Preprints

[72] Kosinski, L., Nikolov, N., Thomas, P. J., A Gehring-Hayman inequality for strongly pseudoconvex domains.

arXiv:2303.04071

Get it from arXiv!


[71] Nikolov, N., Ökten, A.Y., Thomas, P. J., Local and global notions of visibility with respect to Kobayashi distance, a comparison.

arXiv:2210.10007

Get it from arXiv!


[70] Bracci, F., Gaussier, H., Nikolov, N., Thomas, P. J., Local and global visibility and Gromov hyperbolicity of domains with respect to the Kobayashi distance.

arXiv:2201.03070

Get it from arXiv!



Publications

[69] Nikolov, N., Thomas, P. J., Quantitative localization and comparison of invariant distances of domains in $\mathbb C^n$, à paraître dans Journal of Geometric Analysis.

arXiv:2109.01944

Get it from arXiv!


[68] Bracci, F., Nikolov, N., Thomas, P. J., Visibility of Kobayashi geodesics in convex domains and related properties, , Mathematische Zeitschrift, vol. 301, p. 2011-2035, 2022.

DOI : 10.1007/s00209-022-02978-w arXiv:2101.04159

Get it from arXiv!


[67] Nicolau, A., Thomas, P. J., Invertibility Threshold for Nevanlinna Quotient Algebras, Canadian Journal of Mathematics, vol. 75 (1), p. 225-244, 2023.

DOI:10.4153/S0008414X21000511 arXiv:1904.06908

Get it from arXiv!


[66] Nikolov, N., Thomas, P. J., Growth of Sibony metric and Bergman kernel for domains with low regularity, Journal of Mathematical Analysis and Applications, vol. 499, no. 1, 125018, 2021.

arXiv:2005.04479

Get it from arXiv!


[65] Massaneda, X., Thomas, P. J., From $\H^\infty$ to $\mathcal N$. Pointwise properties and algebraic structure in the Nevanlinna class, Concrete Operators, vol. 7, p. 91-115, 2020.

DOI: 10.1515/conop-2020-0007 arXiv:1911.01713

Get it from arXiv!


[64] Nikolov, N., Thomas, P. J., An analogue of the squeezing function for projective maps. à paraître dans Annali di Matematica Pura ed Applicata (4), vol. 199 (5), p. 1885-1894, 2020.

DOI: 10.1007/s10231-020-00947-w arXiv:1909.09449

Get it from arXiv!


[63] Amar, E., Thomas, P. J., Cyclicity of non vanishing functions in the polydisc and in the ball, Algebra i Analiz (Saint Petersburg Mathematical Journal) vol. 31 (5), p. 1-23, 2019.

arXiv:1702.00729
Get it from arXiv!

[62] Nikolov, N., Thomas, P. J., Comparison of the Bergman kernel and the Carathéodory--Eisenman volume, Proceedings of the American Mathematical Society, vol. 147, no. 11, p. 4915-4919, 2019.

DOI: 10.1090/proc/14604. arXiv:1812.07563

Get it from arXiv!


[61] Massaneda, X., Nicolau, A., Thomas, P. J., The Corona Property in Nevanlinna quotient algebras and Interpolating sequences, The Journal of Functional Analysis, vol. 276, p. 2636-2661, 2019.

DOI: 10.1016/j.jfa.2018.08.001. ArXiv:1804.03536

Get it from arXiv!


[60] Nikolov, N., Thomas, P. J., Boundary behavior of the quasi-hyperbolic metric, Annales Academiae Scientiarum Fennicae Mathematica, vol. 43, p. 381-389, 2018. arXiv:1601.04171.
Get it from arXiv!


[59] Nikolov, N., Thomas, P. J., Comparison of the real and the complex Green functions, and sharp estimates of the Kobayashi distance, Annali della Scuola Normale Superiore di Pisa Cl. Sci. (5), Vol. XVIII , p. 1125-1143, 2018. DOI Number: 10.2422/2036-2145.201608_027. arXiv:1608.06615.
Get it from arXiv!


[58] Duong Quang Hai, Thomas, P.J. Limit of Green functions and ideals, the case of four poles, Analysis Meets Geometry, The Mikael Passare Memorial Volume, edited by Mats Andersson, Jan Boman, Christer Kiselman, Pavel Kurasov, Ragnar Sigurdsson, p. 213-227; "Trends in Mathematics", Birkh?ser, 2017. arXiv:1412.0221.
Get it from arXiv!


[57] Borichev, A., Nicolau, A., Thomas, P. J. Weak Embedding Property, Inner Functions and Entropy,  Mathematische Annalen, Vol. 368, No. 3-4, p. 987-1015, 2017. arXiv:1508.01336.
Get it from arXiv!


[56] Massaneda, X., Thomas, P. J. Interpolation and peak functions for the Nevanlinna and Smirnov classes, to appear in Proceedings of the conference on Harmonic Analysis, Function Theory, Operator Theory and Applications, Bordeaux, June 1-6, 2015, p. 199-206, 2017. arXiv:1212.6268.
Get it from arXiv!


[55] Kosinski, L., Thomas, P. J., Zwonek, W. Coman conjecture for the bidisc, Pacific J. Math, Vol. 287, p. 411–422, 2017. arXiv:1411.4322.
Get it from arXiv!


[54] Nikolov, N., Thomas, P. J., Tran Duc-Anh Lifting maps from the symmetrized polydisk in small dimensions, Complex Analysis and Operator Theory, Vol. 10, No. 5, pp. 921-941, 2016.
Get it from arXiv!


[53] Nikolov, N., Thomas, P. J., Trybula, M. Gromov (non)hyperbolicity of certain domains in C^2, Forum Mathematicum, Vol. 28, no. 4, 2016.
Get it from arXiv!


[52] Nguyen Quang Dieu, Thomas, P. J. Convergence of multipole Green functions, Indiana Univ. Math. J. Vol. 65, No. 1, pp. 223-241, 2016.
Get it from arXiv!


[51] Duong Quang Hai, Thomas, P. J. Limit Of Three-Point Green Functions : The Degenerate Case, Serdica Vol. 40, p. 99-110, 2104. arXiv:1205.5899.
Get it from arXiv!


[50] Rashkovskii, A., Thomas, P. J. Powers of ideals and convergence of Green functions with colliding poles, Int. Math. Res. Not. IMRN (2014) Vol. 2014 1253-1272, 2014.
Get it from arXiv!


[49] Do Duc Thai, Thomas, P. J., Nguyen Van Trao, Mai Anh Duc. On hyperbolicity and tautness modulo an analytic subset of Hartogs domains, Proc. Amer. Math. Soc. Vol. 141, no. 10, pp. 3623-3631, 2013.
Get it from arXiv!

[48] Nikolov, N., Pflug, P., Thomas, P. J. On different extremal bases for $\CC$-convex domains, Proc. Amer. Math. Soc. Vol. 141, pp. 3223-3230, 2013.
Get it from arXiv!
 

[47] Nguyen Quang Dieu, Nikolov, N., Thomas, P. J. Estimates for invariant metrics near a non-semipositive boundary point, J. Geom. Anal. Vol. 23, no. 2, pp. 598-610, 2013.
Get it from arXiv!


[46] Magnusson, J., Rashkovskii, A., Sigurdsson, R., Thomas, P. J. Limits of multipole pluricomplex Green functions, Intern. J. Math. Vol. 23, no. 6, 1250065, 38 pp. 2012. DOI No: 10.1142/S0129167X12500656
Get it from arXiv!


[45] Nikolov, N., Thomas, P. J. Rigid characterization of pseudoconvex domains. Indiana University Mathematics Journal, Vol. 61, no. 3, pp. 1313-1323, 2012.
Get it from arXiv !



[44] Thomas, P. J. Green vs. Lempert functions: a minimal example, Pacific J. Math., Vol. 257, no. 1, pp. 189-197. DOI 10.2140/pjm.2012.257.189, 2012.
Get it from arXiv!
 

[43] Nikolov, N., Thomas, P. J. "Convex" characterization of linearly convex domains, Math. Scand. Vol. 111, pp. 179-186, 2012.
Get it from arXiv!

[42] Thomas, P. J., Nguyen Van Trao, Zwonek, W. Green functions of the spectral ball and symmetrized polydisk. Journal of Mathematical Analysis and Applications, Vol. 377, pp. 624-630, 2011.
Get it from arXiv!


[41] Nikolov, N., Pflug, P., Thomas, P. J. Spectral Nevanlinna-Pick and Carath?dory-Fej? problems, Indiana University Mathematics Journal, Vol. 60, no. 3, pp. 883-894, 2011.
Get it from arXiv!


[40] Nikolov, N., Thomas, P. J. Separate continuity of the Lempert function of the spectral ball. Journal of Mathematical Analysis and its Applications, Vol. 367, no. 2, pp. 710-712, 2010.
Get it from arXiv!


[39] Nikolov, N., Pflug, P., Thomas, P. J. Upper bound for the Lempert function of smooth domains. Mathematisches Zeitschrift, Vol. 266, no. 2, pp. 425-430, 2010.
Get it from arXiv!


[38] Thomas, P. J., Nguyen Van Trao. Discontinuity of the Lempert function of the spectral ball. Proceedings of the American Mathematical Society, Vol. 138, no. 7, pp. 2403-2412, 2010.
Get it from arXiv!


[37] Borichev, A., Lyubarskii, Yu., Malinnikova, E., Thomas, P. J. Radial growth of functions from the Korenblum space. Algebra i Analiz. Vol. 21, no. 6, pp. 47-65, 2009.
Get it from arXiv!


[36] Nikolov, N., Pflug, P., Thomas, P. J., Zwonek, W. On a local characterization of pseudoconvex domains, Indiana University Mathematics Journal, Vol. 58, no. 6, 2661-2672, 2009.
Get it from arXiv!

[35] Nikolov, N., Pflug, P., Thomas, P. J. Lipschitzness of the Lempert and Green functions, Proceedings of the American Mathematical Society, Volume 137, no. 6, pp. 2027-2036, 2009.

Get it from arXiv!


[34] Thomas, P. J., Nguyen Van Trao. Convergence and multiplicities for the Lempert function, Arkiv för Matematik, Volume 47, no.1, pp. 183-204, 2009.
.pdf  
Get it from arXiv!


[33] Nikolov, N., Thomas, P. J., Zwonek, W. Discontinuity of the Lempert function and the Kobayashi-Royden metric of the spectral ball, Integral Equations and Operator Theory, Vol. 61, no. 3, pp. 401-412, 2008.
Get it from arXiv!


[32] Thomas, P. J. A local form for the automorphisms of the spectral unit ball, Collectanea Mathematica, Vol. 59, no. 3, pp. 321-324, 2008.
Get it from arXiv!


[31] Nikolov, N., Thomas, P. J. On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball, Annales Polonici Mathematici, Vol. 93, no. 1, pp. 53-68, 2008.
Get it from arXiv!


[30] Nikolov, N., Pflug, P., Thomas, P. J., Zwonek, W. Estimates of the Carath?dory metric on the symmetrized polydisk, Journal of Mathematical Analysis and its Applications, Vol. 341, no. 1, pp. 140-148, 2008.
Get it from arXiv!


[29] Massaneda, X., Thomas, P. J. Sampling sets for the Nevanlinna class, to appear in  Revista Matematica Iberoamericana, Vol. 24, no. 1, pp. 353-385, 2008.
.pdf
Get it from arXiv!



[28] Thomas, P. J. An example of limit of Lempert functions, Vietnam Journal of Mathematics, Vol. 35, no. 3, pp. 317-330, 2007.
.pdf  .dvi
Get it from arXiv!


[27] Massaneda, X., Thomas, P. J. Phragm?-Lindel?-type Problems for A-alpha,  Bergman Spaces and Related Topics in Complex Analysis: Proceedings of a Conference in Honor of Boris Korenblum's 80th Birthday, Israel Mathematics Conference Proceedings (IMCP), Contemporary Mathematics, vol. 404, pp. 153-163, 2006. 
.pdf


[26] Borichev, A., Nicolau, A., Thomas, P. J. Harmonic and superharmonic majorants on the disk. Bulletin of the London Mathematical Society, vol. 38, pp. 250-260, 2006.
.dvi


[25] Hartmann, A., Massaneda, X., Nicolau, A., Thomas, P. J. Interpolation in the Nevanlinna Class and harmonic majorants. Journal of Functional Analysis, vol 217, pp. 1-37, 2004.
.pdf


[24] Eiderman, Vladimir Ya., Thomas, P. J. Equivalence of summatory conditions along sequences for bounded holomorphic functions. Complex Variables, Theory and Applications, vol. 49, no 7-9 (special issue : a tribute to Matts Ess?), pp. 595-611, 2004.
.pdf


[23] Pau, J., Thomas, P. J. Decrease of bounded holomorphic functions along discrete sets. Proceedings of the Edinburgh Mathematical Society, vol. 46, pp. 703-718, 2003


[22] Thomas, P. J. , Nguyen Van Trao. Pluricomplex Green and Lempert functions for equally weighted poles. Arkiv f? Matematik, vol. 41, no. 2, pp. 381-400, 2003.
.dvi
.pdf


[21] Stessin, Michael I., Thomas, P. J. Algebras generated by two bounded holomorphic functions. Journal d’Analyse Math?atique, vol. 90, pp. 89-114, 2003.
.dvi



[20] Do Duc Thai, Thomas, P.J. On D*-extension property of the Hartogs domains. Publicacions Matemàtiques, vol. 45, no 2, pp. 421-429, 2001.

[19] Nicolau, A., Pau, J., Thomas, P. J. Smallness sets for bounded holomorphic functions. Journal d’Analyse Math?atique, vol. 82, pp. 119-148, 2000.

[18] Massaneda, X., Thomas, P. J. Interpolating Sequences for the Fock spaces in Cn. Indagationes Mathematicae, N.S., vol. 11 (1), pp. 115-127, 2000.

[17] Amar, E., Thomas, P. J. Finite interpolation with minimum uniform norm in Cn. Journal of Functional Analysis, vol. 170, pp. 512-525, 2000

[16] Massaneda, X., Thomas, P. J. Sampling Sequences for Hardy spaces of the Ball. Proceedings of the American Mathematical Society, vol. 128, no 3, pp. 837-843, 2000.

[15] Le Hai Khôi, Thomas, P. J. Weakly Sufficient sets for A-(D). Publicacions Matem?iques, vol. 42, pp. 435-448, 1998.

[14] Do Duc Thai, Thomas, P.J. D*-extension property without hyperbolicity. Indiana University Mathematics Journal, vol. 47, no 3, pp. 1125-1130, 1998.

[13] Thomas, P. J. Sampling sets for Hardy spaces of the disk. Proceedings of the American Mathematical Society, vol. 126, pp. 2927-2932, 1998.

[12] Thomas, P. J. Necessary conditions for interpolating sequences. Bulletin of the London Mathematical Society, vol 29 Part 4, pp. 433-442, 1997.

[11] Jevtic, M., Massaneda, X., Thomas, P. J. Interpolating Sequences for the weighted Bergman Spaces of the Ball. Michigan Mathematical Journal, vol. 43, no 3, pp. 495-517, 1996.

[10] Thomas, P. J. Local hull of the union of an open set and a real plane in C2. In Géométrie complexe (Paris, 1992), pp. 113-122, Actualités Sci. Indust., 1438, Hermann, Paris, 1996.

[9] Thomas, P. J. Continuity and convergence properties of extremal-interpolating disks. Publicacions Matemàtiques, vol. 39, no 2, pp. 335-347, 1995.

[8] Amar, E., Thomas, P. J. A notion of extremal discs related to interpolation in the Ball. Mathematische Annalen, vol. 300, pp. 419-433, 1994.

[7] Thomas, P. J. Unions minimales de n-plans réels d'enveloppe égale à Cn , in Proceedings of Symposia in Pure Mathematics vol 52, Part 1, pp 231-244. (Proceedings of the AMS Summer Research Institute on Several Complex Variables and Complex Geometry , August 1989 ; editors: S. Krantz, E. Bedford, J. D'Angelo, R. E. Greene; American Mathematical Society , Providence), 1991.

[6] Thomas, P. J. Enveloppes polynomiales d'unions de plans réels dans Cn. Annales de l'Institut Fourier (Grenoble), vol. 40, no 2, pp. 371-390, 1990.

[5] Thomas, P. J. Subset of Hardy Class Zero[-sets] in the Ball. Publicacions Matemàtiques, vol. 34, no 1, pp.135-144, 1990.

[4] Thomas, P. J. Hardy Space Interpolating Sequences of Hyperplanes. Pacific Journal of Mathematics, Vol. 140, no 1, pp. 1-17, 1989.

[3] Thomas, P. J. Hardy space interpolation in the unit ball. Indagationes Mathematicae (Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen), vol. 90, no 3, pp. 325-351, 1987.

[2] Thomas, P. J. Tents and Interpolation in the Ball. Complex Analysis II (Proceedings of the Special Year at the University of Maryland, College Park), Springer Verlag Lecture Notes n1276, 1987.

[1] Thomas, P. J. Interpolating Sequences of Hyperplanes in the Unit Ball of Cn. Annales de l'Institut Fourier (Grenoble), vol. 36, no 3, pp. 167-182, 1986.