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Résumé. L’étude statistique de trajectoires d’avions dans le cadre de l’analyse des
données fonctionnelles nécessite un ensemble de pré-traitements bien connus de la littérature.
On s’intéresse ici au problème d’alignement de données de trajectoires, fréquent dans de
nombreuses applications. Pour les données de trajectoires, la présence de variations de phase
est généralement inévitable car les vols étudiés ne se déroulent jamais simultanément, ont des
durées différentes et sont opérés avec de grandes variabilités selon les compagnies aériennes.
Nous proposons une comparaison de deux méthodes d’alignement : un alignement dit “par
landmarks” et un alignement dit “élastique”. A partir d’un échantillon de vols, l’objectif est
de constituer un profil moyen d’altitude. Ce profil moyen doit être le plus informatif possible
au sens où on souhaite qu’il caractérise les amplitudes moyennes de l’altitude. Une bonne
procédure d’alignement devrait donc permettre de résumer les variations de l’altitude pour
des phases de vol similaires. Dans le cas idéal où les phases de vol sont renseignées dans les
données brutes, l’alignement par landmarks est naturel : il suffit d’identifier les landmarks
aux changements de phase. Si ce n’est pas le cas, on peut préalablement segmenter les phases
de vol. Moyennant un cadre conceptuel plus avancé reposant sur la géométrie différentielle,
nous montrons que l’alignement élastique produit un profil d’altitude moyen plus pertinent.
Grâce à une métrique riemannienne bien choisie, l’alignement permet de bien distinguer les
plateaux de la phase d’approche, alors même que l’information sur les phases de vol n’est pas
explicitement utilisée.

Mots-clés. Analyse de données fonctionnelles, alignement, métrique élastique, trajec-
toires.

Abstract. The statistical analysis of aircraft trajectories within the framework of Func-
tional Data Analysis (FDA) requires a set of preprocessing steps that are well known in the
literature. We are interested in the problem of aligning trajectory data, which is common
in many applications. For trajectory data, the presence of phase variations is generally in-
evitable because the studied flights are never simultaneous, have different durations, and are
operated with significant variabilities across airlines. We propose a comparison of two regis-
tration methods: a landmark-based registration and an elastic registration. From a sample
of flights, the objective is to construct an average altitude profile. This average profile should
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be as informative as possible in the sense that it should characterize the average altitude
amplitude. A good registration procedure should therefore summarize altitude variations for
similar flight phases. In the ideal scenario where flight phases are provided in the raw data,
landmark registration is natural: it suffices to identify landmarks at phase changes. If this
is not the case, flight phases can be segmented beforehand. Leveraging a more advanced
conceptual framework based on differential geometry, we highlight that elastic registration
produces a more relevant average altitude profile. Thanks to a well-chosen Riemannian met-
ric, the registration enables the clear distinction of plateaus in the approach phase, even
when information about flight phases is not explicitly used.

Keywords. Functional data analysis, registration, elastic metric, trajectories.

1 Introduction

Thanks to advances in data storage, the growing use of sensors and the development of ad-
vanced computational techniques, it is not uncommon for statisticians to manipulate statisti-
cal units such as images, sounds, or curves. These new objects have prompted the emergence
of a new terminology in statistics. The phrase Object Oriented Data Analysis (OODA), was
defined by Wang and Marron (2007) to be “the statistical analysis of populations of complex
objects”. Part of OODA is Functional Data Analysis (FDA) for which the atoms of the
statistical analysis are functions. The term FDA was coined by Ramsay (1982) and Ram-
say and Dalzell (1991), even though the origin of FDA can be traced back much earlier as
explained by Müller (2016). The foundational monograph of Ramsay and Silverman (2005),
the work of Kokoszka and Reimherr (2021) and the review of FDA techniques written by
Wang, Chiou, and Müller (2016) may serve as good introductions to the topic.

Second-generation functional data have recently been defined by Koner and Staicu (2023)
as “functional data acquired in a multivariate, longitudinal, time series, or spatial design”.
Multivariate functional data are typically defined on the unit interval as vector-valued func-
tions in Rd (d > 1). Aircraft trajectories have traditionally been studied as such. To be
precise, they have often been modeled as parametric paths in the sense of differential geom-
etry, as originally proposed by Puechmorel and Delahaye (2007) and Delahaye et al. (2014).
It resulted in several promising applications. Based on a sample of aircraft landing trajecto-
ries at Toulouse-Blagnac airport, Suyundykov, Puechmorel, and Ferré (2010) have identified
major flows around an airport. A detection of bad runway conditions has been developed by
Andrieu et al. (2016).

When considering flights in their entirety, that is to say from takeoff to landing, it is
necessary to register trajectories before any statistical analysis. Registration is a standard
pre-processing step in FDA that aims at separating phase variations from amplitude vari-
ations. Without this preliminary transformation, Marron et al. (2015) highlighted that a
statistical analysis as basic as averaging may not offer an effective data summary. For exam-
ple, the shifted betas example developed by Marron and Dryden (2021) (Section 9.1, p.176)
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illustrates the limitations of Functional Principal Component Analysis (FPCA) in the pres-
ence of phase variations. These same limitations have been identified for observational data,
notably by Nicol (2013), who demonstrated the importance of registration for the Functional
Principal Component Analysis (FPCA) of aircraft trajectories.

Phase variations are inevitable as flights are neither simultaneous nor of the same duration
and exhibit strong operational variations. The key is to find an effective method to compare
them at similar time points, meaning, literally, for the same flight phases. In this work, we
compare two commonly used approaches in the alignment of multivariate functional data: a
landmark-based approach and an elastic registration approach. The goal is to construct an
effective data summary of the average altitude profile. We extend the discussion initiated
by Marron et al. (2014) and companion papers to the case of commercial aviation. We
show that even in the ideal scenario where the landmark approach fully takes advantage
of a known segmentation of flight phases, elastic registration yields a more comprehensible
average altitude profile provided a wise choice of component.

In the following, we consider a sample of n = 5 flights over the United States made
available by the National Aeronautics and Space Administration (NASA). Each flight is
observed at a finite number of moments, that is we observe

(tij,yij), tij ∈ [0, 1], yij ∈ Rd, i = 1, ..., n, j = 1, ..., Ji (1)

where yij ≡ (y
[1]
ij , ..., y

[d]
ij ) (d > 1). For a given flight i, Ji values are observed for all d compo-

nents. Typically, the first three components describe the position of the aircraft (longitude,
latitude, altitude). Speed, acceleration and weather values are classic examples of the other
components. Since we are dealing with domestic flights, we do not consider the angular
nature of longitude and latitude in this work. Time has been scaled such that the first point
of each trajectory is associated with t = 0 and the last point with t = 1. The high sampling
rate enables individual smoothing of each trajectory.

2 A landmark approach to register aircraft trajectories

Originally introduced by Kneip and Gasser (1992) and Gasser and Kneip (1995), landmark
registration is a popular approach to align functional data. It easily adapts to the case of
multivariate functional data and relies only on a handful of steps. For each flight, some
structural features must first be identified as well as their timings. A template is then chosen
(often, the mean of the timings). A strictly monotonic time-warping function is computed
so that, for each trajectory, landmarks occur at the same time as in the template. Finally,
registered values are obtained using the inverse warping function. All details may be found
in Ramsay and Silverman (2005) (Section 7.3, p.132). The alignment’s accuracy depends on
clearly defining the features. Two cases arise in aviation depending on whether the flight
phases are already labeled in the raw data or not.
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2.1 Registration when flight phases are labeled in the raw data

When flight phases are already identified in the raw data, the structural features naturally
correspond to the beginning (or end) of each flight phase. Their timings are explicitly avail-
able, making this situation an ideal scenario. In practice, it is the case for Flight Data
Recorder (FDR) data because flight phases are automatically determined based on the mon-
itoring and recording of many flight parameters. These are the data we use. The chosen
landmarks are the takeoff, the last point of the climb phase, the first and last point of the
approach. Figure 1 illustrates the impact of landmark registration on the determination of
an average altitude profile. Note that the use of monotone cubic Hermite spline interpolation
instead of linear interpolation for constructing the time warping functions seems that have a
little effect on the obtained average altitude profile. In either case, the pronounced plateaus
of the approach phase observed in trajectories n°1 and n°4 are not reflected in the average
altitude profile.

2.2 Registration when flight phases are not labeled in the raw data

In the vast majority of cases, flight phases are not labeled in raw data. Several approaches
are thus possible. First, we can select features based on peaks, points of inflection, and
threshold crossings of one or more components of the trajectory and/or their derivatives. We
then hope to implicitly retrieve the different flight phases and apply the registration steps
as usual. A second approach consists of explicitly identifying flight phases using algorithms
present in the literature of aviation transportation. Note that segmenting a flight into differ-
ent phases is generally a complex task. Indeed, there are substantial operational differences
attributable to weather conditions and/or air traffic control. Even within the same phase,
aircraft may climb at different rates or fly at different cruise altitudes. As a consequence,
specifying universal thresholds for flight phase segmentation is not the most effective ap-
proach. Commonly used approaches in the literature have recently been reviewed by Fala,
Georgalis, and Arzamani (2023). Among statistical methods, Perrichon, Gendre, and Klein
(2024) have recently demonstrated the usefulness of using Hidden Markov Models (HMMs)
to identify the main flight phases of commercial aviation with high precision.

In all cases, landmark registration is only discrete evidence concerning intrinsically con-
tinuous warping functions. It ignores what happens in between landmarks, which is why it
is customary to adopt a continuous fitting criterion for registration. In our case, it would be
desirable to identify certain prominent plateaus.

3 Elastic registration of aircraft trajectories

Elastic registration relies on a continuous fitting criterion. It has been developed by Anuj
Srivastava et al. (2011) to tackle several limitations of the L2 distance registration. It provides
a natural template for the alignment and allows for rigorously defining the concepts of phase
and amplitude variations. It is based on differential geometry. In the same perspective as
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Figure 1: Altitude profiles and empirical average for raw data [top left], identification of land-
marks, their timings, and a template based on the average [top right], calculation of time
warping functions using linear interpolation [middle left], registered altitude profiles and the
obtained registered empirical average when warping functions have been constructed with
linear interpolation [middle right], time warping functions using monotone cubic Hermite
spline interpolation [bottom left], registered altitude profiles and the obtained registered em-
pirical average when warping functions have been constructed with monotone cubic Hermite
spline interpolation [bottom right].
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for statistical shape analysis, the foundational idea is to consider a relevant quotient space
for the registration task.

Let F be the space of real-valued, absolutely continuous functions on [0, 1] equipped with
the so-called Fisher-Rao Riemannian metric. A priori, the metric is difficult to calculate.
The Square-Root Velocity Function (SRVF) q of f ∈ F is defined as q : [0, 1] → R where
∀t ∈ [0, 1],

q(t) ≡


ḟ(t)√
|ḟ(t)|

if
∣∣∣ḟ(t)∣∣∣ ̸= 0

0 otherwise.
(2)

Up to a translation, it is a one-to-one map. As f is absolutely continuous, the resulting
SRVF is square integrable (L2 is thus defined as the space of all SRVFs). Remarkably, it
can be demonstrated that under the SRVF representation, the Fisher-Rao metric becomes
the standard L2 metric. The next step is to consider an equivalence class of q ∈ L2, denoted
[q]. Any two elements of [q] represent functions which have the same amplitude variability
but different phase variability. The quotient space of L2 under this equivalence relation is
denoted S = L2/Γ where Γ is the set of orientation-preserving diffeomorphisms of the unit
interval [0, 1]. An elastic distance is defined on S. For f1, f2 ∈ F , their corresponding SRVFs
q1, q2 ∈ L2, the elastic distance d is defined as

d([q1], [q2]) = inf
γ∈Γ

∥∥∥q1 − (q2 ◦ γ)
√
γ̇
∥∥∥ . (3)

Finding the optimal registration for f1 and f2 is actually the same as computing the elastic
distance (see Srivastava and Klassen (2016), Definition 4.7, p.99). From Equation 3, it is
clear that elastic registration is not simply a least-square alignment of SRVFs. The Karcher
mean (also known as the Fréchet mean) on S is used to derive a template for the registration.
All details are provided by Anuj Srivastava et al. 2011.

To execute elastic alignment, it entails selecting a component d of the trajectory char-
acterized by distinct inflections signifying the transition between flight phases. Unlike the
longitude profile, the altitude profile happens to exhibit the appropriate characteristics as
the succession of flight phases is delineated by distinct breaks, as illustrated on Figure 2. The
altitude profile obtained through elastic alignment is presented in Figure 3. Time warping
functions are obtained using the Dynamic Programming (DP) algorithm presented by Sri-
vastava and Klassen (2016) (Appendix B, p.435) and implemented by Tucker (2024). The
average altitude profile now reveals the plateaus of the approach phase. Interestingly, as
shown in Figure 4, once elastic registration is performed, landmarks almost perfectly coin-
cide with the template chosen in the landmark registration procedure.

4 Conclusion and perspectives

The statistical analysis of aircraft trajectories requires a pre-processing step. This necessity
arises from the very fact that, in general, flights are neither simultaneous nor of the same du-
ration. They exhibit strong operational variations. We must ensure to compare comparable

6



Figure 2: For trajectory n°2, it is evident that the longitude values do not exhibit any in-
flection points associated with a transition from one flight phase to another. Any elastic
alignment procedure relying on longitude values would not yield an average altitude ampli-
tude profile as desired, meaning for similar flight phases. We will then use the altitude profile.

Figure 3: Time warping functions [left] and aligned trajectories [right] when using elastic
registration.

Figure 4: Once elastic alignment is performed, the landmarks almost perfectly coincide with
the template chosen in the landmark alignment procedure.
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Figure 5: Landmark registration when warping functions are based on linear interpolation
[top], monotone cubic Hermite spline interpolation [middle] and elastic registration [bottom].

flight instances, meaning, ensuring that the flight phases coincide after the registration. The
simplest approach, when flight phases are known, is to perform landmark-based registration.
However, even in this ideal scenario, it remains that landmark registration is only discrete
evidence concerning intrinsically continuous warping functions. In the example presented,
elastic registration, more complex both conceptually and computationally, allows for obtain-
ing a more detailed average altitude profile, as summarized on Figure 5. Its reliability relies
on selecting a component where we have good reason to believe that the breakpoints reflect
the transition from one flight phase to another.

This last point is not so obvious for general aviation or drone flights. Several compo-
nents are usually necessary to characterize flight phases, which are more numerous and more
difficult to segment. A drone may, for instance, hover in place while rotating. A natural
extension of elastic registration in this case lies in the alignment of parametric curves for
which the theoretical framework has been proposed by Srivastava et al. 2011.
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