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Abstract. The aim of this work is to compare three methods of data reduction in the
context of heat transfer. This follows the well-known practice of observing unsteady
phenomena according to space or time energetic arguments. Especially, the present study
focuses on the efficiency of the Proper Orthogonal Decomposition (POD), Spectral Proper
Orthogonal Decomposition (SPOD) and Principal Components Analysis in the Frequency
domain (FPCA). In several previous works, both POD and SPOD have been proposed in
the context of fluid mechanics while FPCA is been newly applied to this domain. Thus, in
this work we provide a discussion on the contribution of the FPCA to deal with multiscale
physics.
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Résumé. Le but de ce travail est de comparer trois méthodes de réduction des données
dans un contexte de transfert de chaleur. Nous nous plaçons dans le cas bien connu où
nous observons des phénomènes instables dans le temps et l’espace. Plus précisément,
nous nous intéressons à l’analyse en composantes principales (appelée dans le domaine de
la mécanique des fluides la décomposition orthogonale aux valeurs propres ou POD), à la
POD spectrale (SPOD), et à l’analyse en composantes principales dans le domaine des
fréquences. Les méthodes POD et SPOD ont été proposées dans un contexte de mécanique
des fluides, alors que la FPCA est nouvellement appliquée à ce domaine. Ainsi, dans ce
travail, nous proposons une discussion sur la capacité de la méthode FPCA à se positionner
dans une analyse physique multi-échelle.

Mots-clés. Simulation numérique directe, analyse en composantes principales, séries chronologiques,
stationnarité, mesure aléatoire, analyse spectrale, champ thermique

1 Introduction

Simulation of complex systems, such as in fluid mechanics, leads to the production of a large amount
of information. Therefore, dimension reduction is of major importance to be able to carry out
fine analyses of the underlying physical phenomena. In this context, several approaches have been
developed since the last decades. One can mention the pioneer works concerning Proper Orthogonal
Decomposition (POD, Lumley, 1970), based on the Principal Components Analysis (PCA), or more
recently the Dynamic Mode Decomposition (DMD) proposed by Schmid (2010). All of them look for
an efficient way to give an alternative representation of data in order to facilitate analysis. Keeping in
mind this purpose, PCA is devoted to the reduction of dimension, mainly in a context of independent
observations. When data are time-dependent measurements, the independence is no more ensured in
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the time domain, but when the signal is a stationary process, its Fourier Transform gives independent
observations. The Spectral POD (SPOD) is a new method introduced by Lumley (2007) in order
to rank the modes according to their energy level having a characteristic frequency. Finally, PCA
in the frequency domain (Brillinger, 2001) aims a similar purpose to the SPOD, with PCA of the
Fourier Transform for each identified frequency. Boudou (1995) has proposed a generalisation of this
PCA in the frequency domain, that we name FPCA, and which has first been performed in Boudou
et al. (2004) for periodic flows.

In this study, we propose to compare results from POD, SPOD and an improved method of FPCA,
which is not restrictive on the structure of the multidimensional signal spectrum . In this presentation,
we first present the data of interest. Secondly, we present the three compared methods, that is POD,
SPOD and FPCA. In the third part, we apply the three methods on data from simulation. We
end by showing the difficulties of each method, we compare the qualities of reconstruction and the
phenomenon each method reveals at each step.

2 Description of the interest data

The comparison of POD, SPOD and FPCA methods is carried out on the spatio-temporal serie
basis of a natural convection flow temperature field (Sergent et al., 2013, Trias et al., 2007). In
particular, we simulate the thermal coupling between a fluid and a solid wall, imposing continuity of
the temperature field at the fluid/solid interface. The data considered here is therefore a sampling
of a variable T (t, x, y) determined by Direct Numerical Simulation. For the sake of illustration, a
snapshot and a time series are given in Fig. 1. Details of the DNS solver used in this work are
presented in Abide (2017, 2018).

Figure 1: First snapshot and time series of the temperature fluctuations
.

The direct numerical simulation of turbulent natural convection at Ra = 109 (Trias et al., 2007)
has been carried out on a grid 48× 65 over 1000 time steps. In the following, comparisons between
POD, SPOD and FPCA are based on a sub-sampling of the wall temperature by 100 snapshots of
dimension 24× 22 points.

2



3 The methods of dimension reduction

3.1 Proper Orthogonal Decomposition

Let {u(x, t)} be a stochastic process defined on Rn × R, as for example a random n−dimensional
field observed along the time. The POD is the search of a deterministic function φ(x) that best
approximates the stochastic function in average.

Practically, it consists of considering a sample (x1, . . . , xn) of space points, and measures at times
t1, . . . , tp. The method is implemented via the principal components analysis (PCA) of the matrix
U = (u(xj, ti))j=1,...,n;i=1,...,p. Each principal component of such a PCA is named a mode.

3.2 Spectral Proper Orthogonal Decomposition

Spectral proper orthogonal decomposition (SPOD) is a frequency domain variation of POD recently
brought to the fore by Towne et al. (2018). This method is designed for statistically stationary
flows. It is aimed to extract coherent structures from flow data. For example, it has been applied
to extract the spatio-temporal modes of a jet and wind turbine flows in He et al. (2021). The
main contribution of the SPOD compared to the POD is that the modes vary in both spatial and
temporal dimensions, and are orthogonal under a space-time inner product, as opposed to being
purely spatial. Consequently, these modes are optimal for representing spatio-temporal coherence
within the data. In mathematical terms, the SPOD modes represent eigenvectors of the cross-spectral
density (CSD) matrix at individual frequencies, where the eigenvalues denote the energy associated
with each mode at a given frequency. A more detailed description of the method is given by Schmidt &
Colonius (2020). We perform the SPOD with the open access python script proposed and successfully
applied to several example by He et al. (2021) [https://github.com/HexFluid/spod_python (accessed
February 2024)]. This script is built up as follows.

The first step is to build a matrix for the spatio-temporal data. Let the vector qk ∈ RNq be the kth
time snapshot after subtracting the time-averaged data. The chronologically sorted spatio-temporal
data matrix is:

Q = [q1, q2, . . . , qNt ] ∈ RNq×Nt ,

where N t is the number of snapshots. Secondly, the data matrix is decomposed into Nb blocks using
the Welch periodogram method and the discrete Fourier transform is applied to each block to pass
into the frequency domain. At this stage, to prevent loss of precision due to spectral leakage, each
data block is processed with a Hamming window and then overlapped with neighbouring blocks. The
matrix for the jth block is

Q̂(j) =
[
q̂
(j)
k , q̂

(j)
2 , . . . , q̂

(j)
Nf

]
∈ CNq×Nf

Then, according to the frequency, the matrices are reshaped so that the matrix for the kth frequency
is

Q̂k =
[
q̂
(1)
k , q̂

(2)
k , . . . , q̂

(Nb)
k

]
∈ CNq×Nb .

The weighted cross-spectral density (CSD) matrix for the kth frequency, denoted as Sk is obtained
as follows:

Sk =
1

Nb

W 1/2Q̂∗kQ̂kW
1/2 ∈ CNb×Nb ,

where W represents the weight matrix for scaling the various flow variables. The specific definition
of W determines the physical interpretation of the energy associated with the SPOD modes. Finally,
the eigen-decomposition is performed on the weighted cross-spectral density (CSD) matrix Sk for
each frequency. The resulting modes are used for a variety of purposes such as classification and
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reduced order modelling. Similar to other versions of Proper Orthogonal Decomposition (POD),
SPOD determines an orthogonal basis for the data, meaning that a subset of these modes captures
a proportion of the total energy (variance) within the data compared to any other orthogonal basis.
The function used for the reconstruction is based on Nekkanti & Schmidt (2021), and is available in
the python script above mentioned.

3.3 Principal Components Analysis in the Frequency domain

Let (Xn)n∈Z be a stationary p−dimensional random time series. The FPCA of (Xn)n∈Z is the search
of a q−dimensional series (q < p) (X ′n)n∈Z, stationarily correlated with (Xn)n∈Z, as close as possible
to it. As (Xn)n∈Z and (X ′n)n∈Z are stationary, there exist two unitary operators U and U ′ such that
Xn = UnX0 et X ′n = U ′nX ′0. So the FPCA is the search of X ′0 and U ′ such that X ′n = U ′nX ′0 and
‖X0 −X ′0‖ is as small as possible.

TheXn’s of the stationary series (Xn)n∈Z, are p−dimensional random vectors: Xn = (x1n, . . . , x
p
n)
t.

The stationarity is assumed in a broad sense, that is E(Xn
tXm) = E(Xn−m

tX0) for any pair (n,m)
of elements from Z. It is equivalent with the usual second order stationarity of each of its components
(xin)n∈Z and with the pairwise correlated stationarity: E(xinxjm) = E(xin−mx

j
0) for any (n,m, i, j) from

Z× Z× {1, ..., p} × {1, ..., p}.

We assume that the conditions are satisfied for the existence of the spectral density,
(2 π)−1

∑
n∈Z e

−i.nEX t
nX0.

Theoretically, the FPCA needs to process the PCA of (2π)−1
∑

n∈Z e
−iλnEX t

nX0, for each λ from
[−π, π[, this means an infinity of PCA’s. We overcome this difficulty by a discretization of the
spectrum [−π, π[.

More precisely, if k is an integer, we consider the measurable application from [−π, π[ into itself:

fk =
k−1∑
l=−k

π l

k
1Blk

where B−k,k = {−π}, Blk =]π l
k
− π

k
, π l
k
] for l = −k+1, . . . ,−1, B0k =]− π

k
, π
k
[, and Blk = [π l

k
, π l
k
+ π

k
[

for l = 1, . . . , k − 1.

The FPCA can be approximated by the spectral decomposition of the spectral densityMlk defined
on each Blk; l = −k + 1, . . . , k − 1. The matrices Mlk can be estimated by

(2 πm)−1
m∑
u=1

m∑
v=1

(

∫
Blk

eiλ(u−v) d(λ))Xv
tXu

.

Let (X ′n)n∈Z be the q−dimensional solution of the q−order FPCA of (Xn)n∈Z. This series is of
the form X ′n =

∑
m∈Z C

′
mXn−m. It can be approximated via the discretization of the spectrum, by

the series
X

′k
n =

∑
m∈Z

C ′m,kXn−m,

where

C ′m,k = (2π)−1
k−1∑

l=−k+1

(

∫
Blk

eiλm d λ)

q∑
j=1

Fj
tAjlk,

Fj being the jth vector of the canonical basis of Cq, and Ajlk being the jth unitary eigenvector of
Mlk.
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The reconstructed series is then (X
′′k
n )n∈Z, which can be writen

X
′′k
n =

∑
m∈Z

C ′′m,kX
′k
n−m =

∑
m∈Z

Dm,kXn−m ,

where

C ′′m,k = (2π)−1
k−1∑

l=−k+1

(

∫
Blk

eiλm dλ)

q∑
j=1

Ajlk
tFj ,

and

Dm,k = (2π)−1
k−1∑

l=−k+1

(

∫
Blk

eiλm dλ)

q∑
j=1

Ajlk
tAjlk .

Of course, the greater is k, the nearest the approximated FPCA is to the theoretical FPCA defined
above.

We can examine the norms of the C ′m,k, which are high when the gap m in the linear combination
of the reconstruction is high, what happens, for example, when the series is periodic of period m.
We can also compare the series before and after the FPCA, for various dimension q values of the
reconstruction.

4 Results and discussion

4.1 Analysis with POD

We examine the modes of this analysis, which match with the principal components in usual PCA. In
Figure 2, the reconstruction is very slightly improved from 1 to 2 dimensions. At least, the essential
of the variations is returned.

Figure 2: POD : Reconstruction of three points variations with one and two modes
.

The variations most reconstructed are those for median temperature, as we see in Figure 3.

4.2 Analysis with SPOD

In Figure 4, we can see that the variations of points 20 and 100 are slightly more complex than the
ones from POD, but the same variations are first retrieved.
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Figure 3: POD : Reconstruction of image at t=0 with one and two modes
.

Figure 4: SPOD : Reconstruction of three points variations with one and two modes
.

The variations most reconstructed are those for extreme temperatures at t = 0, as we see in
Figure 5.

4.3 Analysis with FPCA

As for the trajectories of points 20 and 100, FPCA retrieves more complexity than the previous
methods. It takes into account more frequencies in the first modes (Figure 6).

Figure 7 gives the first snapshot for a one and two-dimensions reconstruction. By comparison
with the initial first snapshot, we can recognise the main variations of the flow, yet for q = 1.

4.4 Comparisons

One way to assess the efficiency of decomposition method relies on its ability to reconstruct the initial
signal with few modes. To this end, we evaluate the error in reconstruction with respect to the mode
numbers. Figure 8 presents the relative error computed for the three methods POD, SPOD and
FPCA. One can note that FPCA is able to reconstruct the data with fewer modes than the other
methods. In this way, FPCA overcomes the POD and SPOD in its ability to retrieve data. Moreover,
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Figure 5: SPOD : Reconstruction of image at t=0 with one and two modes
.

Figure 6: FPCA, k = 10 : reconstruction on dimensions 1 and 2
.

the control parameter k improves greatly the decomposition efficiency. When k is small, the number
of subdivisions of the frequency spectrum is small, so few frequencies are taken into account. The
higher k is, the higher is the number of considered potential frequencies. The method FPCA has
been performed with k = 10 and k = 20. This comparison of two values of k illustrates the fact that
the higher k is, the smaller the error is, for a fixed value of q. As POD and SPOD present similar
errors in the first dimensions, SPOD tends to be better with dimension getting higher. FPCA has
more little errors, and the quality of reconstruction is almost perfect as soon as the dimension reaches
q = 10 when k = 10, and q = 6 when k = 20.

5 Conclusion

The FPCA sounds interesting for several purposes in fluid mechanics. The summary needs few
modes to give good quality of reconstruction compared to POD and SPOD. We can analyze the
coefficients of the reconstruction for information above the periodic parts of the signal, and we can
select part of the spectrum part for the extraction of some particular phenomena. Moreover, Boudou
and Viguier-Pla (2006) have investigated the conditions where PCA and FPCA give the same results.
This condition is the independence of data from time, and a consequence of this independence is that
FPCA and POD become equivalent. The difference between POD, SPOD and FPCA results give
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Figure 7: FPCA, k = 10 : reconstruction on dimensions 1 and 2
.

Figure 8: Standard deviation of errors of reconstruction for dimensions 1 to 20
.

indications about how time-dependent are the data.

FPCA is compared for the first time to SPOD, which is supposed to proceed with the same
way of dealing with the frequency domain, and this on data simulated from fluid mechanics models.
However, we must also analyze the computational efficiency of each method, and the ability of these
methods to apply to large volumes of data. As FPCA has got longer execution time, one of the
challenges is to adapt its algorithms to this context.
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