Preprints
[72] Kosinski, L., Nikolov, N., Thomas, P. J., A Gehring-Hayman inequality for strongly pseudoconvex domains.
arXiv:2303.04071
[71] Nikolov, N., Ökten, A.Y., Thomas, P. J., Local and global notions of visibility with respect to Kobayashi distance, a comparison.
arXiv:2210.10007
[70] Bracci, F., Gaussier, H., Nikolov, N., Thomas, P. J., Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance.
arXiv:2201.03070
Publications
[69] Nikolov, N., Thomas, P. J., Quantitative localization and comparison of invariant distances of domains in $\mathbb C^n$, à paraître dans Journal of Geometric Analysis.
arXiv:2109.01944
[68] Bracci, F., Nikolov, N., Thomas, P. J., Visibility of Kobayashi geodesics in convex domains and related properties, , Mathematische Zeitschrift, vol. 301, p. 2011-2035, 2022.
DOI : 10.1007/s00209-022-02978-w arXiv:2101.04159
[67] Nicolau, A., Thomas, P. J., Invertibility Threshold for Nevanlinna Quotient Algebras, Canadian Journal of Mathematics, vol. 75 (1), p. 225-244, 2023.
DOI:10.4153/S0008414X21000511 arXiv:1904.06908
[66] Nikolov, N., Thomas, P. J., Growth of Sibony metric and Bergman kernel for domains with low regularity, Journal of Mathematical Analysis and Applications, vol. 499, no. 1, 125018, 2021.
arXiv:2005.04479
[65] Massaneda, X., Thomas, P. J., From $\H^\infty$ to $\mathcal N$. Pointwise properties and algebraic structure in the Nevanlinna class, Concrete Operators, vol. 7, p. 91-115, 2020.
DOI: 10.1515/conop-2020-0007 arXiv:1911.01713
[64] Nikolov, N., Thomas, P. J., An analogue of the squeezing function for projective maps. à paraître dans Annali di Matematica Pura ed Applicata (4), vol. 199 (5), p. 1885-1894, 2020.
DOI: 10.1007/s10231-020-00947-w arXiv:1909.09449
[63] Amar, E., Thomas, P. J., Cyclicity of non vanishing functions in the polydisc and in the ball, Algebra i Analiz (Saint Petersburg Mathematical Journal) vol. 31 (5), p. 1-23, 2019.
arXiv:1702.00729
Get
it from arXiv!
[62] Nikolov, N., Thomas, P. J., Comparison of the Bergman kernel and the Carathéodory--Eisenman volume, Proceedings of the American Mathematical Society, vol. 147, no. 11, p. 4915-4919, 2019.
DOI: 10.1090/proc/14604. arXiv:1812.07563
[61] Massaneda, X., Nicolau, A., Thomas, P. J., The Corona Property in Nevanlinna quotient algebras and Interpolating sequences, The Journal of Functional Analysis, vol. 276, p. 2636-2661, 2019.
DOI: 10.1016/j.jfa.2018.08.001. ArXiv:1804.03536
[60]
Nikolov,
N., Thomas, P. J., Boundary
behavior of the quasi-hyperbolic metric, Annales
Academiae Scientiarum Fennicae Mathematica, vol.
43, p. 381-389,
2018.
arXiv:1601.04171.
Get
it from arXiv!
[59]
Nikolov,
N., Thomas, P. J., Comparison
of the real and the complex Green functions, and sharp estimates of
the Kobayashi distance, Annali
della Scuola Normale Superiore di Pisa Cl. Sci. (5), Vol.
XVIII , p. 1125-1143, 2018.
DOI
Number: 10.2422/2036-2145.201608_027. arXiv:1608.06615.
Get
it from arXiv!
[58]
Duong
Quang Hai, Thomas, P.J. Limit
of Green functions and ideals, the case of four poles, Analysis
Meets Geometry, The Mikael
Passare Memorial Volume, edited
by Mats Andersson, Jan Boman, Christer Kiselman, Pavel Kurasov,
Ragnar Sigurdsson, p. 213-227; "Trends in Mathematics",
Birkh?ser,
2017.
arXiv:1412.0221.
Get
it from arXiv!
[57]
Borichev,
A., Nicolau, A., Thomas, P. J.
Weak
Embedding Property, Inner Functions and Entropy,
Mathematische
Annalen, Vol.
368, No. 3-4, p. 987-1015, 2017.
arXiv:1508.01336.
Get
it from arXiv!
[56]
Massaneda,
X., Thomas, P. J.
Interpolation and
peak functions for the Nevanlinna and Smirnov classes, to appear in
Proceedings of
the conference on Harmonic Analysis, Function Theory, Operator Theory
and Applications, Bordeaux, June 1-6, 2015, p. 199-206,
2017.
arXiv:1212.6268.
Get
it from arXiv!
[55]
Kosinski,
L., Thomas, P. J., Zwonek, W.
Coman
conjecture for the bidisc, Pacific
J. Math, Vol.
287, p. 411–422, 2017.
arXiv:1411.4322.
Get
it from arXiv!
[54]
Nikolov,
N., Thomas, P. J., Tran Duc-Anh
Lifting maps from
the symmetrized polydisk in small dimensions,
Complex
Analysis and Operator Theory, Vol.
10, No. 5, pp. 921-941, 2016.
Get
it from arXiv!
[53]
Nikolov,
N., Thomas, P. J., Trybula, M. Gromov
(non)hyperbolicity of certain domains in C^2, Forum
Mathematicum, Vol.
28, no. 4, 2016.
Get
it from arXiv!
[52] Nguyen
Quang Dieu, Thomas, P. J. Convergence
of multipole Green functions, Indiana
Univ. Math. J.
Vol.
65, No. 1, pp. 223-241, 2016.
Get
it from arXiv!
[51] Duong
Quang Hai, Thomas, P. J. Limit
Of Three-Point Green Functions : The Degenerate Case, Serdica
Vol. 40, p. 99-110, 2104.
arXiv:1205.5899.
Get
it from arXiv!
[50] Rashkovskii,
A., Thomas, P. J. Powers
of ideals and convergence of Green functions with colliding poles,
Int. Math. Res.
Not. IMRN (2014) Vol. 2014 1253-1272, 2014.
Get
it from arXiv!
[49] Do
Duc Thai, Thomas, P. J., Nguyen Van Trao, Mai Anh Duc. On
hyperbolicity and tautness modulo an analytic subset of Hartogs
domains, Proc.
Amer. Math. Soc.
Vol.
141, no. 10, pp. 3623-3631, 2013.
Get
it from arXiv!
[48]
Nikolov,
N., Pflug, P., Thomas, P. J.
On
different extremal bases for $\CC$-convex domains, Proc.
Amer. Math. Soc. Vol.
141,
pp. 3223-3230, 2013.
Get
it from arXiv!
[47] Nguyen
Quang Dieu, Nikolov, N., Thomas, P. J. Estimates
for invariant metrics near a non-semipositive boundary point, J.
Geom. Anal. Vol.
23,
no.
2, pp. 598-610, 2013.
Get
it from arXiv!
[46] Magnusson,
J., Rashkovskii, A., Sigurdsson, R., Thomas, P. J. Limits
of multipole pluricomplex Green functions, Intern.
J. Math. Vol.
23, no. 6, 1250065, 38 pp. 2012.
DOI No:
10.1142/S0129167X12500656
Get
it from arXiv!
[45] Nikolov,
N., Thomas, P. J. Rigid
characterization of pseudoconvex domains. Indiana
University Mathematics Journal, Vol.
61, no. 3, pp. 1313-1323, 2012.
Get
it from arXiv !
[44]
Thomas, P. J.
Green vs.
Lempert functions: a minimal example, Pacific
J. Math., Vol.
257, no. 1, pp. 189-197. DOI 10.2140/pjm.2012.257.189, 2012.
Get
it from arXiv!
[43]
Nikolov, N.,
Thomas, P. J. "Convex"
characterization of linearly convex domains, Math.
Scand. Vol.
111,
pp. 179-186, 2012.
Get
it from arXiv!
[42]
Thomas, P. J.,
Nguyen Van Trao, Zwonek, W. Green
functions of the spectral ball and symmetrized polydisk. Journal
of Mathematical Analysis and Applications, Vol.
377, pp. 624-630, 2011.
Get
it from arXiv!
[41] Nikolov,
N., Pflug, P., Thomas, P. J. Spectral
Nevanlinna-Pick and Carath?dory-Fej? problems, Indiana
University Mathematics Journal, Vol.
60, no. 3, pp. 883-894, 2011.
Get
it from arXiv!
[40] Nikolov,
N., Thomas, P. J. Separate
continuity of the Lempert function of the spectral ball. Journal
of Mathematical Analysis and its Applications, Vol.
367, no. 2, pp. 710-712, 2010.
Get
it from arXiv!
[39] Nikolov,
N., Pflug, P., Thomas, P. J. Upper
bound for the Lempert function of smooth domains. Mathematisches
Zeitschrift, Vol.
266, no. 2, pp. 425-430, 2010.
Get
it from arXiv!
[38] Thomas,
P. J., Nguyen Van Trao. Discontinuity
of the Lempert function of the spectral ball. Proceedings
of the American Mathematical Society, Vol.
138, no. 7, pp. 2403-2412, 2010.
Get
it from arXiv!
[37] Borichev,
A., Lyubarskii, Yu., Malinnikova, E., Thomas, P. J. Radial
growth of functions from the Korenblum space. Algebra
i Analiz. Vol.
21, no. 6, pp. 47-65, 2009.
Get
it from arXiv!
[36] Nikolov,
N., Pflug, P., Thomas, P. J., Zwonek, W. On
a local characterization of pseudoconvex domains, Indiana
University Mathematics Journal, Vol.
58, no. 6, 2661-2672, 2009.
Get
it from arXiv!
[35] Nikolov, N., Pflug, P., Thomas, P. J. Lipschitzness of the Lempert and Green functions, Proceedings of the American Mathematical Society, Volume 137, no. 6, pp. 2027-2036, 2009.
[34] Thomas,
P. J., Nguyen Van Trao. Convergence
and multiplicities for the Lempert function,
Arkiv
för Matematik,
Volume
47, no.1, pp. 183-204, 2009.
.pdf
Get
it from arXiv!
[33] Nikolov,
N., Thomas, P. J., Zwonek, W. Discontinuity
of the Lempert function and the Kobayashi-Royden metric of the
spectral ball, Integral
Equations and Operator Theory, Vol.
61, no. 3, pp. 401-412, 2008.
Get
it from arXiv!
[32] Thomas,
P. J. A
local form for the automorphisms of the spectral unit ball,
Collectanea
Mathematica, Vol.
59, no. 3, pp. 321-324, 2008.
Get
it from arXiv!
[31] Nikolov,
N., Thomas, P. J. On
the zero set of the Kobayashi-Royden pseudometric of the spectral
unit ball, Annales
Polonici Mathematici, Vol.
93, no. 1, pp. 53-68, 2008.
Get
it from arXiv!
[30] Nikolov,
N., Pflug, P., Thomas, P. J., Zwonek, W. Estimates
of the Carath?dory metric on the symmetrized polydisk, Journal
of Mathematical Analysis and its Applications, Vol.
341, no. 1, pp. 140-148, 2008.
Get
it from arXiv!
[29] Massaneda,
X., Thomas, P. J. Sampling
sets for the Nevanlinna class, to appear in Revista
Matematica Iberoamericana, Vol.
24, no. 1, pp. 353-385, 2008.
.pdf
Get
it from arXiv!
[28]
Thomas,
P. J. An
example of limit of Lempert functions, Vietnam
Journal of Mathematics, Vol.
35, no. 3, pp. 317-330, 2007.
.pdf
.dvi
Get
it from arXiv!
[27]
Massaneda, X.,
Thomas, P. J. Phragm?-Lindel?-type
Problems for A-alpha, Bergman
Spaces and Related Topics in Complex Analysis: Proceedings of a
Conference in Honor of Boris Korenblum's 80th Birthday,
Israel Mathematics
Conference Proceedings (IMCP), Contemporary
Mathematics, vol.
404, pp. 153-163, 2006.
.pdf
[26]
Borichev, A.,
Nicolau, A., Thomas, P. J. Harmonic
and superharmonic majorants on the disk. Bulletin
of the London Mathematical Society, vol.
38, pp. 250-260, 2006.
.dvi
[25]
Hartmann, A.,
Massaneda, X., Nicolau, A., Thomas, P. J. Interpolation
in the Nevanlinna Class and harmonic majorants. Journal
of Functional Analysis, vol
217, pp. 1-37, 2004.
.pdf
[24]
Eiderman,
Vladimir Ya., Thomas, P. J. Equivalence
of summatory conditions along sequences for bounded holomorphic
functions. Complex
Variables, Theory and Applications, vol. 49, no 7-9
(special issue : a tribute to Matts Ess?), pp. 595-611, 2004.
.pdf
[23]
Pau, J., Thomas,
P. J. Decrease
of bounded holomorphic functions along discrete sets. Proceedings
of the Edinburgh Mathematical Society, vol.
46, pp. 703-718, 2003
[22]
Thomas, P. J. ,
Nguyen Van Trao. Pluricomplex
Green and Lempert functions for equally weighted poles. Arkiv
f? Matematik, vol.
41, no. 2, pp. 381-400, 2003.
.dvi
.pdf
[21]
Stessin, Michael
I., Thomas, P. J. Algebras
generated by two bounded holomorphic functions. Journal
d’Analyse Math?atique, vol.
90, pp. 89-114, 2003.
.dvi
[20] Do Duc Thai, Thomas, P.J. On D*-extension property of the Hartogs domains. Publicacions Matemàtiques, vol. 45, no 2, pp. 421-429, 2001.
[19] Nicolau, A., Pau, J., Thomas, P. J. Smallness sets for bounded holomorphic functions. Journal d’Analyse Math?atique, vol. 82, pp. 119-148, 2000.
[18] Massaneda, X., Thomas, P. J. Interpolating Sequences for the Fock spaces in Cn. Indagationes Mathematicae, N.S., vol. 11 (1), pp. 115-127, 2000.
[17] Amar, E., Thomas, P. J. Finite interpolation with minimum uniform norm in Cn. Journal of Functional Analysis, vol. 170, pp. 512-525, 2000
[16] Massaneda, X., Thomas, P. J. Sampling Sequences for Hardy spaces of the Ball. Proceedings of the American Mathematical Society, vol. 128, no 3, pp. 837-843, 2000.
[15] Le Hai Khôi, Thomas, P. J. Weakly Sufficient sets for A-ᄚ(D). Publicacions Matem?iques, vol. 42, pp. 435-448, 1998.
[14] Do Duc Thai, Thomas, P.J. D*-extension property without hyperbolicity. Indiana University Mathematics Journal, vol. 47, no 3, pp. 1125-1130, 1998.
[13] Thomas, P. J. Sampling sets for Hardy spaces of the disk. Proceedings of the American Mathematical Society, vol. 126, pp. 2927-2932, 1998.
[12] Thomas, P. J. Necessary conditions for interpolating sequences. Bulletin of the London Mathematical Society, vol 29 Part 4, pp. 433-442, 1997.
[11] Jevtic, M., Massaneda, X., Thomas, P. J. Interpolating Sequences for the weighted Bergman Spaces of the Ball. Michigan Mathematical Journal, vol. 43, no 3, pp. 495-517, 1996.
[10] Thomas, P. J. Local hull of the union of an open set and a real plane in C2. In Géométrie complexe (Paris, 1992), pp. 113-122, Actualités Sci. Indust., 1438, Hermann, Paris, 1996.
[9] Thomas, P. J. Continuity and convergence properties of extremal-interpolating disks. Publicacions Matemàtiques, vol. 39, no 2, pp. 335-347, 1995.
[8] Amar, E., Thomas, P. J. A notion of extremal discs related to interpolation in the Ball. Mathematische Annalen, vol. 300, pp. 419-433, 1994.
[7] Thomas, P. J. Unions minimales de n-plans réels d'enveloppe égale à Cn , in Proceedings of Symposia in Pure Mathematics vol 52, Part 1, pp 231-244. (Proceedings of the AMS Summer Research Institute on Several Complex Variables and Complex Geometry , August 1989 ; editors: S. Krantz, E. Bedford, J. D'Angelo, R. E. Greene; American Mathematical Society , Providence), 1991.
[6] Thomas, P. J. Enveloppes polynomiales d'unions de plans réels dans Cn. Annales de l'Institut Fourier (Grenoble), vol. 40, no 2, pp. 371-390, 1990.
[5] Thomas, P. J. Subset of Hardy Class Zero[-sets] in the Ball. Publicacions Matemàtiques, vol. 34, no 1, pp.135-144, 1990.
[4] Thomas, P. J. Hardy Space Interpolating Sequences of Hyperplanes. Pacific Journal of Mathematics, Vol. 140, no 1, pp. 1-17, 1989.
[3] Thomas, P. J. Hardy space interpolation in the unit ball. Indagationes Mathematicae (Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen), vol. 90, no 3, pp. 325-351, 1987.
[2] Thomas, P. J. Tents and Interpolation in the Ball. Complex Analysis II (Proceedings of the Special Year at the University of Maryland, College Park), Springer Verlag Lecture Notes nᄎ 1276, 1987.
[1] Thomas, P. J. Interpolating Sequences of Hyperplanes in the Unit Ball of Cn. Annales de l'Institut Fourier (Grenoble), vol. 36, no 3, pp. 167-182, 1986.