that the surfaces present the planar case.

Example 3.3. (a) Let X be the plane blown up at h 6 7 (proper or infinitely near) points such that
there is an irreducible cubic curve passing simply through these points. Let E1, . . . ,Eh be the exceptional
(−1)-divisors over the blown-up points, set E = E1 + · · ·+Eh, and let H be the pull-back on X of a general
line of P2. Note that the anticanonical system on X is |3H −E|. We will say that we are here in a Del Pezzo
situation (even though X is a genuine Del Pezzo surface only if the anticanonical system is ample).

Consider the linear system |6H − 2E|. This linear system is base-point-free, and its general curve is
irreducible of genus g = 10−h and self-intersection 4(9−h) = 4g −4. Moreover, it is not difficult to see that
φ|6H−2E| is a birational morphism to the image S , that is non-degenerate in P27−3h = P3g−3. Note that the
hyperplane sections of these surfaces are bicanonically embedded. For h = 0, we again get the planar case
for δ = 6.

(b) Similarly, let X be an irreducible quadric in P3, and consider the linear system | − 2KX |, which is the
linear system of quadric sections of X. Thus, either X is the image of F0 by the linear system |H +F| and
| − 2KX | = |4H + 4F| (curves of bidegree (4,4) on P1 ×P1), or X is the image of F2 by the linear system
|2H | and we may identify X with F2 and | − 2KX | with |4H |. As in case (a), the linear system | − 2KX | is
base-point-free, its general member is irreducible of genus g = 9 and self-intersection 4g − 4 = 32, and
the associated map φ|−2KX | is a birational morphism to the image S, which is a non-degenerate surface in
P3g−3 = P24 with bicanonical hyperplane sections.

We will say that the surfaces in cases (a) and (b) above present the bicanonical Del Pezzo case.

Example 3.4. Consider, in the Notation 1.1, the linear system

|2H + kF| = |2E + (k +2e)F| = |H +E + (k + e)F|

on a rational ruled surface Fe, with k >max(0,3− e). It is base-point-free, and very ample unless k = 0, in
which case the morphism φ|2H | maps Fe birationally onto its image, which is the 2-Veronese image of the
cone in Pe+1 over a rational normal curve in Pe. In any event the general curve in |2H + kF| is smooth and
irreducible.

Since

(3.1) KFe ∼ −2E − (e+2)F ∼ −2H + (e − 2)F,
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the adjoint system to |2H + kF| is |(k + e − 2)F|, and therefore the curves in |2H + kF| are hyperelliptic of
genus g = k + e − 1. The assumption that k > 3− e implies that g > 2. Moreover,

(2H + kF)2 = 4e+4k = 4g +4.

If C is a smooth curve in |2H + kF|, then from the exact sequence

0 −→OFe −→OFe (2H + kF) −→OC(2H + kF) −→ 0

and from the fact that

h1(Fe,OFe ) = 0, h0(C,OC(2H + kF)) = 3g +5,

we deduce that h0(Fe,OFe (2H +kF)) = 3g+6. If we set S = φ|2H+kF|(Fe), then S is non-degenerate of degree
4g +4 in P3g+5, and its general curve section is hyperelliptic of genus g > 2. Any surface which is a simple
internal projection of S from b 6 8 points on S still has degree in the range [4g − 4,4g +4] and sectional
genus g . We will say that surfaces of this type present the hyperelliptic case.

Example 3.5. Let C be a trigonal canonical curve of genus g > 4 in Pg−1. Then C sits on a smooth rational
normal scroll Y of degree g − 2 in Pg−1. We denote by H the hyperplane section class of Y ⊆ Pg−1 and by
F a line of the ruling of Y (be careful not to mistake H for the class H in our Notation 1.1; the minimal
resolution of singularities of Y is isomorphic to some rational ruled surface Fe, and one has H =H + lF for
some l > 0).

It is easy to check that C ∈ |3H− (g − 4)F|. Conversely, if Y is a rational normal scroll of degree g − 2
in Pg−1, and if a smooth curve C sits in |3H− (g − 4)F|, then C is a trigonal canonical curve. One has
(3H− (g − 4)F)2 = 3g +6; hence the linear system |OC(3H− (g − 4)F)| is very ample of dimension 2g +6.
This shows that φ|3H−(g−4)F| is a morphism that maps Y birationally to a non-degenerate surface S ⊆ P2g+6.
If g 6 10, one has 3g + 6 > 4g − 4. We will say that surfaces of this sort, as well as their simple internal
projections of degree at least 4g − 4, present the trigonal case.

To connect with the notation in Theorem 1.2, note that if H =H + lF on Fe, then

(H + lF)2 = e+2l = g − 2

and

3H− (g − 4)F = 3H + (3l − g +4)F = 3H + 1
2 (g − 3e+2)F.

Note that none of the surfaces in the above examples is a cone. Indeed, they have irregularity q 6 1 and
sectional genus g > 2.

3.2. Previously known results

We quote the following from [Lop23, Section 7] but do not use it in our proof.

Theorem 3.6 (cf. [KL07, Corollary 2.10], [BEL91, Theorem 2]). Let C ⊆ Pr be a smooth irreducible non-
degenerate linearly normal curve of genus g > 4 and degree d. Then C is not extendable if

(a) C is trigonal, g > 5, and d >max{4g − 6,3g +7};
(b) C is a plane quintic and d > 26;
(c) Cliff(C) = 2 and d > 4g − 3;
(d) Cliff(C) > 3 and d > 4g +1− 3Cliff(C).

Part (d) tells us, in particular, that no curve C with Cliff(C) > 2 is extendable in the range of degree
under consideration in the present text, namely d > 4g − 4. If Cliff(C) 6 2, our Theorem 1.2 classifies those
extensions that indeed exist in the possibilities left open by the above statement.
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If Cliff(C) = 2, the only possibility in our range left by the above theorem is d = 4g − 4. We find that
there indeed exist extensions in this degree, and they are all extensions of bicanonical curves, for some
special curves.

Items (a) and (b) deal with curves of Clifford index 1. For plane quintics, the maximal degree is 25, and it
is indeed realized in our classification, by rational surfaces represented by a linear system of plane quintics.
For smooth quintics, g = 6, hence 4g − 4 = 20 and 4g +4 = 28.

For trigonal curves, the above theorem says that extensions may have degree at most

max(4g − 7,3g +6) =

4g − 7 if g > 13,

3g +6 if g 6 13.

If g > 13, this implies that there is nothing in the range [4g −4,4g +4]. For g 6 13, the bound is sharp and,
by our classification, realized exclusively by trisecant scrolls (cf. Example 3.5) as soon as 3g +6 > 4g − 4, i.e.
g > 10.

For curves with Clifford index zero, i.e. hyperelliptic curves, there exist extensions in all degrees 4g − 4,
. . . ,4g +4, and they are all bisecant scrolls (cf. Example 3.4).

3.3. Setup of the proof of Theorem 1.2

We now start proving Theorem 1.2. Let S ⊆ Pr+1 be a surface as in the theorem. It may have at most
isolated singular points. We consider its minimal desingularization π : S ′→ S, and, abusing notation, we
still denote by C its proper transform on S ′ . By the minimality of the resolution, there is no irreducible
(−1)-curve E such that C ·E = 0 on S ′ .

Since KS ′ ·C = 2g − 2− d < 0, the Kodaira dimension of S ′ is κ(S ′) = −∞. We let q be the irregularity
of S ′ and consider a minimal model f : S ′→ Σ of S ′ . If q > 0, then Σ is a P1-bundle over a smooth curve Γ
of genus q, while if S ′ is rational, then Σ is either P2 or a rational ruled surface Fe, with e > 0 and e , 1.

3.4. The irregular case

In this section we will prove Theorem 1.2 in the case q > 0, which amounts to proving the following
proposition.

Proposition 3.7. Let S be as in Theorem 1.2 with q > 0. Then S presents the bicanonical bielliptic case as in
Example 3.1; hence we are in case (a) of Theorem 1.2.

In this case the minimal desingularization S ′ of S has a surjective morphism ϕ : S ′ → Γ to a smooth
curve Γ of genus q with connected, rational fibres. We denote by θ the class in the Néron–Severi group of S ′

of a general fibre of ϕ and set
m = C ·θ.

This is the degree of the images of the fibres of ϕ on S . If m = 1, then, by Theorem 2.3, S is a cone, which
is excluded. Thus we have m > 2. In the case m = 2, the images of the fibres of ϕ on S are conics, and we
will say that we are in the conic case.

The proof of Proposition 3.7 consists of a few steps.

3.4.1. Reduction to the conic case. The first step consists in the following.

Proposition 3.8. Let S be as in Proposition 3.7. Then m = 2 and d = 4(g − 1).

Proof. We apply [Har69, Theorem (2.3)] to the effect that if C is a smooth, irreducible curve of genus g on
an irregular ruled surface S ′ with m > 1, then

C2 6
2m
m− 1

(g − 1).
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Hence we have

4(g − 1) 6 d = C2 6
2m
m− 1

(g − 1),

and the assertion follows immediately. �

3.4.2. Passing to a minimal model. Consider the image C̄ of C in Σ via the map f : S ′→ Σ. This is
an irreducible curve, and since m = 2 by Proposition 3.8, C̄ may have at most double points that can be
proper or infinitely near. Let h be the number of double points of C̄. One has

C̄2 = C2 +4h+ ν, pa(C̄) = g + h,

with ν the number of (−1)-curves E contracted by f and such that C ·E = 1.
By performing a sequence of elementary transformations on Σ based at the double points of C̄, we

produce a birational map

α : Σ 9999K Σ′ ,

where Σ′ is still a P1-bundle over Γ , the image C′ of C̄ via α is smooth, and C′2 = C2 + ν = 4(g − 1) + ν.
Applying Proposition 3.8 to C′ ⊆ Σ′ , one finds that ν = 0.

Abusing notation, we will still denote by θ the class of a fibre of the structure morphism ϕ′ : Σ′→ Γ .
The pair (S ′ ,C) is birational to the pair (Σ′ ,C′); i.e. there is a birational map S ′d Σ′ that maps C to C′ .

Hence the image of Σ′ via the map φ|C′ | determined by the linear system |C′ | is the original surface S . So,
rather than studying the linear system |C| on S ′ , we may study the linear system |C′ | on Σ′ .

3.4.3. The adjoint system. Next we consider the adjoint linear system |KΣ′ +C′ |.
Let ϕ′ |C′ : C′ → Γ be the double cover, with branch divisor B. By the Riemann–Hurwitz formula, we

have

g = 2q − 1+ b, with deg(B) = 2b.

From the cohomology sequence of the exact sequence

0 −→OΣ′ (KΣ′ ) −→OΣ′ (KΣ′ +C′) −→OC′ (KC′ ) −→ 0,

since

h0(Σ′ ,OΣ′ (KΣ′ )) = h1(Σ′ ,OΣ′ (KΣ′ +C′)) = 0,

h1(Σ′ ,OΣ′ (KΣ′ )) = q,

h0(C′ ,OC′ (KC′ )) = g,

we get

dim(|KΣ′ +C′ |) = g − 1− q = q − 2+ b.

Moreover, q − 2+ b > 0 because we are assuming q > 0 and g > 2.
Note that KΣ′ · θ = −2, hence (KΣ′ +C′) · θ = 0, so, since KΣ′ +C′ is effective, we have the numerical

equivalence KΣ′ +C′ ≡ kθ for some integer k.

Lemma 3.9. In the above setting one has q = 1.

Proof. We have

0 = (KΣ′ +C
′)2 = K2

Σ′ +2(KΣ′ +C
′) ·C′ − (C′)2 = K2

Σ′ +4(g − 1)−C′2 = K2
Σ′ .

On the other hand, K2
Σ′ = 8(1− q), and the assertion follows. �
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3.4.4. The classification. We may now finish the proof of Proposition 3.7. To do so, we first identify the
surface Σ′ . We have Σ′ = P(E), where E is a rank 2 vector bundle on a curve Γ of genus 1. We can suppose
that E is normalized (see [Har77, Notation V.2.8.1]), with invariant e. We denote by E the section such that
E2 = −e. We have

KΣ′ ≡ −2E − eθ
by [Har77, Corollary V.2.11] and

(3.2) C′ ≡ 2E + aθ

for some integer a.
One has

2g − 2 = (KΣ′ +C
′) ·C′ = (a− e)θ ·C′ = 2(a− e),

hence

(3.3) a = g − 1+ e.

Lemma 3.10. The vector bundle E is decomposable.

Proof. Suppose towards a contradiction that E is indecomposable. Then one has −1 6 e 6 0 by [Har77,
Theorem V.2.15]. If e = 0, then by (3.3), we have

(3.4) C′ −KΣ′ ≡ 4E + (g − 1)θ,

which is big and nef. Then, by Kawamata–Viehweg vanishing, one has h1(Σ′ ,OΣ′ (C′)) = 0. But then from
the cohomology sequence of the exact sequence

0 −→OΣ′ −→OΣ′ (C′) −→OC′ (C′) −→ 0,

we see that the restriction map

H0(Σ′ ,OΣ′ (C′)) −→H0(Σ′ ,OC′ (C′))

has corank h1(Σ′ ,OΣ′ ) = 1, so it is not surjective, which in turn implies that C is not linearly normal, so we
have a contradiction.

In the case e = −1 one has h1(Σ′ ,OΣ′ (C′)) = 0 by [CC93, Theorem 1.17], and then one concludes as in the
previous case. �

We can now finish the proof.

Proof of Proposition 3.7. From Lemma 3.10, we have that

E = OΓ ⊕L,

where L is a line bundle of degree −e 6 0, so that e > 0 (see [Har77, Theorem V.2.12]). We want to compute
h1(Σ′ ,OΣ′ (C′)). To do so, consider again the structure morphism ϕ′ : Σ′ = P(E)→ Γ , and note that

h1(Σ′ ,OΣ′ (C′)) = h1(Γ ,ϕ′∗OΣ′ (C′)).

From (3.2) and (3.3), we have

(3.5) ϕ′∗OΣ′ (C′) = Sym2(E)⊗D

where D is a line bundle of degree g − 1+ e on Γ . One has

Sym2(E) = OΓ ⊕L⊕L⊗2,

hence
Sym2(E)⊗D =D⊕ (D⊗L)⊕ (D⊗L⊗2)

with
deg(D⊗L) = g − 1, deg(D⊗L⊗2) = g − 1− e.
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Therefore,
h1(Σ′ ,OΣ′ (C′)) = h1(Γ ,D) + h1(Γ ,D⊗L) + h1(Γ ,D⊗L⊗2) = h1(Γ ,D⊗L⊗2).

By the same argument we made in the proof of Lemma 3.10, we must have h1(Σ′ ,OΣ′ (C′)) > 0. So we must
have h1(Γ ,D⊗L⊗2) > 0, hence g − 1− e = deg(D⊗L⊗2) 6 0 and e > g − 1. On the other hand, by (3.2) and
(3.3), we have

C′ ·E = (2E + (g − 1+ e)θ) ·E = g − 1− e,
hence e 6 g − 1, thus e = g − 1, and from h1(Γ ,D⊗L⊗2) > 0, we deduce that

D⊗L⊗2 � OΓ , i.e. D � (L∨)⊗2.

On the other hand, let us compute the linear equivalence class of C′ . By (3.2),

OΣ′ (C′) = OΣ′ (2E)⊗ϕ′∗M

for some line bundleM on Γ , hence ϕ′∗OΣ′ (C′) = Sym2E ⊗M. Then (3.5) implies thatM =D. The upshot
is that

OΣ′ (C′) = OΣ′ (2E)⊗ϕ′∗((L∨)
⊗2) =A⊗2,

where we set
A = OΣ′ (E)⊗ϕ′∗(L∨).

The map φA determined by the line bundle A maps Σ′ = P(O ⊕L) to a cone X ⊆ Pg−1 over the elliptic
normal curve of degree g − 1 in Pg−2 which is the image of Γ via the map φL∨ . In this map the curve C′ is
mapped to a quadratic section of X. This implies that we are in the bicanonical bielliptic case. �

3.5. The rational case

In this subsection we finish the proof of Theorem 1.2 by considering the case in which the surface S is
rational. We will thus prove the following.

Proposition 3.11. Let S be as in Theorem 1.2 with q = 0; i.e. S is rational. Then S presents either the planar case
(see Example 3.2 ) or the bicanonical Del Pezzo case (see Example 3.3 ) or the hyperelliptic case (see Example 3.4 ) or
the trigonal case (see Example 3.5 ).

The proof will consist of various steps that we will carry out in the next subsections. We consider the
adjoint system |C +KS ′ |, which we write

|C +KS ′ | = F + |M |,

where F is the fixed part and |M | the movable part, with dim(|M |) = g −1. Since |C +KS ′ | cuts the complete
canonical linear series on C, we have C ·F = 0.

There are two cases to be considered:

(a) |M | is composed with a pencil |Φ |, including the case g = 2 in which |M | itself is a pencil.
(b) The general curve in |M | is irreducible, and dim(|M |) > 2, hence g > 3.

In case (a) the curves in |C| are hyperelliptic and C ·Φ = 2. So the curves in |Φ | are mapped to conics on
S ⊆ Pr+1 and therefore are rational.

3.5.1. The hyperelliptic case.

Proof of Proposition 3.11 in case (a). There is a birational morphism ξ : S ′ → Fe such that the pencil |Φ | of
rational curves is mapped to the system |F| of fibres of the structure morphism Fe→ P1. Then the linear
system |C| is mapped to a linear system of curves of type |2H + kF| and, by acting if necessary with
elementary transformations, we may assume that the general curve in this system is smooth of genus g . The
adjoint system to |2H + kF| is |(k + e − 2)F|, and therefore g = k + e − 1. Since g > 2, we must have k > 3− e.
Moreover, since k = (2H + kF) ·E > 0, we must also have k > 0. Thus we are in the hyperelliptic case. �
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3.5.2. The non-hyperelliptic case. Next we consider case (b). In particular, g > 3.

Lemma 3.12. In case (b) the general curve in |C| is not hyperelliptic.

Proof. Suppose towards a contradiction that the general curve in |C| is hyperelliptic. Let p be a general
point of S ′ . Let us consider a general pencil P of curves in |C| having p as base point. If C is a general
curve in P and q is the point conjugate to p in the g12 on C, then by the generality of P , we can assume that
q is not a base point of P . Consider the Zariski closure D in S ′ of the set of points q ∈ S ′ such that p+ q is
a divisor of the g12 on the curves of P ; i.e.

D =
⋃
C∈P 0

{
q : p+ q ∈ g12 (C)

}
,

with P 0 ⊆ P the Zariski dense open subset parametrizing smooth members of P . Then D is a (rational)
curve on S ′ .

Any curve of |M | passing through p (which, by the generality of p, is a general curve of |M |) contains D
and therefore coincides with D . On the other hand, we claim that D does not cut out a canonical divisor
on C; hence it cannot be a member of |M |, and we have a contradiction.

It thus only remains to prove the claim. Let m be the multiplicity of p in D . Then

D ·C =mp+ q+R,

where R is contained in Bs(P )−p, with Bs(P ) the base locus of P . If R = 0, the claim holds (recall that g > 3).
Otherwise, R must contain all d − 1 points of Bs(P )− p since by the generality of P , there is a monodromy
action on Bs(P )− p, and it acts as the full symmetric group by [ACGH85, Section III.1, pp. 111–113]. Then
the claim follows as d > 4g − 4. �

One has C ·M = 2g − 2. Hence for an irreducible curve M to be contained in a curve in |C| is at most
2g −1 conditions, and equality holds if and only if M is smooth and rational and the restriction of |C| to M
is a complete linear series. We thus have

dim(|C −M |) > 3g − 3+ ε − (2g − 1) = g − 2+ ε > 1,

where ε is the non-negative integer such that C2 = 4g − 4+ ε.

Proof of Proposition 3.11 in the case dim(|C −M |) = g − 2+ ε. In this case the general curve in |M | is smooth
and rational. Since dim(|M |) = g − 1, we have M2 = g − 2, |M | is base-point-free, and φ|M | is a morphism
mapping S ′ to a surface Y ⊆ Pg−1. In this map the curves C are mapped to canonical curves of degree
2g − 2. Since Y has rational hyperplane sections, we have only the following possibilities:

(a) g = 3, and Y is P2.
(b) g = 6, and Y is the 2-Veronese image of P2.
(c) Y is a rational normal scroll.

In cases (a) and (b) we are in the planar case with δ = 4 and δ = 5, respectively. In case (c) we are in the
trigonal case. �

Next we assume s := dim(|C −M |) > g − 1+ ε. Recall that

C −M ∼ −KS ′ +F.

Lemma 3.13. In the above setting, F is in the fixed part of |C −M |.

Proof. Let D be an irreducible component of F. One has C ·D = 0, hence D2 < 0. Then KS ′ ·D > 0;
otherwise, D would be a (−1)-curve contracted by |C|, and we would have a contradiction. So we have
KS ′ ·F > 0 and therefore (−KS ′ +F) ·F < 0. Indeed, we also have F2 < 0 by the Hodge index theorem because
C ·F = 0. Since −KS ′ +F ∼ C −M is effective, there is a non-zero divisor G 6 F that is in the fixed part of
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| −KS ′ +F|. If G = F, we are done. Otherwise, set F1 = F −G and consider the linear system | −KS ′ +F1|. By
the same argument as above, we have (−KS ′ +F1) ·F1 < 0, so there is a non-zero divisor G1 6 F1 that is in
the fixed part of | −KS ′ +F1|. If G1 = F1, we are done. Otherwise, we repeat this argument till we eliminate
all of F from the fixed part of | −KS ′ +F|. �

Conclusion of the proof of Proposition 3.11. By Lemma 3.13, we can assume that s = dim(|−KS ′ |) > g−1+ε > 2.
Consider the map

φ|−KS′ | : S
′ 9999K Y ⊆ Ps.

One has
(−KS ′ ) ·C = (C −M −F) ·C = 4g − 4+ ε − (2g − 2) = 2g − 2+ ε.

Hence the curves in |C| are mapped via φ|−KS′ | to curves of degree δ 6 2g − 2+ ε. Let γ be the number of
conditions that containing the curve C imposes on the members of | −KS ′ |. One hasγ = g if ε = 0 and C is mapped via φ|−KS′ | to a canonical curve,

γ 6 g − 1+ ε otherwise.

In any event, unless ε = 0, s = g − 1, and γ = g , one has

dim(| −KS ′ −C|) = s −γ > 0,

so that −KS ′−C is effective. Hence we have −KS ′ ∼ C+T , with T effective. Then 0 ∼ KS ′+C+T ∼ F+M+T ,
which is not possible.

So the only possibility is that ε = 0, s = g − 1, γ = g , and | −KS ′ | cuts out the complete canonical series
on C. Since dim(| −KS ′ |) 6 9, we have g 6 10.

From −KS ′ |C = KC we deduce that OC(C) = OC(2KC) = OC(−2KS ′ ).
Let us set | −KS ′ | = A+ |B|, where A is the fixed part and |B| the movable part of | −KS ′ |. Since | −KS ′ |

cuts out the complete canonical series on C and C is not hyperelliptic by Lemma 3.12, we have that C ·A = 0
and |B| is not composed with a pencil; hence the general curve in |B| is irreducible.

First suppose that A = 0. Then, for any irreducible curve B ∈ |B|, one has pa(B) = 1. Moreover, from the
exact sequence

0 −→OS ′ −→OS ′ (B) −→OB(B) −→ 0

and from h0(S ′ ,OS ′ (B)) = g , we deduce that h0(B,OB(B)) = g − 1, which implies that B2 = g − 1. From the
index theorem applied to C and B, we have that C ∼ 2B. Moreover, there is a birational map η : S ′d P2

that maps |B| to the linear system of cubics with 10− g simple base points. From this, we see that we are in
the bicanonical Del Pezzo case.

Next suppose that A is non-zero. By Lemma 3.14 below, A · B = 2 and the general member of |B| is
rational. By the same argument we made above, we have B2 = g − 2, and φ|B| = φ|−KS′ | is a birational map
from S ′ to its image Y that is a surface of minimal degree in Pg−1.

If Y = P2, then φ|B| maps |B| to the linear system of lines and A to a conic Γ . The curves in |C| are
mapped to plane quartics. Since C ·A = 0, the linear system |C| is mapped to a linear system of quartics
with eight (proper or infinitely near) base points on the conic Γ . This shows that we are in the planar case
with δ = 4 and b = 8 (see the notation in Example 3.2).

If Y is the 2-Veronese image of P2, then we may identify Y with P2 and φ|B| maps |B| to the linear system
of conics and A to a line R. The curves in |C| are mapped to plane quintics. Since C ·A = 0, the linear
system |C| is mapped to a linear system of quintics with five (proper or infinitely near) base points along the
line R. Hence we are in the planar case with δ = 5 and b = 5 (see Example 3.2 again).

Finally, if g > 4, Y can be a rational normal scroll in Pg−1 and φ|B| maps |B| to the linear system |H|,
where H is the hyperplane section class on Y . The curves in |C| are mapped to canonical trigonal curves C′

on Y . To see that C′ is trigonal, consider a divisor D cut out on C′ by a line of the ruling of Y , and let d be
its degree; by the geometric Riemann–Roch theorem, the linear series |D | has dimension d − 2, and then it
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follows from Clifford’s theorem that it is a g13 as C′ is non-hyperelliptic. Let F be a line of the ruling of Y .
As in Example 3.5, one sees that C′ ∈ |3H− (g − 4)F|, so that Y is smooth, unless maybe g = 4. In the latter
case, Y can be a quadric cone, so its minimal desingularization is F2, and in this case we will work on F2
rather than on Y .

Suppose that Y = Fe, and let, as usual, E be the section such that E2 = −e. Then g and e have the same
parity and

H∼ E +
(e+ g

2
− 1

)
F

and, accordingly,

C′ ∼ 3H− (g − 4)F ∼ 3E +
(3e+ g

2
+1

)
F.

The morphism φ|B| : S ′→ Y consists in blowing down a number of (−1)-exceptional divisors. Let D be
the total such exceptional divisor. Then

−KS ′ = −φ∗|B|(KFe )−D.

Since φ∗|B|(H) = B, we have

A ∼ φ∗|B|(−KFe −H)−D.

By (3.1), we have

−KFe −H ∼ E +
(e − g

2
+3

)
F,

thus

A ∼ φ∗|B|
(
E +

(e − g
2

+3
)
F
)
−D.

One has

C′ ·
(
E +

(e − g
2

+3
)
F
)
= 10− g;

recall that C ·A = 0. Moreover,

−KFe ·
(
E +

(e − g
2

+3
)
F
)
= 8− g < 10− g.

In conclusion:

• S ′ is obtained from Fe by blowing up the (curvilinear) scheme Z of length 10− g that is the complete
intersection of a smooth curve C′ with a curve N of

∣∣∣E + ( e−g2 +3)F
∣∣∣.

• The linear system |C| on S ′ is the strict transform of the linear systems of the curves of |C′ | on Fe
containing Z, and

C2 = C′2 − (10− g) = 3g +6− (10− g) = 4g − 4,

as we wanted.
• The strict transform A of N on S ′ splits off the anticanonical system on S ′ .

Thus we are here in the trigonal case. �

This concludes the proof of Proposition 3.11, hence also that of Theorem 1.2. We end this section with an
elementary lemma that has been used above.

Lemma 3.14. Let S be a smooth rational surface, and write

| −KS | = A+ |B|

with A the fixed part and |B| the movable part. We assume that A is effective and non-zero and B big and nef.
Then A ·B = 2, and the general member of |B| is rational if it is irreducible.
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Proof. First, h0(−A) = 0. Next, by Kawamata–Viehweg vanishing, h1(−A) = h1(B+KS ) = 0. Finally,

h2(−A) = h0(KS +A) = h0(−B) = 0.

Thus χ(−A) = 0, hence by Riemann–Roch A ·B = 2. Therefore, (B+KS ) ·B = −A ·B = −2, and the result
follows. �

4. Classification of surfaces with a hyperelliptic section

This section is dedicated to Theorem 1.5. We prove it in Sections 4.1 and 4.2 and formulate it in useful
alternative ways in Section 4.3.

We consider a minimal resolution of singularities S ′ → S and work on S ′ . Being a hyperplane section
of S , C must be contained in the smooth locus of S , so that considered in S ′ it cannot intersect any curve
contracted by S ′→ S . It follows that, considered in S ′ , C is a big and nef divisor such that C2 = d.

We want to apply the Reider–Beltrametti–Sommese theorem below to C for k = 1, which requires C2 > 9.
We thus split the proof of Theorem 1.5 in two: the general case in which we assume that d > 9, equivalently
either g > 3, or g = 2 and d , 7,8, and the sporadic cases in which g = 2 and d = 7 or 8.

4.1. Proof of Theorem 1.5 in the general case

Theorem 4.1 (Reider, cf. [Rei88], Beltrametti–Sommese, cf. [BS91]). Let L be a nef line bundle on a smooth
surface S and k be a positive integer. Assume that L2 > 4k +5 and there exists a 0-dimensional subscheme Z ⊆ S
of length k +1 such that the restriction

H0(S,KS +L) −→H0 (Z, (KS +L)|Z )

is not surjective. Then there exists an effective divisor D containing Z and such that

L ·D − k − 1 6D2 < k +1.

Proof of Theorem 1.5 in the general case. The general case means that we assume d > 9; see above.
For all divisors x1 + x2 in the g12 of C, the adjoint system |KS ′ +C| does not separate x1 and x2, so

Theorem 4.1 tells us that there exists a divisor D on S ′ such that

x1,x2 ∈D and D ·C − 2 6D2 6 1.

The inequality D · C 6 3 forbids that D contains C: indeed, if D = C + D ′ with D ′ effective, then
D ·C = C2 +C ·D ′ > C2 > 9, which contradicts D ·C 6 3. This implies that D cannot be fixed as x1 + x2
moves in the g12 , for otherwise D would necessarily have C as an irreducible component.

Let M be the part of D that contains x1 and x2. By the previous observation, the family of these M has
no fixed part. Thus we have

2 6M ·C 6D ·C 6 3.

We first claim that M is irreducible. Indeed, otherwise at least one component M ′ of M would verify
M ′ ·C = 1; hence it would be mapped to a line by the map S ′→ S and give a ruling of S by lines, which
implies that S is a cone by Theorem 2.3. So M is irreducible, and we have the following possibilities (1) and
(2) to consider:

(1) M ·C = 2. Then M is mapped to a conic by S ′ → S ; in particular, it is a rational curve. Since it
moves in a family parametrized by the g12 on C, the surface S is then unirational, hence rational, so
the conclusion of our theorem holds in this case.

(2) M ·C = 3. Then M is mapped to a cubic by S ′→ S ; hence it spans either (a) a plane or (b) a 3-space
in Pd−g+1.
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Case (2) may happen only if d 6 9, for the following reason. If D ·C = 3, then D2 = 1, and thus by the
Hodge index theorem,

D2 ·C2 6 (D ·C)2⇐⇒ C2 6 9.

The upshot is that d = 9 and g = 2 or 3; hence C is an intersection of quadrics by Green’s theorem,
Theorem 2.2.

In case (a), the three points of M ∩C are located on the line 〈M〉 ∩ 〈C〉. To see that the latter is indeed a
line, note that 〈C〉 is a hyperplane in 〈S〉; hence it is impossible that the plane 〈M〉 be contained in 〈C〉 for
general C. On the other hand, C is an intersection of quadrics, so this situation is impossible. In conclusion,
case (a) cannot happen.

In case (b) the curve M is rational. Hence if M2 = 0, then the curves M are parametrized by a curve HM .
The curve HM is rational because there exists a morphism P1→HM mapping the element x1+x2 of the g12
to the corresponding curve M . The upshot is that in this case |M | is a base-point-free pencil. The restriction
of such a pencil to C would be a base-point-free g13 (remember that C viewed on S ′ does not intersect any
curve contracted by S ′→ S) containing all divisors of the g12 ; by Lemma 4.2 below, this is impossible. So we
must have M2 > 0. But in this case |M | cuts out a gr3 on C with r > 2, in contradiction with g > 2.

The conclusion is that only case (1) may happen, in which the conclusion of our theorem holds. �

Lemma 4.2. Let C be a curve of genus g , and assume it has a g12 , l, and a g
1
3 , m. We consider the following

condition:

(4.1) ∀x1 + x2 ∈ l, ∃z ∈ C : x1 + x2 + z ∈m.

If (4.1) holds, then either z is a base point of m, or g = 0. If (4.1) does not hold, then C is birational to a curve of
type (2,3) in P1 ×P1; in particular, g 6 2.

Proof. First assume that (4.1) holds. Consider z,z′ ∈ C such that x1 + x2 + z ∈ m and x′1 + x
′
2 + z

′ ∈ m for
some members x1 + x2 and x′1 + x

′
2 of l. Then

x1 + x2 + z ∼ x′1 + x
′
2 + z

′ , hence z ∼ z′ ,

and either C is rational, or z = z′ . In the latter case z is a base point of m. This proves the first part of the
lemma.

For the second part, consider the map

φ = (φl,φm) : C −→ P1 ×P1

defined by the two pencils l and m. It is straightforward to verify that (4.1) holds if and only if φ is not
birational, and this proves the second part of the statement. �

4.2. Proof of Theorem 1.5 in the sporadic cases

Proof of Theorem 1.5 in the sporadic cases. The sporadic cases are those when g = 2 and d = 7 or 8. Let
S ⊆ Pd−1, with d = 7,8, be a degree d surface with one hyperplane section a genus 2 curve C, such that S is
not a cone, hence not a scroll either by Theorem 2.3. Since d > 2g −2, we have κ(S) = −∞ as in Section 3.3.

Assume towards a contradiction that S is not rational. Then S is abstractly a ruled surface, necessarily
elliptic as it is not a scroll. Let S ′ be a minimal resolution of the singularities of S and Σ a minimal model
of S ′ ; then Σ is a ruled surface over an elliptic curve B. By [CC02, Theorem 1.4], since d > 7, if S ⊆ Pd−1 is
not 1-weakly defective, then for general p1,p2 ∈ S , the general section of S by a hyperplane tangent at both
p1 and p2 is a curve C0 with two nodes at p1 and p2 and no other singularity.

If C0 is irreducible, then it is a rational curve because S has sectional genus 2. Moreover, C0 dominates
the base B since C2

0 > 0, so we have a contradiction to the non-rationality of S . Otherwise, there are the
following two possibilities:

(1) C0 = C̄ +F1 +F2, with Fi ∩ C̄ = pi for i = 1,2, F1 ∩F2 = ∅, and all three C̄,F1,F2 smooth;
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(2) C0 = C̄ +F, and C̄ ∩F = {p1,p2}, C̄ and F smooth.

In case (1), by generality, the situation must be symmetric with respect to p1 and p2; hence F1 and F2 are
algebraically equivalent. Let F be their algebraic equivalence class. Necessarily, F2 = 0, and F moves in a
1-dimensional family. Moreover,

C ·F = C̄ ·F = 1;

hence F is mapped to a line, and S is a scroll, so we have a contradiction.
In case (2) at least one among C̄ and F dominates the base B; we assume it is C̄, so C̄ has genus at least

one. Since C has arithmetic genus 2, the only possibility is that C̄ has genus 1 and F has genus 0. Therefore,
F is in the class of the ruling of Σ. This leads to a contradiction as the two general points p1 and p2 may
not sit on a common ruling.

It thus only remains to examine the finitely many possibilities in which S ⊆ Pd−1 is 1-weakly defective,
listed in Proposition 4.3 below.

(a) If S were in the cone over the Veronese surface, then its hyperplane section C would be on the
Veronese surface itself. But then necessarily S ⊆ P6, i.e. d = 7, and since all curves on the Veronese surface
have even degree, this case cannot be realized.

(b) In this case S has sectional genus 3 (the general hyperplane section of S is birational to a plane

quartic everywhere tangent to the branch curve of the double cover S
2:1−−→ P2), and this is contrary to our

assumptions.
(c) In this case S is contained in a cone K(Λ,B) ⊆ Pd−1. Then B is an irreducible curve in Pd−3; hence

it has degree δ > d − 3. The cone K(Λ,B) is swept out by a 1-dimensional family (Πb)b∈B of planes
containing Λ. Let m be the number of points cut out on C off Λ by a general Πb. If m = 1, then S is
ruled by lines, which is excluded. Otherwise, let us consider the section of C by a general hyperplane H
containing the line Λ: this is the sum of the points Πb ∩C for b ∈H ∩B, plus possibly some points on the
vertex line Λ. The upshot is that

d = deg(H ∩ S) >mδ >m(d − 3),

which is possible only if d 6 6, in contradiction with our assumptions. Thus this case cannot happen either.
This completes the proof by contradiction that S is rational. Now, let us write

|KS ′ +C| = F + |M |,

where as usual F is the fixed part and |M | the mobile part. Since S is rational, it cuts out the complete
canonical series on C; hence |M | has dimension 1, and F ·C = 0 and M ·C = 2. Thus |M | is mapped to a
pencil of conics on S , and the proof is complete. �

Proposition 4.3 (Chiantini–Ciliberto, cf. [CC02]). Let S ⊆ Pr , r > 6, be a 1-weakly defective surface with
isolated singularities. Then S falls into one of the following three cases:

(a) S ⊆ P6 is contained in the cone over the Veronese surface and vertex a point, i.e.

S ⊆ K
(
p,v2(P

2)
)
.

(b) S ⊆ P6 is a quartic double plane π : S
2:1−−→ P2 embedded by the complete linear system |π∗2H |, where H is

the line class in P2.
(c) S is contained in the cone with vertex a line over a curve B:

S ⊆ K (Λ,B) ⊆ Pr .

The proof is a direct application of [CC02, Theorem 1.3] and is left to the reader.
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4.3. The Castelnuovo classification

As a consequence of Theorem 1.5, we can prove the following classification result, from which Corollary 1.6
will follow.

Corollary 4.4. Let S be as in Theorem 1.5. If S is not a cone, then S is represented by the complete linear system

|2E + (g +1+ e)F|

on the rational ruled surface Fe, 0 6 e 6 g +1, or possibly by a linear subsystem defined by simple base points along
a curvilinear scheme.

Proof. By Theorem 1.5, we know that S ′ is rational and contains a pencil |M | of rational curves such that
C ·M = 2. Then there is a birational morphism S ′→ Σ, with Σ a minimal rational ruled surface on which
|M | is mapped to the ruling. Since C ·M = 2 on S ′ , the linear system |C| is mapped in Σ to a linear system
with only simple and double base points. One may get rid of all double base points by performing elementary
transformations. Thus we may assume that Σ � Fe and the general member of |C| (in Σ) is smooth.

In our usual notation, C ∼ 2E + kF, and one finds k = g +1+ e with the adjunction formula. Then,

0 6 C ·E = g +1− e. �

Corollary 4.5. Let S be as in Theorem 1.5. If S is not a cone, then it is rational and represented by one of the
following linear systems or one obtained from those by adding simple base points along a curvilinear subscheme:

(a) Lg+3(g +1,2), the linear system of plane curves of degree g +3 with one base point of multiplicity g +1
and one double point;

(b) L2g+2−µ([2g −µ,2g−µ]), µ = 0, . . . , g , the linear system of plane curves of degree 2g +2−µ, with one base
point p of multiplicity 2g −µ and g −µ double base points infinitely near to p, pairwise distinct on the
exceptional divisor of the blow-up of p.

Proof. Take into account Corollary 4.4. If e = 0, we are in case (a). If e = 1, we are in case (b) with µ = g . If
e > 1, we perform e − 1 elementary transformations at general points, thus ending up on F1, after what we
arrive at P2 by contracting the (−1)-curve E on F1, with a linear system as in case (b) with µ = g +1− e. �

4.6. The classification of rational surfaces such that the general hyperplane section is hyperelliptic had been
classically worked out by Castelnuovo; cf. [Cas90a]. In more recent times, the classification of arbitrary
smooth surfaces having at least one smooth hyperelliptic hyperplane section has been worked out by Serrano,
cf. [Ser87], and Sommese–Van de Ven, cf. [SVdV87]. Our classification takes into account singular surfaces
as well, with the same condition that they have one hyperelliptic section, albeit with the restriction that the
degree d be at least 10, or at least 2g +3 if g = 2 or 3. Note that without this assumption, there are other
possibilities, including rational surfaces such that the general hyperplane section is not hyperelliptic (if the
pair (g,d) equals (3,8) or (4,9)) or is an elliptic ruled surface (if (g,d) = (3,8)); cf. [Ser87].

5. Gaussian maps and their cokernels

We consider a linearly normal curve C ⊆ Pr and let L = OPr (1)|C . In this section we define the Gaussian
map γC,L and compute its corank in a number of cases, thus proving Theorem 1.3.

5.1 (The Gaussian map γC,L). Let RC,L be the kernel of the multiplication map

µC,L : H
0(KC)⊗H0(L) −→H0(KC +L).

The Gaussian map
γC,L : RC,L −→H0(2KC +L)

is the map locally defined as
∑
i si ⊗ ti 7→

∑
i(si · dti − ti · dsi).
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We are interested in the corank of γC,L, i.e. the dimension of its cokernel in H0(2KC +L). Most of the
time, Castelnuovo’s theorem, Theorem 2.1, tells us that the multiplication map µC,L is surjective, which
readily gives the dimension of RC,L; then it suffices to compute the dimension of the kernel of γC,L to find
its corank. To do so, we shall use the canonical identification which we now explain.

5.2 (Restriction maps to the diagonal). We shall interpret the maps µC,L and γC,L in terms of operations on
the product C ×C. We let pr1 and pr2 be the two projections,

C ×C
pr1
��

pr2
��

C C,

and ∆ ⊆ C ×C be the diagonal. The multiplication map µC,L can be identified with the restriction map r1 to
the diagonal ∆, as indicated in the diagram below:

H0
(
pr∗1KC +pr∗2L

)
r1
��

H0(KC)⊗H0(L)

µC,L

��
H0

((
pr∗1KC +pr∗2L

)∣∣∣∣
∆

)
H0(KC +L)

From this we deduce the following identification of the kernel of the multiplication map µC,L:

RC,L �H
0(C ×C,pr∗1KC +pr∗2L−∆).

In turn, the Gaussian map γC,L can be identified with yet again a restriction map to the diagonal, namely
the following map r2:

r2 : H
0(C ×C,pr∗1KC +pr∗2L−∆) −→H0

(
∆, (pr∗1KC +pr∗2L−∆)

∣∣∣
∆

)
�H0(C,2KC +L).

For the last identification, note that ∆|∆ �N∆/C×C � −KC . The upshot is the following identification of the
kernel of γC,L:

(5.1) ker(γC,L) �H
0(C ×C,pr∗1KC +pr∗2L− 2∆).

Proposition 5.3. Let C be a hyperelliptic curve of genus g and L an effective line bundle. There is an identification

(5.2) ker(γC,L) �H
0 (C, (g − 3)g)⊗H0 (C,L− 2g) ,

where g denotes the class of the g12 on C.

Proof. We shall prove that the right-hand-sides of (5.2) and (5.1) are isomorphic, which suffices to prove the
proposition. First assume that there exists an effective divisor

E ∈
∣∣∣pr∗1KC +pr∗2L− 2∆

∣∣∣
in C ×C. Then for all p ∈ C, we have the following equality as divisors on the fibre pr∗2p � C:

E ∩pr∗2p =
∑2g−4
i=1 pi ,

with the points p1, . . . ,p2g−4 subject to the condition that 2p+
∑2g−4
i=1 pi ∈ |KC |. In general, 2p < g, and then

there must be two of the points pi , say p1 and p2, such that p + p1,p + p2 ∈ g. Then necessarily p1 = p2,
and thus

E ∩pr∗2p = 2p1 +
∑2g−4
i=3 pi with

p+ p1 ∈ g and∑2g−4
i=3 pi ∈ |KC − 2g| = |(g − 3)g|.



22 C. Ciliberto and T. Dedieu22 C. Ciliberto and T. Dedieu

This shows that E must contain the graph I ⊆ C ×C of the hyperelliptic involution with multiplicity 2; in
other words, 2I is a fixed part of the linear system |pr∗1KC +pr∗2L− 2∆|, and thus

H0 (C ×C,pr∗1KC +pr∗2L− 2∆) =H
0 (C ×C,pr∗1KC +pr∗2L− 2∆− 2I) .

The graph I is the unique divisor in |pr∗1g+pr∗2g−∆|; hence

pr∗1KC +pr∗2L− 2∆− 2I ∼ pr∗1 ((g − 3)g) + pr∗2 (L− 2g) ,(5.3)

and the conclusion follows if pr∗1KC +pr∗2L− 2∆ is effective. On the other hand, the linear equivalence (5.3)
implies that pr∗1KC +pr∗2L− 2∆ is effective if pr∗1((g − 3)g) + pr∗2(L− 2g) is effective; hence the proposition
holds unconditionally. �

Proposition 5.4. Let C be a non-hyperelliptic curve of genus 3 and L an effective line bundle on C. There is an
identification

(5.4) ker(γC,L) �H
0 (C,L− 3KC) .

Proof. As in proof of Proposition 5.3, we will identify the right-hand-side of (5.4) with that of (5.1), and this
will complete the proof. Assume there exists an effective divisor

E ∈ |pr∗1KC +pr∗2L− 2∆|

on C ×C. Then for all p ∈ C, we have the following equality as divisors on the fibre pr∗2p � C:

E ∩pr∗2(p) = p1 + p2,

where p1,p2 ∈ C are the only two points on C such that 2p + p1 + p2 ∈ KC : seeing C as a plane quartic,
p1,p2 are the residual intersection points of C and its tangent line at p. Thus E must contain the tangential
correspondence

T =
{
(q,p) ∈ C ×C : q , p and q ∈ TpC

}
,

where TpC denotes the tangent line to C at p in its model as a plane quartic. In other words, the linear
system |pr∗1KC +pr∗2L− 2∆| has T as a fixed part, and therefore

H0 (C ×C,pr∗1KC +pr∗2L− 2∆) =H
0 (C ×C,pr∗1KC +pr∗2L− 2∆− T ) .

Let us now compute the class of T . For all (q,p) ∈ C ×C, we have the equalities as divisors on C

T ∩pr∗1(q) = C ∩D
qC − 2q and T ∩pr∗2(p) = C ∩TpC − 2p,

where DqC is the first polar of q with respect to C (seen as a plane quartic); see, e.g. [Ded20, Appendix A].
First polars with respect to a plane quartic are plane cubics; hence DqC cuts out the divisor class 3KC on C
since the latter is canonically embedded. We thus find

T ·pr∗1(q) ∼ 3KC − 2q and T ·pr∗2(p) ∼ KC − 2p,

hence

T ∼ pr∗1KC + p∗2(3KC)− 2∆.
Finally, we find

(5.5) pr∗1KC +pr∗2L− 2∆− T ∼ pr∗2(L− 3KC),

and this completes the proof if pr∗1KC +pr∗2L− 2∆ is effective. On the other hand, it follows from (5.5) that
pr∗1KC +pr∗2L− 2∆ is effective if L− 3KC is effective; hence the result holds unconditionally. �

Proposition 5.5. Let C be a smooth projective curve of genus g > 2 and L an effective line bundle on C of degree
d > 0.
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(a) If C is hyperelliptic, then

cork(γC,L) = 2g +2− g · h1(L) + (g − 2) · h1(L− 2g)− cork(µC,L),

where g is the g12 on C.
(b) If C is non-hyperelliptic of genus 3, then

cork(γC,L) = h
0(4KC −L)− 3 · h1(L)− cork(µC,L).

Note that if L is not effective of positive degree, the multiplication map µC,L has kernel RC,L = 0, so that

cork(γC,L) = h
0(2KC +L).

Moreover, we emphasize that the corank of the multiplication map µC,L may be computed in virtually any
situation, using for instance Castelnuovo’s theorem, Theorem 2.1, or the base-point-free pencil trick; see also
[Cil83, Section 1], [Gre84, Theorem (4.e.1)], and [Par95]. Part (b) of Proposition 5.5 had already appeared as
[KL07, Proposition 2.9(a)].

Proof. One has

cork(γC,L) = h
0(2KC +L)−dim(RC,L) + dim(kerγC,L)

= h0(2KC +L)− h0(KC)h0(L) + h0(KC +L)− cork(µC,L) + dim(kerγC,L)

= (3g − 3+ d)− g
(
1− g + d + h1(L)

)
+ (g − 1+ d)− cork(µC,L) + dim(kerγC,L)

= (g +4)(g − 1) + d(2− g)− gh1(L)− cork(µC,L) + dim(kerγC,L)

by Riemann–Roch and the fact that L is effective of positive degree. For hyperelliptic C, one has

h0 ((g − 3)g) = g − 2 and h0(L− 2g) = d − g − 3+ h1(L− 2g),

and thus Proposition 5.3 gives the result. For C a genus 3 curve, Proposition 5.4 gives the result, noting that

14− d + h0(C,L− 3KC) = h0(C,4KC −L)

by Riemann–Roch and Serre duality. �

Proof of Theorem 1.3. Let us first consider the case when C is hyperelliptic. If d > 2g+3, then L is very ample
and non-special, hence µC,L is surjective by Castelnuovo’s theorem, Theorem 2.1; moreover, h1(L− 2g) = 0
for degree reasons as well, so that the result follows from Proposition 5.5.

If d > g +4 and L is general, then

L ∼ p1 + · · ·+ pg +2g+D0

for some general points p1, . . . ,pg ∈ C and some effective divisor D0. In particular, we may assume that
p1, . . . ,pg impose independent conditions on the canonical series |KC |; hence h1(L) = h1(L−2g) = 0 by Serre
duality, and, moreover, h1(L− q) = h1(L− q − q′) = 0 for all q,q′ ∈ C. It follows that L is very ample; hence
µC,L is surjective by Theorem 2.1, and the result follows from Proposition 5.5.

We now consider the case when C is non-hyperelliptic of genus 3. If d > 2g +1 = 7, then L is very ample
and non-special; hence µC,L is surjective by Theorem 2.1, and the result follows from Proposition 5.5.

If d = 2g = 6, then L is base-point-free and non-special, and the map induced by |L| may identify at
most two points p and q, which happens if and only if L = KC + p + q (all this can be seen by standard
considerations involving the Riemann–Roch theorem). It follows that µC,L is surjective in this case as well,
and then Proposition 5.5 gives the result.

If g +1 = 4 6 d 6 5 and L is general, then |L| is non-special, and the following may happen: if d = 5, |L|
is base-point-free and maps C to a plane quintic; if d = 4, |L| is a base-point-free g14 . In all cases, it follows
from Theorem 2.1 that µC,L is surjective, and the result follows from Proposition 5.5 as in the previous
cases. �
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6. Ribbons and extensions

In this section we interpret the extensions of a smooth polarized curve (C,L) in terms of the integration
of ribbons over (C,L), under the assumption that it has property N2. This leads to a necessary condition for
(C,L) to be extendable. We also define universal extensions and give a criterion for their existence. Most
results in this section are essentially an adaptation of some in [CDS20], and we will thus be brief; we also
propose various enhancements with respect to [CDS20].

Definition 6.1. Let (X,L) be a polarized variety such that L is very ample, and consider the projective
embedding X ⊆ PN defined by |L|. For all k ∈N∗, the polarized variety (X,L) is k-extendable if there exist a
Y ⊆ PN+k , not a cone, and an N -dimensional linear subspace Λ ⊆ PN+k such that X = Y ∩Λ.

In the above situation, we say that Y is a non-trivial k-extension, or simply a non-trivial extension, of (X,L).
We say that (X,L) is extendable if it is k-extendable for some k > 0. The trivial extension of (X,L) is defined
as the cone with vertex a point over X, in its embedding defined by |L|.

Definition 6.2. Let (X,L) be a polarized variety. A ribbon over (X,L), also known as a ribbon over X with
normal bundle L, is a scheme X̃ such that X̃red = X and the ideal IX/X̃ defining X in X̃ verifies the two
conditions I2

X/X̃
= 0 and IX/X̃ = L−1.

If X ⊆ PN is smooth and Y ⊆ PN+1 is a 1-extension of (X,OX(1)), then the first infinitesimal neighbour-
hood of X in Y is a ribbon over (X,OX(1)) which we denote by 2XY . A ribbon X̃ over (X,L) is integrable if
there exists an extension Y such that X̃ = 2XY ; in this situation we say that the variety Y is an integral of
the ribbon X̃.

A ribbon over (X,L) is uniquely determined by its extension class eX̃ ∈ Ext1(Ω1
X ,L

−1), and two ribbons
are isomorphic if and only if their extension classes are proportional. We will say that a ribbon is trivial if
its extension class is zero.

Let (X,L) be a smooth polarized manifold with L very ample, consider the corresponding embedding
X ⊆ PN , and identify this PN with a hyperplane H ⊆ PN+1. If X̃ is a ribbon over (X,L) contained in the
first infinitesimal neighbourhood 2HPN+1 , then its extension class lies in the kernel of the map

η : Ext1
(
Ω1
X ,L

−1
)
−→ Ext1

(
Ω1

PN
∣∣∣
X
,L−1

)
induced by the restriction map Ω1

PN
∣∣∣
X
→Ω1

X , as has been first observed in [Voi92]. When X is a curve, the

map η can be identified with TγC,L, the transpose of the Gaussian map defined in Section 5.1.

Theorem 6.3. Let (C,L) be a smooth polarized curve of genus g > 2 and degree d > 2g + 3. Then for all
v ∈ ker(TγC,L), the ribbon C̃v with extension class v is the first infinitesimal neighbourhood of C in at most one
surface, up to automorphism. In particular, if (C,L) is extendable, then γC,L is not surjective.

The precise meaning of the unicity statement above is the following. Consider C ⊆ Pd−g in its embedding
defined by |L|, and identify this Pd−g with a hyperplane H ⊆ Pd−g+1. Let S,S ′ ⊆ Pd−g+1 be two surfaces
such that S ∩H = S ′ ∩H = C. If 2CS � 2CS ′ , then there is exists a projectivity of Pd−g+1 acting as the
identity on H and mapping S to S ′ .

One gets the necessary condition for the integrability of (C,L) by applying the unicity statement to the
zero vector 0 ∈ ker(TγC,L). Indeed, the trivial ribbon C̃0 is the first infinitesimal neighbourhood of C in the
cone over C, so the unicity statement tells us that if S is a non-trivial extension of C (thus, S is not a cone),
then the two ribbons 2CS and C̃0 are distinct, so 2CS comes from a non-zero vector in ker(TγC,L).

6.4. We now outline the proof of Theorem 6.3, as this will be needed later on. It follows a construction
given in [Wah97]. By Theorem 2.2, the curve (C,L) has property N2. Thus the homogeneous ideal of C in
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its embedding in Pd−g defined by |L| has a minimal resolution as follows:

(6.1) · · · −→ OPd−g (−3)⊕m1
r−→OPd−g (−2)⊕m

f−→ IC/Pd−g −→ 0.

We view f as a vector of quadratic equations defining C scheme-theoretically, in the homogeneous coordinates
x = (x0 : . . . : xd−g ) on Pd−g .

On the other hand, there is an exact sequence of vector spaces

(6.2) 0 −→H0(C,L)∨ −→H0(C,NC/Pd−g (−1)) −→ ker
(
TγC,L

)
−→ 0;

cf. [CDS20, Lemma 3.2] and the references given there. Let v ∈ ker(TγC,L), and choose a lift of v in
H0(C,NC/Pd−g (−1)). By (6.1), the latter space is a subspace of H0(C,OC(1))⊕m, so we can represent the lift
of v as a length m vector fv of linear forms in the variable x.

Then the ribbon C̃v with extension class v is the subscheme of Pd−g+1 defined by the equations

(6.3) f(x) + tfv(x) = 0, t2 = 0

in the homogeneous coordinates (x : t). In turn, any surface S ⊆ Pd−g+1 containing C̃v is defined by the
equations

(6.4) f(x) + tfv(x) + t
2h = 0,

where h is a length m vector of constants, subject to conditions that we will not discuss here (see [CDS20,
Section 4.9]). The upshot of these conditions, however, is that two vectors h and h′ defining two surfaces S
and S ′ containing the ribbon C̃v differ by an element of H0(C,NC/Pd−g (−2)). Then the unicity statement
follows from the vanishing of this space when (C,L) has property N2; cf. [CDS20, Lemma 3.6] and the
references given there. �

One should keep in mind the following conclusions from the above considerations. The projective space
P(ker(TγC,L)) parametrizes isomorphism classes of non-trivial ribbons over (C,L) likely to be integrated to
a non-trivial extension S of (C,L). Each such ribbon may be integrated to at most one extension, and each
1-extension conversely corresponds to a point in P(ker(TγC,L)).

In analogy with the terminology from deformation theory,(1) we will say that the extension theory of (C,L)
is unobstructed if every ribbon corresponding to a point of P(ker(TγC,L)) is integrable; otherwise, we say that
it is obstructed. When the extension theory is unobstructed, we will see that we can construct a universal
extension, in the following sense.

Definition 6.5. Let (C,L) be a smooth polarized curve of genus g > 2 and degree d > 2g + 3. Let
r = cork(γC,L). An r-extension Y ⊆ Pd−g+r of (C,L) is universal if the following condition holds: for all
[v] ∈ P(ker(TγC,L)), there exists a unique (d − g +1)-plane Λ ⊆ Pd−g+r containing C such that the surface
Y ∩Λ is an integral of the ribbon over (C,L) defined by the extension class v.

6.6. Note that, under the above assumptions, if Y ⊆ Pd−g+k is a k-extension of (C,L), then it is defined by
equations

f(x) +F(x) · Tt+H(t) = 0

in homogeneous coordinates (x : t), where x = (x0 : . . . : xd−g ) and t = (t1 : . . . : tk), such that the span 〈C〉 is
defined by t = 0; see for instance [Pee11, Theorem 20.3]. Here, F is an m× k matrix of linear forms in x, and
H is a length m vector, constant in x and quadratic in t. One thus sees that the map

Λ ∈ Pd−g+k/〈C〉 7−→ [2CY∩Λ] ∈ P(ker(TγC,L))

is linear, given by the matrix F. (Here Pd−g+k/〈C〉 denotes the (k − 1)-dimensional projective space of
(d − g +1)-planes Λ containing C, and the map associates a (d − g +1)-plane Λ ⊆ Pd−g+r containing C with
the isomorphism class of the ribbon 2CY∩Λ).

(1)In fact, if one looks at the construction in [Wah97], one sees that this is more than a mere analogy.
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Lemma 6.7. Let (C,L) be a smooth polarized curve of genus g > 2 and degree d > 2g + 3. Let Y ⊆ PN be an
extension of (C,L), of dimension 1+ cork(γC,L). Assume that for general [e] ∈ P(ker(TγC,L)), there is a linear
subspace Λ ⊆ PN containing C and cutting out a surface on Y such that the ribbon 2CY∩Λ has extension class e
(in other words, 2CY∩Λ � C̃e). Then Y is a universal extension of C.

Proof. We consider the map

Λ ∈ Pd−g+cork(γC,L)/〈C〉 7−→ [2CY∩Λ] ∈ P
(
ker

(
TγC,L

))
as in Section 6.6 above. The assumption made on Y means that this map is dominant. It is moreover
linear, as has been observed in Section 6.6. Since its target and its source are projective spaces of the same
dimension, namely cork(γC,L)− 1, it is an isomorphism, which means that Y is a universal extension of
(C,L). �

Theorem 6.8. Let (C,L) be a smooth polarized curve of genus g > 2 and degree d > 2g +3. If the general ribbon
in P(ker(TγC,L)) is integrable, then all such ribbons are integrable, and there exists a universal extension of (C,L).

Proof. Let us first prove, to fix ideas, that if all ribbons in P(ker(TγC,L)) are integrable, then there exists a
universal extension of (C,L). The proof is identical to that of [CDS20, Section 5], so we will be brief. The
idea is that we can package together all ribbons in P(ker(TγC,L)) and their integrals in a projective bundle

P(O⊕d−gP(ker(TγC,L))
⊕OP(ker(TγC,L))(1)), and then the universal extension is the image of the family of all surface

integrals by the map defined by the relative O(1) of this projective bundle. This works as follows.
One first chooses a section

v ∈ ker
(
TγC,L

)
7−→ fv ∈H0(C,NC/Pd−g (−1))

of (6.2). For all v ∈ ker(TγC,L), we let hv be the unique vector of constants such that the integral of the
ribbon C̃v is defined by the equations (6.4) with h = hv . For all λ ∈ C, one has

(6.5) fλv = λfv ,

so the ribbon C̃λv (isomorphic to C̃v ) is defined by the equations

f(x) + tfλv(x) = f(x) +λtfv(x) = 0, t2 = 0.

One may thus deduce the equations of the integral of C̃λv from those of C̃v ; namely, they are

f(x) +λtfv(x) +λ
2t2hv = 0.

By the unicity of the vector of constants h attached to λv, we conclude that

(6.6) hλv = λ
2hv .

Next, let us construct the family S of all surface extensions of (C,L) in P(O⊕d−gP(ker(TγC,L))
⊕OP(ker(TγC,L))(1))

by gluing affine pieces. We choose a basis v1, . . . , vr of ker(TγC,L), r = cork(γC,L), and for i = 1, . . . , r we
consider the subscheme Si of Pd−g+1 ×Ar−1 defined by the equations

f(x) + tf(x)a1v1+···+vi+···+arvr + t
2ha1v1+···+vi+···+arvr = 0

in the homogeneous coordinates (x : t) on Pd−g+1 and affine coordinates (a1, . . . , âi , . . . , an) on Ar−1 (with the
convention that the term under the hat should be omitted); it is flat over Ar−1. The homogeneity properties
(6.5) and (6.6) ensure that any two pieces Si and Sj glue along their open subsets defined by (aj , 0) and
(ai , 0), via the isomorphism

([x : t], a1, . . . , âi , . . . , an) 7−→
(
[x : ait],

a1
aj
, . . . , âj , . . . ,

an
aj

)
.



Extensions of curves with high degree with respect to the genus 27Extensions of curves with high degree with respect to the genus 27

The gluing of all S1, . . . ,Sr gives the family S ⊆ P(O⊕d−gP(ker(TγC,L))
⊕OP(ker(TγC,L))(1)) as we wanted. Finally, the

construction of the universal extension as the image of S by the relative O(1) of the projective bundle is
exactly the same as in [CDS20, Corollary 5.5].

It remains to prove that the integrability of the general ribbon implies that of all ribbons in P(ker(TγC,L)).
Let [v0] ∈ P(ker(TγC,L)). If the general ribbon is integrable, we can find an arc D ⊆ P(ker(TγC,L)) centred
at [v0] such that for all [v] ∈D◦ =D− [v0], the corresponding ribbon C̃v is integrable. Then we have the
following two families, defined by equations as above:

• the flat family C̃ ⊆ Pd−g+1 ×D of all ribbons C̃v , [v] ∈D, and
• the flat family S◦D ⊆ Pd−g+1 ×D◦ of the surface integrals of the ribbons C̃v , [v] , [v0].

Taking the closure SD of S◦D in Pd−g+1 ×D, we obtain a flat family of surfaces over D. Since S◦D contains
C̃
∣∣∣
D◦

, SD will contain C̃; hence the central fibre of SD is an integral of the ribbon C̃v0 . Therefore, all ribbons

in P(ker(TγC,L)) are integrable, and the theorem is proved. �

6.9. In the following sections we shall apply the above Theorem 6.8 to various specific situations in which we
know the dimension of P(ker(TγC,L)). Our strategy to verify that the general ribbon over (C,L) is integrable
is to produce a family of extensions of (C,L) of the same dimension as P(ker(TγC,L)). Then, by the unicity
theorem, Theorem 6.3, there is an injective map from the parameter space of this family of extensions to
P(ker(TγC,L)), which is dominant for dimension reasons.

Finally, let us note that all the above considerations may be adapted to polarized manifolds (X,L) of
arbitrary dimension. The only difference is that the exact sequence (6.2) should be slightly modified; see
[CDS20, Lemma 3.5].

7. Extensions of polarized genus 3 curves

In this section we study closely the extensions of polarized curves of genus 3 and degree d > 2g + 3,
in order to determine whether their ribbons are obstructed or not. Our main output in this direction is
Theorem 1.7.

7.1 (Classification of surfaces with sectional genus 3). The classification of rational surfaces with hyperplane
sections that are non-hyperelliptic curves of genus 3 had been classically worked out by Castelnuovo; cf.
[Cas90b]. He proved that all such surfaces are represented by a linear system of plane quartics. More
recently Lanteri and Livorni, cf. [LL89], have classified all pairs (S,C) where S is a smooth surface, C ⊆ S is
a smooth genus 3 curve, and the linear system |C| is globally generated and ample. For d > 8, Theorem 1.2
provides more generally the classification of surfaces, possibly singular, with one hyperplane section that is a
linearly normal non-hyperelliptic curve of genus 3.

Corollary 7.2. Let (C,L) be a non-hyperelliptic polarized curve of genus g = 3 and degree d > 4g − 4 = 8. Then
all surface extensions of (C,L) are rational. If d > 9, they are all realized by a linear system of plane quartics; if
d = 8, they are realized either by a linear system of plane quartics, or by a complete linear system of plane sextics
with seven base points of multiplicity 2 as in Example 3.3.

Proof. This is a direct application of Theorem 1.2. �

Lemma 7.3. Let C be a non-hyperelliptic curve of genus 3 and L be a line bundle of degree d > 0 on it. Then
h0(C,4KC −L) takes the following values:
• If d > 16, then h0(4KC −L) = 0.
• If d = 16, then h0(4KC −L) = 1 if L = 4KC and 0 otherwise.
• If d = 15, then h0(4KC −L) = 1 if L = 4KC − p for some p ∈ C, and 0 otherwise.
• If d = 14, then h0(4KC −L) = 1 if L = 4KC − p − q for some p,q ∈ C, and 0 otherwise.
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• If d = 13, then L may always be written as 4KC − p − q − r for some p,q, r ∈ C, and h0(4KC −L) = 2 if
these three points are aligned on the canonical model of C, and 1 otherwise.
• If d = 12, then L may always be written as 4KC −p−q−r−s for some p,q, r, s ∈ C, and h0(4KC −L) = 3
if these four points are aligned on the canonical model of C, and 2 otherwise.
• If d < 12, then h0(4KC −L) = 14− d.

Proof. If d > 16, then deg(4KC−L) 6 0 and the result is clear. If d = 15, we can always write L = 4KC−p0+N
for some arbitrarily chosen point p0 ∈ C and some degree 0 line bundle N . If h0(4KC − L) > 0, then
p0 −N ∼ p for some p ∈ C; hence L = 4KC − p. In this case, h0(4KC −L) = h0(p) = 1. If d = 14, it follows
as in the previous case that L = 4KC − p − q if h0(4KC − L) > 0. In this case, h0(4KC − L) = h0(p + q) = 1
since C is non-hyperelliptic. If d 6 13, by Jacobi’s inversion theorem (see [ACGH85, p. 19]), we can always
write L = 4KC −

∑16−d
i=1 pi for some points p1, . . . ,p16−d , and then the result follows by Riemann–Roch and

Serre duality. �

Proof of Theorem 1.7. The “only if” part of (i) is a direct consequence of Theorem 6.3, taking into account
Theorem 1.3 and Lemma 7.3. On the other hand, Example 3.2 provides an extension for all (C,L) with
L = 4KC −

∑16−d
i=1 pi , thus proving the “if” part of (i): explicitly, this goes as follows. Consider C in its

canonical embedding as a smooth plane quartic, and let ε : S→ P2 be the blow-up of the plane at the points
p1, . . . ,p16−d ∈ C ⊆ P2, with exceptional divisors E1, . . . ,E16−d (when some pi coincide, this means that we
blow up infinitely near points). Let H denote the pull-back to S of the line class on P2. The linear system
|4H −

∑16−d
i=1 Ei | on S cuts out the complete linear series |4KC −

∑16−d
i=1 pi | = |L| on the proper transform of C,

which is very ample; it is thus base-point-free and defines a birational morphism from S to an extension of
(C,L).

Let us now prove (ii). If d > 14, there is nothing to add to (i) since in these cases cork(γC,L) is either 0
or 1 by Lemma 7.3, so we will suppose d 6 13. Given [Z] ∈ (P2)[16−d] for a length 16− d, 0-dimensional
subscheme Z ⊆ P2, we let SZ be the blow-up of P2 along Z, with total exceptional divisor EZ , and call H
the pull-back of the line class on P2. The locus S ⊆ (P2)[16−d] parametrizing those Z such that the linear
system |4H −EZ | on SZ contains a smooth curve is dense. Moreover, for all [Z] ∈ S , since d > 9, this linear
system has dimension d −2, is base-point-free, and defines a birational morphism. We consider the universal
family

L −→ S
of these linear systems and the dense open subset L◦ ⊆ L consisting of those pairs (Z,C) such that C is
a smooth member of |4H −EZ | on SZ . After dividing out by the automorphism group of P2, we get the
moduli space SC of such pairs, which has dimension

dim
(
(P2)[16−d]

)
+ (d − 2)− 8 = 22− d.

Next we consider the universal Jacobian J d3 parametrizing degree d line bundle on genus 3 curves, which
has dimension 4g − 3 = 9, and its dense subset J ◦ corresponding to non-hyperelliptic curves. We shall
examine the map

c : (Z,C) ∈ SC 7−→
[
C, OSZ (4H −EZ )

∣∣∣
C

]
∈ J ◦,

the fibre of which over a point (C,L) consists of distinct isomorphism classes of extensions of (C,L). By
our proof of the “if” part of (i), the image of c is the locus of those (C,L) such that L may be written
as 4KC −

∑16−d
i=1 pi , which is the whole J ◦ since we are assuming d 6 13. Therefore, all fibres of c have

dimension at least
dim(SC)−dim(J ◦) = 13− d.

If d < 12, this proves that for all (C,L), the general ribbon in P(ker(TγC,L)) is integrable, by Lemma 7.3 and
the argument given in Section 6.9. We conclude by Theorem 6.8 that all ribbons are integrable and there
exists a universal extension.
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If d = 12 or 13, the same argument proves (ii) for all (C,L) such that L = 4KC−
∑16−d
i=1 pi with p1, . . . ,p16−d

not all on a line in P2.
We now treat the two remaining cases separately, in the same spirit as the others. First assume d = 13,

and let S1 be the blow-up of P2 along three pairwise distinct points lying on a line, with total exceptional
divisor E1. Consider the locus of smooth quartics in the linear system |4H −E1|, which has dimension 11,
and take its quotient by the automorphism group of S1, which is the subgroup of the projectivities of P2

acting as the identity on a line, hence has dimension 3 (it is the group of homotheties and translations of
the affine plane). We thus get the moduli space SC1 of pairs (S1,C), of dimension 8. The image of SC1
by the map c : L◦ → J ◦ is the locus J 1 of pairs (C,L) such that L = 4KC −D with |D | a g13 , which has
dimension 7 (note that if p1,p2,p3 ∈ C ⊆ P2 are aligned, then they move in a base-point-free g13 , and thus
up to linear equivalence we may always assume that they are pairwise distinct). The upshot is that the fibres
of the map

c|SC1 : SC1 −→ J
1

all have dimension at least 1, and we conclude as in the previous cases.
In the case d = 12, we fix three pairwise distinct points q1,q2,q3 on a line in P2 and let S2 be the

complement of {q1,q2,q3} in this line. For all q ∈ S2, we let Sq be the blow-up of P2 at q1,q2,q3, and q, with
total exceptional divisor Eq. The Sq form a 1-dimensional family of pairwise non-isomorphic surfaces, all
with automorphism group the subgroup of the projectivities of P2 acting as the identity on a line, which has
dimension 3. Quotienting the universal family of the linear systems |4H −Eq|, each of dimension 10, by this
automorphism group, we get the moduli space SC2 of pairs (Sq,C), of dimension 10+1− 3 = 8. The image
of SC2 by the map c : L◦→J ◦ is the locus J 2 of pairs (C,3KC), which has dimension 6. Therefore, the
fibres of the map

c|SC2 : SC2 −→ J
2

all have dimension at least 2, and we conclude as in the previous cases. �

Remark 7.4. In the case when L = 4KC −D with |D | a g13 , there exist extensions of (C,L) supported on a
surface different from S1. Indeed, choosing a member of |D | of the form 2p1 + p2, we see that the blow-up
S ′1 of P2 along three aligned points, two of which are infinitely near, provides an extension of (C,L). This
surface is rigid as S1 is, but its automorphism group is larger: it is the subgroup of those projectivities fixing
the two points p1 and p2 (hence also leaving the line 〈p1,p2〉 stable), which has dimension 4. We thus get a
moduli space SC′1 of dimension 11−4 = 7 which surjects onto J 1. Thus for all (C,L) ∈ J 1, there is at least
one extension supported on the surface S ′1.

For all C, there are finitely many g13 having a member of the form 3p1, and the corresponding pairs
(C,L) form a 6-dimensional locus in J ◦. These pairs have an extension supported on S ′′1 , the blow-up of P2

at three infinitely near points lying on a line. The surface S ′′1 is rigid and has an automorphism group of
dimension 5.

Similar considerations may be made about the extensions of the polarized curves (C,3KC).

Remark 7.5. One may want to prove Corollary 7.2 for d > 9 directly with the above considerations, without
resorting to Theorem 1.2. Our proof of (ii) shows that for all (C,L), the general extension of (C,L) is rational
and realized by a linear system of plane quartics. However, it is not clear to us why these two properties
should be preserved when one specializes to an arbitrary extension of (C,L).

7.6 (Remarks on the extensions in degree d < 2g +3). In this case Green’s theorem, Theorem 2.2, no longer
applies to guarantee that (C,L) has property N2, so that, in particular, one ribbon may a priori have several
different integrals.

We will mostly concentrate on the case d = 2g + 2 = 8. If L , 2KC , then all extensions of (C,L) are
realized by a linear system of plane quartics by Corollary 7.2, and the analysis carried out in the proof of
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Theorem 1.7 applies mutatis mutandis. We find that if (C,L) is general, then the extensions of (C,L) form a
family of the expected dimension

5 = cork(γC,L)− 1 = h0(4KC − 2L)− 1.

We cannot say much more, however, because of the possible failure of property N2.
The case L = 2KC is more interesting. In this case we still have, for general C, a 5-dimensional family of

extensions of (C,2KC) given by linear systems of plane quartics: these extensions are obtained by projecting
v4(P2) from eight points that, in P2, lie on a conic, so that they sum to a bicanonical divisor of any quartic
containing them. There is, however, another family of extensions, given by complete linear systems of plane
sextics with seven base points of multiplicity 2. One finds, using similar arguments to those in the proof of
Theorem 1.7 above, that for general C, these form a 6-dimensional family. We thus find two independent
families of extensions of (C,2KC), one of the expected dimension and one superabundant.(2)

In degree d < 8 the situation is similar. In fact, linear systems of sextics with seven double base points of
degree d < 8 necessarily have further base points, so that the funny situation for 2KC analyzed above now
happens for more line bundles (e.g. in degree 7 it happens for those line bundles that may be written as
2KC − p for some p ∈ C, which form a 1-dimensional family in the Jacobian of C). Note, however, that for
d < 8, we are out of the range of application of Theorem 1.2 and Corollary 7.2 so that there may be even
more families of extensions.

7.7 (Invariants of the universal extensions). We now list the degrees and dimensions of the universal
extensions of genus 3 curves gotten above, limiting ourselves to the case when the dimension is at least 3:

• If d = 13 and L = 4KC − p − q − r for some p,q, r ∈ C on a line in the canonical model of C, we find
a threefold X of degree d = 13 in P12.
• If d = 12 and L = 4KC −p− q− r − s for some p,q, r, s ∈ C not on a line in the canonical model of C,
we find a threefold X of degree d = 12 in P11.
• If d = 12 and L = 3KC , we find a fourfold X of degree d = 12 in P12.
• If 9 6 d 6 11, we find a (15− d)-dimensional variety of degree d in P11 (note that 4 6 15− d 6 6).

Smooth projective varieties of degree d = 9,10,11 have been classified in [FL94], [FL97], and [BB05],
respectively. Running through the corresponding lists, we notice that there is no smooth 6-fold of degree 9
in P11; hence the universal extension in degree 9 is certainly singular. By contrast, in degree 10 and 11,
there exist a smooth 5-fold and a smooth 4-fold of sectional genus 3 in P11, namely P1 ×Q4 in the Segre
embedding and a scroll over P2, respectively. It is possible that these coincide with the universal extensions
above, but we will not investigate this now.

8. Extensions of polarized hyperelliptic curves

In this section we study closely the extensions of polarized hyperelliptic curves of genus g and degree
d > 2g + 3 in order to determine whether their extension theory is obstructed or not. Our main output
in this direction is Theorem 1.8. Our general strategy is similar to that employed for genus 3 curves in
Section 7, but the situation for hyperelliptic curves is slightly more complicated and requires more care.

8.1. For all µ = g +1, g, . . . ,0, we let Hµ be the complete linear system

|2H +µF| = |2E + (2g +2−µ)F| on Fg+1−µ.

It defines a projective surface of degree 4g + 4 in P3g+5, which is the maximum possible degree for a
non-trivial extension of a linearly normal curve of genus g > 2; see Corollary 2.6. Since we focus on

(2)We note in addition that those surfaces obtained by a linear system of quartics with eight base points lying on a conic have
a singularity of type 1

4 (1,1); i.e. such a surface is locally the cone over a rational normal quartic curve. We also emphasize that

sextics with seven double points are Cremona-minimal, hence not Cremona-equivalent to smooth quartics; see [CC10] and [MP12].
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polarized curves of degree d > 2g +3, in order for property N2 to hold, the maximal number of points from
which we may project these surfaces is

(8.1) bmax = 2g +1.

Proposition 8.2. Let C be a hyperelliptic curve of genus g and e an effective divisor of degree µ on C, 0 6 µ 6 g+1.
There exists an embedding of C as a member of the linear system |2H +µF| on Fg+1−µ such that E|C = e if and
only if no two points of e are conjugate with respect to the hyperelliptic involution on C.

Proof of the “only if” part of Proposition 8.2. Suppose C is a smooth member of the linear system |2H +µF|
on Fg+1−µ, and let

E|C = e1 + · · ·+ eµ.
Consider two points ei and ej of E|C , distinct in the sense that i , j . Since E ·F = 1 and the g12 on C is cut
out by F, the only possibility for ei and ej to be conjugate is that ei = ej and it is a ramification point of the
g12 . However, the condition that ei = ej means that C is tangent to E at this point, and the condition that it
is a ramification point of the g12 means that C is tangent to the fibre at this point, so these two conditions
may not be realized simultaneously as C is smooth. The conclusion is thus that for all i , j, ei and ej are
not conjugate. �

In case µ 6 g , this can also be proved by cohomological considerations, as the condition we want to prove
is then equivalent to h0(C, E|C) = 1, which in turn is equivalent to h1(Fg+1−µ,E −C) = 0, as can be seen by
considering the restriction exact sequence. The vanishing holds because E −C has vanishing h0 and h2 (the
latter by Serre duality), and χ(E −F) = 0 by Riemann–Roch.

Proof of the “if” part of Proposition 8.2. Let C be a hyperelliptic curve of genus g and e an effective divisor of
degree µ on C, no two points of which are conjugate. We let f be the class of the g12 and h = e+ (g +1−µ)f.
One has

KC − h = (g − 1)f− e− (g +1−µ)f = (µ− 2)f− e,
so h is non-special since our assumption on e implies that it imposes independent conditions to any multiple
of f. Therefore, h0(C,h) = g −µ+3 by Riemann–Roch.

We first consider the case µ 6 g . Let v be a basis of H0(C,e) and s, t be a basis of H0(C,f). Then
vsg+1−µ, . . . , vtg+1−µ are linearly independent and span a hyperplane in H0(C,h). Finally, we choose u
such that u,vsg+1−µ, . . . , vtg+1−µ form a basis of H0(C,h). Arguing in the same way as above, we find
that H0(C,h + f) has dimension g − µ + 5 and us,ut,vsg−µ+2, . . . , vtg−µ+2 is a basis of this space. Thus
the linear system |h+ f| maps C in Pg−µ+4 in such a way that it sits in a rational normal scroll built on a
line and a rational normal curve of degree g − µ+ 2 spanning complementary subspaces, that is, Fg+1−µ
in its embedding given by |H + F|, and F|C = f and H |C = h. This completes the proof in this case, as
H = E + (g +1−µ)F. The argument is similar when µ = g +1; we leave it to the reader. �

8.3. Proof of Theorem 1.8 (a). Let (C,L) be a polarized hyperelliptic curve of genus g and degree d. We first
prove the result in the case d = 4g +4. We shall see that there are two ways of proceeding in order to write
L as 2h+µf, so as to be able to apply Proposition 8.2. We call these the even and odd ways, respectively
(note that one way is sufficient to prove (a)). We keep the notation f for the class of the g12 on C and write
g = 2γ + ε with ε ∈ {0,1} and γ ∈N.

In the even way, one first chooses a line bundle M+ of (even) degree 2g +2 such that L = 2M+. Then,
there is a unique integer k ∈ {0, . . . ,γ + ε} such that M+ may be written as

M+ = e+ (γ +1+ k)f,

with the condition that e is the sum of g + ε − 2k points pairwise not conjugate with respect to the g12 (k is
thus the largest integer such that M+ − (γ +1+ k)f is effective). We set

µ = g + ε − 2k (even) and h = e+ (g +1−µ)f.



32 C. Ciliberto and T. Dedieu32 C. Ciliberto and T. Dedieu

By Proposition 8.2, there exists an embedding of C as a member of the linear system |2H +µF| on Fg+1−µ
such that E|C = e and F|C = f. The normal bundle of C in this embedding is

NC/Fg+1−µ = 2h+µf

= 2e+ (2g +2−µ)f
= 2e+2(γ +1+ k)f = 2M+ = L;

hence the embedding of Fg+1−µ defined by the complete linear system |2H +µF| is an extension of (C,L), as
we wanted.

In the odd way, one chooses instead a line bundle M− of (odd) degree 2g + 1 such that L = 2M− + f.
Then, there is a unique integer k ∈ {0, . . . ,γ} such that M− may be written as

M− = e+ (γ + ε+ k)f,

with e the sum of g +1− ε − 2k points pairwise not conjugate with respect to the g12 . We set

µ = g +1− ε − 2k (odd) and h = e+ (g +1−µ)f.

By Proposition 8.2, there exists an embedding of C as a member of the linear system |2H +µF| on Fg+1−µ
such that E|C = e and F|C = f. The normal bundle of C in this embedding is

NC/Fg+1−µ = 2h+µf

= 2e+ (2g +2−µ)f
= 2e+ [2(γ + ε+ k) + 1]f = 2M− + f = L,

which proves that (C,L) is extendable in the same fashion as in the even way.
It remains to prove (a) when d < 4g +4. In this case we choose b = 4g +4− d distinct points p1, . . . ,pb

on C, to the effect that

L] = L(p1 + · · ·+ pb)

is a line bundle of degree 4g +4 on C. Thus there exists a non-trivial extension S] of (C,L]) by the case
d = 4g +4, and we get an extension of (C,L) by simple internal projection of S] from the points p1, . . . ,pb,
as in Example 3.4. �

To prove the remaining parts of Theorem 1.8, we will apply Proposition 8.2 in the following way.

Corollary 8.4. Let C be a hyperelliptic curve of genus g , µ ∈ {g +1, g, . . . ,0}, and b a non-negative integer. The
locus in the Jacobian J4g+4−b(C) of degree 4g +4− b line bundles L on C such that L is the normal bundle of C
in a simple internal projection from b points of the surface (Fg+1−µ,2H +µF) has dimension min(g,µ+ b).

More precisely, the locus in the corollary parametrizes those L such that the following holds: there exists
an embedding of C as a smooth member of the linear system |2H +µF| on Fg+1−µ passing through b points
p1, . . . ,pb ∈ Fg+1−µ, such that L is the normal bundle of the proper transform of C in the blow-up of Fg+1−µ
at p1, . . . ,pb.

Proof. It follows from Proposition 8.2 that the locus Z ⊆ J2g+2−µ(C) of degree 2g + 2 − µ line bundles h
such that there exists an embedding of C as a member of |2H + µF| on Fg+1−µ such that H |C = h has

dimension min(g,µ). In turn, the locus we are interested in is the image of Z ×C[b], where C[b] denotes the
bth symmetric power of C, by the map

(8.2) jµ,b : (h,D) ∈ J2g+2−µ(C)×C[b] 7−→ 2h+µf−D ∈ J4g+4−b(C),

with f the class of the g12 ; hence its dimension is min(g,µ+ b). �
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Proof of Theorem 1.8 (b) and (c). For all µ = g + 1, g, . . . ,0, as in the proof of Theorem 1.7, we consider
the universal family Lµ,b → Sµ,b of the linear systems |2H + µF − ED | on the blow-up of Fg+1−µ along

D ∈ Sµ,b = (Fg+1−µ)[b], with total exceptional divisor ED . The total space Lµ,b has dimension 3g + 5 + b.
Then we divide out by the automorphism group of Fg+1−µ, which has dimension 5+max(1, g +1−µ), and
end up with a moduli space SCµ,b of pairs (S,C), which has dimension

2g + b − 1+min(g,µ).

Next we consider the map

cµ,b : (S,C) ∈ SCµ,b 7−→ (C,NC/S ) ∈ J
4g+4−b
g

to the universal Jacobian, which by Corollary 8.4 surjects onto an irreducible locus of dimension

2g − 1+min(g,µ+ b)

(recall that the hyperelliptic locus in Mg has dimension 2g − 1). Thus, the general fibres of cµ,b have
dimension

δµ,b = b+min(g,µ)−min(g,µ+ b) =


0 if µ+ b 6 g,

b+µ− g if g − b 6 µ 6 g,
b if µ = g +1,

and all fibres of cµ,b have dimension at least this.
Now, by Corollary 4.4, the family of all possible extensions of (C,L) is parametrized by the unions of the

fibres of the maps cµ,b for µ = g +1, g, . . . ,0 and b = 4g +4−d. To prove Theorem 1.8, it is thus sufficient, by
the argument given in Section 6.9, to compare the dimension δµ,b above with the dimension of P(ker(TγC,L)),
which by Theorem 1.3 happens to equal bmax; cf. (8.1). After that, the conclusion will follow as in the proof
of Theorem 1.7.

One finds that δµ,b 6 b always holds, and thus

δµ,b = cork(γC,L)− 1 ⇐⇒ b = bmax and µ = g +1, g,

which completes the proof of the theorem. �

8.5 (Remarks on the extensions in degree d < 2g +3). We can extend the above analysis to degrees lower
than 2g +3, even though in this range Green’s theorem, Theorem 2.2, no longer applies to guarantee that
(C,L) has property N2, and as a consequence many of our results about ribbons and extensions are no
longer usable.

We find that for general (C,L), there is a family of extensions of dimension

4g +4−deg(L) > 2g +1,

whereas the corank of γC,L still takes the same value 2g +2 by Theorem 1.3, provided we do not consider
degrees lower than g +4. Thus in this case the extensions of (C,L) form a superabundant family.

8.6 (Discussion of universal extensions). Let us compare the universal extensions of degree 2g + 3 and
dimension 2g +3 in P3g+5 gotten in Theorem 1.8 with the classification results in degree d 6 11 available
in the literature; cf. [Ion84, FL94, FL97, BB05]. The only relevant cases occur in genus g = 2,3,4, and no
smooth variety with the appropriate invariants exists in these cases. Therefore, the corresponding universal
extensions are certainly singular.

Remark 8.7. When L has degree 4g +4, there are in general only finitely many extensions of (C,L), even
though P(ker(TγC,L)) has dimension 2g +1 (indeed, δµ,0 = 0 in the above notation). From the arguments
given in Section 8.3, it follows that one can always find at least two different extensions of (C,L), with
underlying surfaces respectively the rational ruled surfaces F2k+1−ε (from the even way) and F2k+ε (from the
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odd way); in addition, there are 22g possible choices for M+ and M−, respectively. In this case it is clear
that there cannot exist a universal extension of (C,L).

Moreover, it is in general possible to find two line bundles M with the same parity but leading to different
values of µ. For instance, in the even case, if we have

M1 = e1 + (γ1 +1+ k1)f and M2 = e2 + (γ2 +1+ k2)f,

the condition that 2M1 = 2M2 amounts to

2e1 = 2e2 + (k2 − k1)f,

which is fulfilled if the difference e1 − e2 consists of ramification points of the g12 .
When the degree of L gets smaller than 4g +4, i.e. when the number b of points from which one projects

becomes positive, a given surface may be obtained by projecting two scrolls with different values of µ. Indeed,
the sublinear system of |2H +µF| on Fg+1−µ of curves passing through a point p off E ⊆ Fg+1−µ corresponds
to the sublinear system of |2H + (µ+1)F| on Fg−µ of curves passing through a point p′ on E ⊆ Fg−µ via the
elementary transformation Fg+1−µd Fg−µ based at p.

Thus one sees that the various loci jµ,b(Z ×C[b]) (in the notation of the proof of Corollary 8.4) are in
general not disjoint as µ ranges from 0 to g +1.

9. Extensions of pluricanonical curves

In this section we study the extensions of pluricanonical curves, i.e. polarized curves (C,mKC) with m > 1.
In particular, we will prove Theorems 1.4 and 1.9. The case of canonical curves is of a different nature and
will not be discussed here; we refer for instance to [ABS17, CDS20].

9.1. Corank of the Gaussian map

In this subsection we give the corank of the Gaussian map γC,mKC for all non-hyperelliptic curves and
m > 1, which will prove Theorem 1.4. We rely on the following identification.

9.1. Let (C,L) be a polarized curve, with L very ample, and NC the normal bundle in the embedding given
by |L|. By [CM90, Proposition 1.2], we have

(9.1) ∀m > 2 : H0 (NC(−m)) � ker
(
TφKC+(m−1)L,L

)
,

where for any two line bundles M,N on C, φM,N is a Gaussian map R(M,N )→H0(KC +M +N ) defined
in a way similar to that in Section 5.1, with R(M,N ) the kernel of the multiplication map H0(M)⊗H0(N )→
H0(M +N ).

In particular, for L = KC , the map φKC+(m−1)KC ,KC = φmKC ,KC is exactly the map γC,mKC defined in
Section 5.1 and considered in the present paper. Thus, as a particular case of (9.1), we obtain that if C is
non-hyperelliptic, then

(9.2) ∀m > 2 : H0 (NC/Pg−1(−m)) � ker(TγC,mKC ),

where the normal bundle NC/Pg−1 is that of the canonical embedding of C.

Proof of Theorem 1.4. The identification (9.2) will enable us to compute γC,mKC in all cases, using the values
of h0(NC/Pg−1(−m)) given in [Knu20]. First of all, one has

h0(NC/Pg−1(−m)) = 0 if m > 2 and g > 5;

see [Knu20, Introduction, pp. 58–59] and [KL07]. Moreover, one has

h0(NC/Pg−1(−m)) = 0 if m > 2 and Cliff(C) > 2
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since canonical curves with Clifford index larger than 2 have property N2 by [Voi88, Sch91], which is well
known to imply the asserted vanishing; see [CDS20, Lemma 3.6] and the references given there.

Thus, to prove the theorem, it only remains to prove that cork(γC,2KC ) takes the asserted values for curves
of Clifford index 1 or 2. This is readily given in [Knu20] in the following cases:

• plane quintics, cf. [Knu20, Proposition 3.2], and sextics, cf. [Knu20, Proposition 4.3];
• tetragonal curves of genus g > 6 that are not a plane quintic (this comprises the cases (b) and (c) for
curves of Clifford index 2 in Theorem 1.4); cf. [Knu20, Proposition 4.1].

For trigonal curves, [Knu20, Proposition 3.1] gives the following values:

(9.3)

g h0(NC/Pg−1(−2))
5 3
6 2
7 1+ h0(KC − 4g) 6 2
8 h0(KC − 4g) 6 1
9 h0(KC − 5g) 6 1

10 h0(KC − 6g) 6 1
> 11 0

where g stands for the class of the g13 . We prove in Section 9.2 below that these values always equal
h0(KC − (g − 4)g). There remains the case of non-trigonal genus 5 curves, which is treated in Section 9.3
below. �

9.2 (Classification of trigonal curves). Here we classify trigonal curves of genus g with 5 6 g 6 10 along the
lines of [Mir85, Section 9],(3) in order to prove that for such curves one has

cork(γC,2KC ) = h
0(NC/Pg−1(−2)) = h0(KC − (g − 4)g).

This may also be seen with [KL07, Proposition 2.9(e)], but the following self-contained proof is more in the
spirit of our text. Let f : C→ P1 be a genus g triple cover of P1. It holds that

f∗OC = OP1 ⊕V ,

with V = OP1(−a)⊕OP1(−b) such that

a+ b = g +2 and 0 < a 6 b 6 2a.

Then C may be realized as a divisor in the rational ruled surface Fb−a, with class

3E + (2b − a)F ∼ 3H + (2a− b)F.

Moreover, one has

h0 ((g − 4)g) = h0 (C,f ∗OP1(g − 4))

= h0
(
P1,OP1(g − 4)⊕OP1(g − 4− a)⊕OP1(g − 4− b)

)
= h0

(
P1,OP1(g − 4)⊕OP1(b − 6)⊕OP1(a− 6)

)
,

from which one deduces

h0 (KC − (g − 4)g) = h1 ((g − 4)g)

= h0 ((g − 4)g)− 3(g − 4) + g − 1

= h0 ((g − 4)g)− 2g +11.

This gives the following complete classification:

(3)There is a typo in [Mir85], as the fourth formula at the top of p. 1153 should read t = 2n−m instead of t = 2m−n.
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a b h0
(
(g − 4)g13

)
h0

(
K − (g − 4)g13

)
Class

g = 5 3 4 2 3 3E +5F on F1
g = 6 4 4 3 2 3E +4F on F0

3 5 3 2 3E +7F on F2
g = 7 4 5 4 1 3E +6F on F1

3 6 5 2 3E +9F on F3
g = 8 5 5 5 0 3E +5F on F0

4 6 6 1 3E +8F on F2
g = 9 5 6 7 0 3E +7F on F1

4 7 8 1 3E +10F on F3
g = 10 6 6 9 0 3E +6F on F0

5 7 9 0 3E +9F on F2
4 8 10 1 3E +12F on F4

From this classification, one readily deduces that the values given in (9.3) indeed equal h0(KC − (g − 4)g).
The only non-trivial case is when g = 7; then one finds as above that

h0(4g) = h0(P1,OP 1(4)⊕OP 1(4− a)⊕OP 1(4− b)) =

6 if (a,b) = (4,5),

7 if (a,b) = (3,6),

hence by Riemann–Roch,

h0(KC − 4g) =

0 if (a,b) = (4,5),

1 if (a,b) = (3,6),

as required.

9.3 (Complete intersection canonical curves). We conclude the subsection by giving the values of
cork(γC,mKC ) for non-hyperelliptic curves of genus g 6 4 and non-trigonal curves of genus 5.

These curves are complete intersections in their canonical embedding, and thus one finds, using (9.2)
once again,

(9.4) cork(γC,mKC ) = h
0(NC/Pg−1(−m)) =


h0(OC(4−m)) if g = 3,

h0(OC(3−m)⊕OC(2−m)) if g = 4,

h0(OC(2−m)⊕3) if g = 5.

9.2. Surface extensions

In this subsection we study the surface extensions of pluricanonical curves. Comparing their number of
moduli with the values for cork(γC,mKC ) found in Section 9.1, we will prove Theorem 1.9, to the effect that
the extension theory of pluricanonical curves having property N2 is unobstructed.

We shall prove Theorem 1.9 by considering separately the various cases for which we have found in
Section 9.1 above that cork(γC,mKC ) is non-zero (if cork(γC,mKC ) is zero, then there is only the trivial ribbon
over (C,mKC), and the statement is empty). The strategy is the same as for Theorems 1.7 and 1.8; namely,
we prove that the general ribbon in P(ker(TγC,mKC )) is integrable by a dimension count, after which the
conclusion follows by Theorem 6.8. We will be brief and only outline the dimension count. Note that all
extensions of pluricanonical curves appear in the classification of Theorem 1.2.

9.4. Note that
2g +3 6 4g − 4 ⇐⇒ g > 4,

so by Green’s theorem, Theorem 2.2, all pluricanonical curves of genus g > 4 have property N2. Similarly, in
genus 3, m-canonical curves have property N2 if m > 3.
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For bicanonical curves of genus 3, the sufficient condition for property N2 provided by Theorem 2.2
does not hold, and indeed a direct computation using Macaulay2, cf. [GS], shows that if C ⊆ P5 is a
non-hyperelliptic curve of genus 3 embedded by the complete linear series |2KC |, its ideal IC/P5 has the
minimal resolution

0 −→OP2(−6)⊕3 −→OP2(−5)⊕8 ⊕OP2(−4)⊕3 −→OP2(−4)⊕6 ⊕OP2(−3)⊕8 −→OP2(−2)⊕7 −→ IC/P5 −→ 0,

so that (C,2KC) does not have property N2.

9.2.1. Complete intersection curves.

9.5 (Genus 3). In this case the result is contained in Theorem 1.7. Let us briefly recall how it goes in this
particular case and add a few comments.

Let C be a smooth plane quartic. The 4-canonical model of C is v4(C), which is a hyperplane section of
the 4-Veronese surface v4(P2). Since cork(γC,4KC ) = 1, we conclude that the unique ribbon over (C,4KC) is
integrable.

We obtain extensions of the 3-canonical model of C by projecting the surface v4(P2) from four points
on v4(C) that, in P2, are cut out by a line on C, so that they sum to a canonical divisor of C. There is
a 2-dimensional family of such divisors, and correspondingly a 2-dimensional family of non-isomorphic
extensions of (C,3KC), in agreement with cork(γC,3KC ) = 3. In order to avoid possible misunderstandings,
note that the curve v3(C) is contained in the 3-Veronese surface v3(P2) but is not a hyperplane section, so
v3(P2) is not an extension of (C,3KC).

Bicanonical curves of genus 3 are out of the range of Theorem 1.9 because they do not have property
N2. Their extensions have been analyzed in Section 7.6, where we have found for general C two families of
extensions, one of the expected dimension 5 and one superabundant of dimension 6. In this case we cannot
apply Theorem 6.3 to guarantee that each surface is the integral of a unique ribbon, and thus we have no
proof of the fact that the general ribbon in P(ker(TγC,2KC )) is integrable.

9.6 (Genus 4). Let C ⊆ P3 be a smooth complete intersection of a quadric X2 and a cubic X3. The surface
v3(X2) ⊆ P15 is an extension of v3(C), in fact the only one since cork(γC,3KC ) = 1.

Similarly, for each cubic X ′3 containing C ⊆ P3, the surface v2(X ′3) ⊆ P9 has v2(C) as a hyperplane
section, and it is thus an extension of (C,2KC). This provides a 4-dimensional family of extensions of
(C,2KC), in agreement with cork(γC,2KC ) = 5.

9.7 (Genus 5). Let C ⊆ P4 be a smooth complete intersection of three quadrics. For each surface X2 ∩X ′2
that is the complete intersection of two quadrics containing C, the surface v2(X2 ∩X ′2) has v2(C) as a
hyperplane section. This provides a 2-dimensional family of extensions of (C,2KC), in agreement with
cork(γC,2KC ) = 3.

9.2.2. Clifford index 1.

9.8 (Trigonal curves). Let C be a smooth trigonal curve of genus g > 5, non-hyperelliptic. In its canonical
model, it sits in a rational normal scroll Y ⊆ Pg−1 of degree g − 2, with class C ∼ 3H− (g − 4)F, with H the
hyperplane section class of Y ⊆ Pg−1 and F the class of a ruling; cf. Example 3.5. Extensions of (C,2KC)
are to be found as simple projections of the image of Y by the map φ|C|. The centre of the projection must
be an effective, degree 10− g , divisor D10−g on C such that

(3H− (g − 4)F)|C −D10−g ∼ 2KC ⇐⇒ D10−g ∼ KC − (g − 4)g,

where g is the class of the g13 on C (recall that H|C ∼ KC ). Thus each D ∈ |KC − (g − 4)g| gives an extension
of (C,2KC), in agreement with cork(γC,2KC ) = h

0(KC − (g − 4)g).
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9.9 (Plane quintics). Let C ⊆ P2 be a smooth plane quintic. Then KC = 2L|C , where L denotes the line class
on P2, and the extensions of (C,2KC) are to be found as simple projections of the Veronese surface v5(P2).
The centre of the projection must be an effective, degree 5, divisor D on C such that

5L|C −D ∼ 2KC ⇐⇒ D ∼ L|C .

Thus each D ∈ | L|C | gives an extension of (C,2KC), in agreement with cork(γC,2KC ) = h
0(OP2(1)).

9.2.3. Clifford index 2.

9.10 (Quadric sections of Del Pezzo surfaces). Let C be a genus g curve such that in its canonical model, C
is a quadric section of a Del Pezzo surface S ⊆ Pg−1. Then v2(S) is an extension of (C,2KC), which proves
the theorem in this case since cork(γC,2KC ) = 1.

9.11 (Bielliptic curves). Let f : C→ E be a genus g double cover of the elliptic curve E. Then the 2-Veronese
re-embedding of the cone in Pg−1 over the elliptic normal curve E ⊆ Pg−2 is an extension of (C,2KC) as in
Example 3.1, which proves the theorem in this case since cork(γC,2KC ) = 1.

9.12 (Plane sextics). Let C ⊆ P2 be a smooth plane sextic. Then KC = 3L|C , where L denotes the line class
on P2, and the Veronese surface v6(P2) is an extension of (C,2KC), which proves the theorem in this case
since cork(γC,2KC ) = 1.

9.3. Universal extensions

Finally, we consider those pluricanonical curves (C,mKC) for which cork(γC,2KC ) > 1 and provide a
construction of the universal extension, except in the trigonal case. The constructions are similar to those
in [CD22] and [Lop23, Appendix], see also [Dew23], and are inspired by examples of Burt Totaro (private
communication, see [CD24]). When cork(γC,2KC ) = 1, the universal extension is a surface, and there is
nothing to add to the analysis carried out in Section 9.2.

9.13 (Genus 3). We shall construct a 4-dimensional variety X ⊆ P12 of degree 12 having tricanonical curves
of genus 3 as curve sections and projections of v4(P2) from four points lying on a line in the plane as surface
sections.

We start from the following basic fact, the proof of which we leave to the reader. Let f ,` ∈ C[x],
x = (x0,x1,x2), be two homogeneous polynomials of degrees 4 and 1, respectively. Then the hypersurface S
of the weighted projective space P(13,3) defined by the homogeneous equation

f (x) + y`(x) = 0,

of weighted degree 4 in the homogeneous coordinates (x, y), is isomorphic to the surface obtained by first
blowing up P2 at the four points defined by the equations f (x) = `(x) = 0 and then contracting the proper
transform of the line defined by `(x) = 0.

Now, we claim that the weighted quartic hypersurface

X : x0y0 + x1y1 + x2y2 = 0 in P(13,33)(x:y),

in its embedding X ⊆ P12 defined by weighted cubics, is the universal extension we are looking for. To prove
our claim, we consider a canonical curve C of genus 3 defined by a quartic equation f (x) = 0 in P2. Up to a
change of coordinates, we may assume that f has no term in x40, so that it is possible to write it as

f = x1f1 + x2f2.

First, we note that C is defined by the three cubic equations

y0 = y1 − f1(x) = y2 − f2(x) = 0
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in X, so that in its tricanonical embedding, it is the section of X ⊆ P12 by three hyperplanes. Next, we
consider a general line L ⊆ P2 defined by an equation

x0 + a1x1 + a2x2 = 0

in P2. Then, the extension of (C,3KC) given by the projection of v4(P2) from the four points in C ∩L is the
section of X ⊆ P12 by the two hyperplanes corresponding to the cubic equations

y1 − f1(x)− a1y0 = y2 − f2(x)− a2y0 = 0

since the latter is isomorphic to the hypersurface

(x1f1 + x2f2) + y0(x0 + a1x1 + a2x2) = 0

in P(13,3). It follows that the map

Λ ∈ P12/〈C〉 7−→ [2CX∩Λ] ∈ P(ker(TγC,L)),

in the notation of Section 6.6, is dominant. It thus follows from Lemma 6.7 that X ⊆ P12 is a universal
extension of (C,3KC).

One can perform the same construction for bicanonical curves of genus 3, even though they do not have
property N2. Thus, the weighted quartic hypersurface

X ′ : x20y0 + x0x1y1 + x0x2y2 + x
2
1y3 + x1x2y3 + x

2
2y5 = 0 in P(13,26)(x:y),

in its embedding in P11 defined by weighted quadrics, has as surface sections all projections of v4(P2) from
eight points that are the complete intersection of a quartic and a conic.

9.14 (Genus 4). We shall construct a 6-dimensional variety X ⊆ P13 of degree 12 having bicanonical curves
of genus 4 and their extensions as sections by linear spaces. This is the weighted cubic

X : x0y0 + x1y1 + x2y2 + x3y3 = 0 in P(14,24)(x:y),

in its embedding X ⊆ P13 defined by weighted quadrics.
Indeed, let C be the canonical genus 4 curve defined by the equations f ,g ∈ C[x] in P3, of degrees 2

and 3, respectively. We may write the degree 3 equation as

g = x0g0 + x1g1 + x2g2 + x3g3,

which enables us to see C as being cut out in X by the five degree 2 equations

f (x) = y0 − g0(x) = y1 − g1(x) = y2 − g2(x) = y3 − g3(x) = 0.

In turn, each cubic surface X ′3 ⊆ P3 containing C has an equation of the form g+(a0x0+a1x1+a2x2+a3x3)f ;
hence it is cut out in X by the four degree 2 equations

y0 − g0(x)− a0f (x) = y1 − g1(x)− a1f (x) = y2 − g2(x)− a2f (x) = y3 − g3(x)− a3f (x) = 0,

so that v2(X ′3) ⊆ P9 is the section of X ⊆ P13 by four hyperplanes containing C, as required.

9.15 (Genus 5). The universal extension of non-trigonal bicanonical curves of genus 5 is the Veronese 4-fold
v2(P4) ⊆ P14.

9.16 (Plane quintics). The universal extension for bicanonical models of plane quintics may be constructed
analogously to what we have done in the genus 3 case for plane quartics. Thus the universal extension is the
weighted quintic hypersurface

X : x0y0 + x1y1 + x2y2 = 0 in P(13,43)(x:y),

in its embedding X ⊆ P17 defined by weighted cubics, a projective variety of dimension 4 and degree 20.

9.17 (Bicanonical trigonal curves). We find a universal extension of dimension greater than 2 in the following
cases:
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• g = 5 and C is a member of |3E +5F| on F1, and the universal extension of (C,2KC) has dimension
4 and degree 16 in P14.
• g = 6 and C is a member of |3E +4F| on F0 or of |3E +7F| on F2, and the universal extension of
(C,2KC) has dimension 3 and degree 20 in P16.
• g = 7 and C is a member of |3E +9F| on F3, and the universal extension of (C,2KC) has dimension
3 and degree 24 in P19.

We believe it should be possible to give an explicit construction of these universal extensions along the same
lines as in the other cases, but we do not dwell on this and leave it as an open project. It is plausible that the
universal extension in genus 6 will be the same for both kinds of curves.
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