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Abstract

Increasing crop diversification is crucial for developing more sustainable agricultural sys-
tems, and cereal-legume intercropping is a promising strategy. This study investigates the
factors influencing the yield of cereal-legume intercrops using data from six field experiments
in southwestern France, where durum wheat was intercropped with either faba bean or pea.
We assessed how differences in plant traits between the associated species (e.g., height or
biomass growth rates) are related to the intercrop productivity. Additionally, we devel-
oped a novel modeling approach, combining machine learning and mixed-effects models, to
identify the key traits driving intercrop performance based on variable importance.

Our results show that interspecific differences in plant traits, particularly in biomass ac-
cumulation rate, maximum leaf area index, and elongation rate, were the most important
factors explaining intercrop yield. These traits and their differences mainly suggest that
competitive processes shape the outcome of a mixture and highlight the importance of dy-
namic measurements in agronomic experiments. The relationship between species yield
and trait differences was symmetric for both intercropped species. Furthermore, these re-
lationships were scale-dependent, with trends observed at the aggregate level not always
consistent at the level of individual experiments.

Our study highlights the importance of considering trade-offs when designing intercropping
systems for practical applications and demonstrates the value of combining machine learning
with ecological knowledge to gain insights into complex agricultural systems from aggregated
datasets.
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Highlights

• Joint analysis of experimental datasets provided new insights into crop mixtures func-
tioning.

• Differences in growth traits between species in the mixture predicted their perfor-
mance.

• The strength of the correlation between performance and trait distance was similar
for both species.

• Farmers and researchers need to consider trade-offs when designing intercropping sys-
tems.

2



Introduction

Increasing crop diversification is a key practice towards more sustainable agricultural sys-
tems (Duru et al., 2015), with overall beneficial effects observed (Beillouin et al., 2021).
At the annual and field scale, an example of a well-studied diversification strategy is inter-
cropping, i.e., combining two different species in the same field for most of their growing
periods. Since different species differ in their ecophysiological functioning, growing a mix-
ture could improve resource use efficiency relative to the species grown separately in sole
crops. Particularly, cereal-legume mixtures are a highly effective practice, not only because
of the complementary nitrogen use of the two species (Landschoot et al., 2024), but also
because of their practical feasibility (Verret et al., 2020). Meta-analyses generally indicate
that intercropping increases productivity per unit area in low-input contexts (Bedoussac et
al., 2015). However, results from field experiments suggest that these benefits are highly
context-dependent (Jones et al., 2023), with some situations showing increased productivity
and others showing decreased productivity compared to sole cropping (Martin-Guay et al.,
2018; MacLaren et al., 2023).

This discrepancy between broad frameworks linking diversity to productivity (Brooker et al.,
2021) and local outcomes calls for a focus on the mechanisms behind the effects of diversity,
specifically whether it acts as insurance (Loreau et al., 2021) or through better resource use
complementarity between species. The underlying idea is that it is not diversification per
se that leads to productivity gains but rather the choice of species to combine in a given
environment to promote positive plant-plant interactions while minimizing negative ones
(Dee et al., 2023; McGuire, 2023). In this context, understanding how species characteristics
impact mixture productivity is crucial for developing intercropping as a component of more
sustainable systems (Wang et al., 2024b).

Modeling is a relevant tool for improving our understanding of systems, especially for as-
sessing how species characteristics are related to mixture productivity. As pointed out
by van Ooyen (2011), most formal models lie on a continuum between two extreme cate-
gories: mechanistic models and phenomenological models. Mechanistic models are based
on in-depth knowledge of ecophysiological mechanisms and include numerous parameters
with explicit biological meanings. In contrast, phenomenological models start from exper-
imental data to explore correlations arising from potential causal relationships. They do
not require a priori knowledge of the biological mechanisms underlying the observations,
but rely heavily on data availability (Gunawardena, 2014). Within the phenomenological
models, Breiman (2001a) highlighted a distinction between classical statistical models (such
as generalized linear models) and algorithmic models (e.g., random forests and neural net-
works). Algorithmic models are valued for their flexibility in learning patterns from data
without relying on assumptions about specific data distributions, making them particularly
well-suited for handling complex biological data. Additionally, their ability to assess the
contribution of different inputs to the studied process provides a distinct advantage in the
analysis of biological systems.

When it comes to modeling species mixtures, mechanistic models are often limited in the
number of crop species they can represent and in their ability to capture plant-plant inter-
actions and phenotypic plasticity (Gaudio et al., 2019), while these processes are critical
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to understanding mixture performance (Mahaut et al., 2023). As a result, we opted for an
algorithmic modeling approach in which plant-plant interactions are inferred from observed
data rather than explicitly described from an ecophysiological perspective. In this context,
differences between species characteristics, commonly referred to as plant traits (Volaire
et al., 2020), are valuable for elucidating plant-plant interactions (Kunstler et al., 2012)
and are good proxies for estimating both the overall performance of the mixture and the
performance of each species within it (Montazeaud et al., 2018; Gaudio et al., 2021; Ma-
haut et al., 2023). Depending on the trait considered, species differences may reflect either
competition or complementarity (Wagg et al., 2017). For example, competition has been
associated with differences in maximum height (Carmona et al., 2019) or early growth rates
(Zhang et al., 2020), while niche complementarity has been associated with differences in
root length (Homulle et al., 2021). Although species differences are expected to influence
mixture functioning positively (through facilitation and/or complementarity) or negatively
(through competition), the strength and shape of this relationship in agricultural systems
remain largely unknown (Gaudio et al., 2021; Mahaut et al., 2023). We argue that using eco-
logical concepts and agronomic knowledge to approximate plant-plant interactions, rather
than working directly from the raw observed phenotypes, would increase the interpretability
of our model.

In this study, we therefore approximated plant-plant interactions as a function of species
trait differences to predict the yield of each species in the mixture and to assess the relative
contribution of each trait to species yield. We used the results of six field experiments
conducted in southwestern France that included species-dependent measurements along with
mixture and sole crop productivity. The experiments included two wheat/legume intercrops,
i.e., durum wheat (Triticum turgidum L.) associated with faba bean (Vicia faba L.) or pea
(Pisum sativum L.). We summarized plant-plant interactions using relative trait distance
(Kunstler et al., 2012) under two conditions: (1) within the mixture, between species, i.e.,
interspecific indicators (Gaudio et al., 2021), and (2) within a species, between sole- and
intercropping conditions, i.e., intraspecific indicators (Engbersen et al., 2022). The choice
of relative distance over absolute distance was primarily determined by the nature of the
traits measured in agronomic experiments (height, biomass, leaf area index), which mainly
reflect asymmetric plant-plant interactions, and thus competition (Mahaut et al., 2023).
Also called fitness differences, they are assumed to characterize the competitive advantage
of one species over another one, for example due to asymmetry in species growth rates
(Wang et al., 2024b).

We then developed a modeling approach that combines machine learning and inference,
as used in previous studies in ecology (Yang et al., 2022; Primka IV et al., 2023), based
on the random forest algorithm and linear mixed-effects model. We also compared this
original combined approach with each of the individual methods involved. To interpret the
model outputs and identify important features for mixture performance, we used a two-step
process. First, we reduced the set of features through a rigorous variable selection during
model fitting. Then, we ranked the selected variables by estimating their contribution to
the variance in mixture performance (variable importance).
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Durum wheat / legume intercrops
Wheat / faba bean (n=39); wheat / pea (n=47)

+ sole crops

Plant growth metrics

Times series summary (biomass, height)

→ 2 parameters per time series (onset, inflexion)

Agricultural practices-related features

Nitrogen nutrition index → 1 explanatory variable

Cultivar identity → 2 explanatory variables

Interspecific indicators
Interspecific differences within intercrops

→ 6 explanatory variables per model

Intraspecific indicators
Intraspecific differences between inter- and sole-cropping 

conditions → 7 explanatory variables

Models development
3 types of model: Linear Mixed-Effect (LME), Random Forest (RF),  

Mixed-Effect Random Forest (MERF)

→ 3 models (LME, RF, MERF) per species per imputed dataset

Raw data

Data processing 
for modeling Multiple imputation → 10 imputed versions of the dataset

Modeling
approach

Variable selection (on RF-based models)
Boruta method (sorting and prioritizing variable importance)

→ 4-7 explanatory variables per model 

Models evaluation
RMSE on training and test datasets

16 explanatory variables

Data pre-computation

Dataset with raw and computed data

Figure 1. Description of the main steps of the modeling workflow. Starting with
a dataset including two mixtures (i.e., durum wheat associated with faba bean or pea), we
first summarized the plant growth dynamics and the effect of agricultural practices. We then
applied an imputation procedure to obtain 10 imputed versions of the dataset. We summarized
plant-plant interactions under two conditions: (1) within the mixture, between species (i.e.,
interspecific indicators), and (2) within a species, between sole- and intercropping conditions
(i.e., intraspecific indicators). Finally, we fitted the yield of each species in a mixture to these
features using a random forest model.

Data processing for modeling

Raw data: Field experiments and plant measurements

The raw dataset gathers the results of 6 field experiments involving annual and synchronous
(i.e., crop species sown and harvested at the same time) cereal-legume intercrops and their
sole crop reference. The experiments were selected from an open-source global dataset
(Gaudio et al., 2023) as a compromise between the number of common variables across
experiments and the number of intercrops we could consider. For an experiment to be
selected, we required that growth-related variables were measured dynamically during the
crop cycle and that it included common species across experiments.

The field experiments were carried out in southwestern France, covering 6 years from 2006 to
2013. The year 2013 stands out from the others because of the high amount of precipitation
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recorded during the growing season (Table 1). The dataset includes one cereal species, i.e.,
durum wheat (Triticum turgidum L.); two legume species, i.e., faba bean (Vicia faba L.)
and pea (Pisum sativum L.); and the two resulting winter wheat/legume intercrops.
The experiments also differed in terms of the cultivars used. For wheat/faba bean mixtures,
2010 and 2011 were almost similar, with the same wheat cultivar and different faba bean
cultivars each year (Table 1). For wheat/pea mixtures, 2006 and 2007 included the same
cultivars for both pea and wheat (Bedoussac and Justes, 2010), with 3 additional wheat
cultivars included in 2007. The years 2012 and 2013 were more diverse, with 3 wheat
cultivars tested each year, along with 4 faba bean cultivars and 4-5 pea cultivars that
differed in height and earliness (Kammoun et al., 2021).

In total, the dataset contains 86 experimental units of species mixtures, defined as the unique
combination of {year, management} levels, with the crop management including species
and cultivar choice as well as agricultural interventions (especially different levels of N-
fertilization). Among these 86 experimental units, 39 and 47 were represented by wheat/faba
bean and wheat/pea intercrops, respectively (Table 1). Within the six experiments, several
plant variables were measured at the experimental unit scale. Grain yield (t.ha-1) was
measured systematically. Crop height (m) and aboveground biomass (t.ha-1) were measured
dynamically throughout the growing season. Leaf area index (LAI, leaf area per soil area, in
m2.m-2) and specific leaf area (SLA, cm2.g-1) were measured at their maximum value, and
nitrogen (N) content in aboveground biomass (%) at flowering, allowing the calculation of
the N nutrition index (NNI, Louarn et al., 2021). Given the heterogeneity of the gathered
experiments, we used a multiple data imputation procedure to handle the small fraction of
missing data.

Table 1. Main characteristics of the data used, coming from 6 experiments
conducted in southwestern France. Two cereal/legume intercrops were involved, i.e.,
wheat/faba bean and wheat/pea, with 1-5 cultivars per species and per experimental year,
with the two intercrops being studied within the same experiment in 2012 and 2013. The
environment was characterized by the mean temperature (°C) and the sum of precipitation
(mm) recorded from crop sowing to harvest. Within each experiment, several experimental
units (unique combination of {year, crop management}) were involved for each mixture.

Year Intercrop
Precipitations

(mm)
Temperature

(°C) n
No. cultivar

wheat
No. cultivar

legume

2006 wheat / pea 473.2 10.0 3 1 1
2007 wheat / pea 546.5 11.4 16 4 1
2010 wheat /

fababean
501.4 10.1 16 1 1

2011 wheat /
fababean

311.9 10.7 4 1 1

2012 wheat /
fababean

435.6 10.2 9 3 4

2012 wheat / pea 435.6 10.2 9 3 4
2013 wheat /

fababean
782.6 10.4 10 3 4

2013 wheat / pea 782.6 10.4 19 3 5
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Data pre-computation: plant growth metrics and nitrogen status

Plant growth metrics

Shoot biomass and crop height were measured dynamically during the cropping season in
each experimental unit, with measurement dates varying between experiments. Assuming
that plant growth followed a logistic curve, we summarized the process with three common
parameters having a biological meaning (Zwietering et al., 1990). We used smoothing splines
to reduce these curves’ dimensions by extracting two parameters: i) the slope at the inflexion
point (i.e., growth rate) and ii) the onset of the growth phase. Given the coordinates (x,
y) at the inflexion point, the onset was estimated as the intersection of the tangent at the
inflexion point with the x-axis. We did not estimate these parameters if the measurements
were not done over the entire growth cycle. Additionally, the maximum values were also
directly extracted for three plant variables: height, LAI and SLA. We chose to exclude
maximum biomass from the further calculation of explanatory variables due to its high
positive correlation with yield, as illustrated in studies focusing on reproductive allometry
(Gaudio et al., 2021).

Nitrogen status of intercropped species

To assess individual species N status in mixture, we calculated the Nitrogen Nutrition Index
(NNI; Louarn et al. (2021)). The critical N dilution curve is species-specific and describes
the minimum aboveground N concentration required to achieve maximal growth for a given
biomass (Nc, in %; Justes et al. (1994)). The NNI evaluates a crop N status by comparing
its N concentration to Nc. NNI above (below) 1 indicates N excess (stress) in the crop
(Lemaire and Meynard, 1997). NNI was computed at flowering for each species as following
(Louarn et al., 2021):

NNI𝑖 = %N𝑖
𝑝𝑖 ∗ (𝑎𝑖 ∗ biomass−𝑏𝑖) + (1 − 𝑝𝑖) ∗ (𝑎𝑗 ∗ biomass−𝑏𝑗)

where, 𝑎𝑖 (𝑎𝑗) and 𝑏𝑖 (𝑏𝑗) are parameters for species 𝑖 (resp. 𝑗), %𝑁𝑖 is the N concentration
of species 𝑖 and 𝑝𝑖 is the proportion of species 𝑖 within the intercrop. The parameters a (%)
and b (unitless) are specified identically for pea and faba bean with a at 5.1 % and b at
0.32 (Louarn et al., 2021), as well as for wheat with a at 5.4 % and b at 0.44 (Justes et al.,
1994).

Data imputation

Given that the six gathered experiments did not follow strictly identical protocols, some
data were missing, resulting in an unbalanced dataset (Mahmoud et al., 2024). Listwise
data deletion is a common procedure that retains only observations with complete entries
in a dataset, but it may drastically reduce the sample size and bias the analysis (Roth,
1994). Alternatively, the multiple imputation allows getting multiple plausible values for
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each missing entry, while keeping track of the variability due to the imputation process
(Schafer, 1999).
To perform multiple imputation, we used the JointAI R package algorithm (Erler et al.,
2021), which is based on a Bayesian mixed-effects model that allowed tracking the within-
experiment dependence between observations. This method provided 10 imputed versions
of the dataset.

Explanatory variables selected and computed for modeling

We aimed to model the yield of each species in each mixture (wheat/faba bean and
wheat/pea), resulting in four distinct models. Each model is based on a common set of 16
explanatory variables, related to plant characteristics, their interactions, and the effect of
agricultural practices.

Plant-related explanatory variables

Guided by ideas from community ecology, we computed two sets of plant-related indicators
at the experimental unit scale (Table 2) from the data processed in the previous steps.
Within each intercrop, the difference in a given plant variable between the cereal and the
legume was calculated as a proxy for interspecific plant-plant interactions (i.e., interspe-
cific indicators), resulting in 6 shared explanatory variables per species. Within each crop
species, the difference in a given plant variable between intercrop and sole crop indicated
the potential effect of the mixture context (i.e., intraspecific indicators). This resulted in 7
explanatory variables per species, which differed between wheat and legumes. As these dif-
ferences are symmetric depending on the focus species, only legume intraspecific differences
were included in legumes models, and similarly for wheat models. Regarding maximum
SLA, we opted to exclude its calculation from explanatory variables for interspecific differ-
ences, while retaining it for intraspecific ones. This plant trait did not seem relevant to
compare cereals and legumes given their highly contrasting leaf morphology. Then, SLA
intraspecific variability makes more sense than interspecific difference (Lisner et al., 2021)
in terms of interpretability.
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Table 2. List of the plant-related explanatory variables used as input in the models
in order to explain yield of intercropped species. For the different variables (biomass,
height, LAI, and SLA), 1-3 parameters were available to characterize plant growth and stature.
Two sets of indicators were computed: i) interspecific indicators were calculated within each
intercrop as the difference for a plant parameter between the cereal and the legume; ii) intraspe-
cific indicators were calculated for a given species as the difference for each plant parameter
between intercrop and sole crop.

Plant Variables Parameter Unit Interspecific
(𝑥𝑐𝑒𝑟𝑒𝑎𝑙–𝑥𝑙𝑒𝑔𝑢𝑚𝑒)

Intraspecific
(𝑥𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝–𝑥𝑠𝑜𝑙𝑒 𝑐𝑟𝑜𝑝)

Biomass Onset °𝐶.𝑑 X X
Inflexion 𝑡.ℎ𝑎−1 X X

Height Onset °𝐶.𝑑 X X
Inflexion 𝑚.°𝐶𝑑−1 X X
Max 𝑚 X X

Leaf area index (LAI) Max 𝑚2.𝑚−2 X X
Specific leaf area (SLA) Max 𝑐𝑚2.𝑔−1 - X

Agricultural practices-related explanatory variables

To summarize agricultural practices, we used two sets of indicators. The first one simply
corresponds to the cultivar identity. The cultivar identity of both intercropped species was
included in each species model (Table 1), resulting in two additional explanatory variables
per model. The second agronomic indicator was the crop N status (NNI). In each species
model, only the NNI of the considered species was included as an explanatory variable.

Modeling approach

Objectives and strategy

We start the modeling step from the imputed datasets presented in the previous section,
each with p = 16 explanatory variables. To study how the environment affected mixture
functioning, we considered experiments as a random effect (and therefore not count this
factor as an explanatory variable, rather as an indicator vector).
Our main issue was to identify, among these variables, which ones best explain the yield
of species in mixture, and which modeling approach is most relevant to understand these
systems. The choice of the modeling strategy then depends largely on these data and their
dependency structure. Here, the data came from l = 6 experiments, with 4 experiments per
intercrop, containing n = 39 and n = 47 observations per mixture (wheat/faba bean and
wheat/pea, respectively; Table 1). The fact that the observations were partly drawn from
common experiments resulted in a distinct grouped structure and dependency within the
observations, thereby challenging the classical independence assumption of many statistical
learning algorithms (Hastie et al., 2009).
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We set up and compared three modeling approaches: i) random forest (RF) algorithm ii)
linear mixed-effects (LME) model, and iii) mixed-effects random forest (MERF) algorithm,
which combines both previous approaches (Hajjem et al., 2012; Capitaine et al., 2021). We
mainly focused on the MERF approach, as we assume that this approach takes advantages of
both machine learning and mixed-effects models, i.e. handles both the unknown and poten-
tially non-linear relationships between predictors and outputs, and the ability to interpret
the experiments effect within the residual error (within-group observation dependencies).

The RF algorithm allows the aggregation of predictions obtained from a large number of
regression trees trained on different subsets of variables (Breiman, 2001b). It provides high
prediction quality and can capture interactions between explanatory variables. This method
is here proposed as baseline, as it is a widely used approach and known to be suitable for a
large range of problems.
Statistical LME models are an extension of the common linear models to include both fixed
and random effects, taking into account the nested structure of the data and the within-
group dependency of the observations. More than a simple baseline, the comparison between
the LME and the MERF models will allow us to test our assumption that accounting for
non-linearity in predictions matters.

Although we reported about the performance of the three modeling approaches, we will
focus on the agroecological significance of results from the MERF algorithm. In the following
section, we choose to write models as loss functions, i.e. the sum of the squared differences
between the actual and predicted values. We used this form as a common way to quantify
the error of a prediction model, whether it is algorithmic or statistical.

The LME approach is well-known and widely used. It could be used to explain the yield 𝑦 ∈
ℝ as the sum of fixed effects given by a linear combination 𝛽⊤𝑥 of the 𝑝 explanatory variables
𝑥 = (𝑥1, … , 𝑥𝑝)⊤ ∈ ℝ𝑝 and random effects 𝑢⊤𝑧 where 𝑧 = (𝑧1, … , 𝑧ℓ)⊤ ∈ {0, 1}ℓ stands
for the experiment indicator vector that gives the group membership of the experiment.
To fit the model parameters 𝛽 ∈ ℝ𝑝 and 𝑢 ∈ ℝℓ, the following least squares criterion is
minimized,

𝐿𝐿𝑀𝐸(𝛽, 𝑢) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽⊤𝑥𝑖 − 𝑢⊤𝑧𝑖)
2

where 𝑦𝑖 is the yield observed in the experimental unit 𝑖 ∈ {1, … , 𝑛} with explanatory
variables 𝑥𝑖 and indicator variables 𝑧𝑖.

The relationship between the yield and the variables is assumed to be linear in the LME
approach. Such an hypothesis is debatable in practice and non-linearity is often relevant and
desirable. To this end, a non-parametric (with no assumption on the relationship shape)
model such as RF is a commonly used alternative. RF explains 𝑦 with an aggregation
of decision trees 𝒯 represented hereafter by a function 𝑔𝒯. Models were fitted with the
randomForest R package (Liaw and Wiener, 2002). To take into account both explanatory
and indicator variables, the least squares criterion has to be minimized with respect to the
decision tree collection 𝒯,
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𝐿𝑅𝐹 (𝒯) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑔𝒯(𝑥𝑖, 𝑧𝑖))
2

The drawback of the pure RF approach is that the explanatory variables and experiment
indicator are both integrated in the model. It is no longer feasible to identify the contribution
of 𝑧 as a random effect and to interpret the result in this sense. To circumvent this and
retrieve random effects, the MERF approach consists of mimicking the form of LME but
replacing the fixed effects term with an RF model based on the explanatory variables only.
MERF models were fitted using the LongituRF R package (Capitaine, 2020). The least
squares criterion to be minimized is then

𝐿𝑀𝐸𝑅𝐹 (𝒯, 𝑢) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑔𝒯(𝑥𝑖) − 𝑢⊤𝑧𝑖)
2

Variable selection in random forest-based models

Basically, the RF algorithm does not include a variable selection procedure, whereas it
would allow for greater parsimony, by explaining the response variable with a limited set
of explanatory variables (by discarding non-informative variables), eliminating redundant
variables, and facilitating interpretation. The issue of parsimony is significant in our case,
as we introduced 16 explanatory variables in each model. Therefore, the RF algorithm
was extended with a variable selection procedure, based on the Boruta method within
the Boruta R package (Kursa and Rudnicki, 2010a), which has been shown to be robust
and interpretable (Speiser et al., 2019). The Boruta method consists in creating shuffled
duplicates of each explanatory variable. The importance of each variable (raw and shuffled)
on species yield was then computed. A variable is said to get a “hit” when its importance
is greater than the greatest importance of the duplicated variables. This procedure was
applied 100 times and a variable was selected if reaching a number of “hits” greater than
the 95 % quantile of a binomial distribution Bin(100,0.5). Finally, given that i) ten imputed
datasets were associated with each species and that ii) a model was fitted on each imputed
version, we retained only the explanatory variables selected by all the ten models for each
species.

Model evaluation

The models’ goodness of fit was evaluated using the Root Mean Square Error (RMSE),
which was calculated for grain yield, for each model and imputed dataset as 𝑅𝑀𝑆𝐸 =
√ 1

𝑛 ∑𝑛
𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2, with 𝑦𝑖 being the observed values and ̂𝑦𝑖 the fitted values. The cross-

validation error was assessed by splitting each dataset into four folds, ensuring that each fold
includes at least one experimental unit from each experiment (as mixed-effect models cannot
predict values on new modalities). First, the model’s performance was compared, using cross
validation and without variable selection procedure. We then reported the performance of
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the MERF model, with the variable selection. The impact of the imputation process on
overall variability was assessed by comparing the variance among imputations to the total
variance of the residuals. Specifically, the proportion of variance due to the imputation
process was computed as follows:

∑𝑀
𝑚=1 ∑𝑛

𝑖 ( ̂𝑦(𝑚)
𝑖 − ̂𝑦𝑖)2

∑𝑀
𝑚=1 ∑𝑛

𝑖 ( ̂𝑦(𝑚)
𝑖 − 𝑦𝑖)2

where 𝑀 is the number of models that have converged over all the imputations, 𝑦𝑖 is the
𝑖-th observation, ̂𝑦(𝑚)

𝑖 is the fitted value for imputation 𝑚, ̂𝑦𝑖 = ∑𝑀
𝑚=1 ̂𝑦(𝑚)

𝑖
𝑀 is the average

fitted value between the 𝑀 imputations (for details, see Mahmoud, 2023).

Software

Data processing, statistical analysis, visualization, and reporting were performed with the
R software.

We used R version 4.3.2 (R Core Team, 2023) and the following R packages: Boruta v.
8.0.0 (Kursa and Rudnicki, 2010a), ggh4x v. 0.2.8 (van den Brand, 2024), glue v. 1.7.0
(Hester and Bryan, 2024), here v. 1.0.1 (Müller, 2020), kableExtra v. 1.4.0 (Zhu, 2024),
knitr v. 1.47 (Xie, 2014, 2015, 2024), latex2exp v. 0.9.6 (Meschiari, 2022), LongituRF v.
0.9 (Capitaine, 2020), nlme v. 3.1.165 (Pinheiro and Bates, 2000; Pinheiro et al., 2024),
patchwork v. 1.2.0 (Pedersen, 2024), randomForest v. 4.7.1.1 (Liaw and Wiener, 2002),
rmarkdown v. 2.27 (Xie et al., 2018, 2020; Allaire et al., 2024), rprojroot v. 2.0.4 (Müller,
2023), rsample v. 1.2.1 (Frick et al., 2024), tidyverse v. 2.0.0 (Wickham et al., 2019), viridis
v. 0.6.5 (Garnier et al., 2024).

Results

Model evaluation

The multiple imputation procedure enabled for retaining 25 % of the experimental units
in the dataset, preventing their removal, which would have occurred if rows with at least
one missing value had been deleted. Moreover, imputing missing data did not significantly
impact the fitted values. Specifically, the proportion of variance attributed to the imputation
process ranged from 2.5 to 4.5 %. Consequently, the RMSE values reported here were
averaged over the 10 imputed dataset.

The mean fitting abilities of the three types of models (LME, RF-based models without
variable selection) were good and overall equivalent on the training dataset (RMSE = 0.2,
0.18, 0.16 t.ha-1, respectively for LME, RF and MERF). However, the two RF-based models
performed much better than LME on the test dataset through the cross-validation procedure
(RMSE = 0.44 t.ha-1 for both RF and MERF, ranging from 0.32-0.58) than the LME models
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(RMSE = 0.87 t.ha-1, ranging from 0.58-1.11). These results highlight the benefits of RF-
based models, particularly in their handling of non-linear effects. Once accounting for
variable selection with the Boruta method, we reported no differences between the RF and
MERF models on the test dataset (RMSE = 0.44 t.ha-1).

wheat / fababean wheat / pea
cereal

legum
e

1 2 3 4 1 2 3 4

1

2

3

4

1

2

3

4

Observed yield (t.ha−1)

F
itt

ed
 y

ie
ld

 (
t.h

a−1
)

Figure 2. Fitted values as a function of observed values. The plot shows the relationship
between fitted and observed values for different mixtures and their components. Each point
represents an imputed dataset (10 in total), with the mean values shown as lines. The red lines
indicate the model fitted using all available data, while the blue lines represent the model’s
accuracy estimated using cross-validation. The mixtures are displayed in columns, and their
components are arranged in rows.

The imputation procedure did not contribute significantly (1.8 % in average) to the variance
of random effects in MERF models. For all species, the confidence intervals encompass 0,
indicating no major effect of the experiment (Figure 3). Only in one case (faba bean in
durum wheat / faba bean mixture), one experiment (2012) was associated with a negative
impact on yield.
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Figure 3. Mean values and confidence intervals of the coefficients of the random
effect of MERF models. Error bars represent the confidence intervals ( ̄𝑐±1.96

√
𝑉 ), where ̄𝑐

is the average random effect coefficient across imputations and 𝑉 is the variance of the random
effect coefficient, in t.ha-1.

Main plant-related features explaining species yield in mixture

We used a two-step approach to interpret our models (here, the MERF models) and identify
the key features influencing intercropped species yield. First, we reduced the set of features
by applying a stringent variable selection process during model fitting (Kursa and Rudnicki,
2010b). Then, we ranked the selected variables based on their contribution to the variance
of the species yield (variable importance).

The variable selection process was both parsimonious and robust. Across species, the num-
ber of selected explanatory variables ranged from 4 to 7 (Figure 4), representing a significant
reduction from the initial inclusion of 16 variables in each model. Specifically, we retained
only the explanatory variables that were consistently selected across all 10 imputed datasets
within each species model group.

Overall, interspecific differences within mixtures emerged as important across all mixture
combinations (Figure 4). Among these, indicators related to biomass accumulation, maxi-
mum LAI and height, which are proxies for species competitiveness, were particularly impor-
tant in both mixtures. In contrast, intraspecific differences were generally less important,
except for pea in wheat/pea intercrops.
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Figure 4. Variable importance in the two mixtures. The figure summarises the explana-
tory variables selected in the four MERF models, for each mixture component (in columns).
The explanatory variables are organized in rows, and grouped into three types: i) interspecific
indicators, calculated as the difference between the values of cereal and legume species; ii) in-
traspecific indicators, calculated as the difference between values in mixture and sole cropping
conditions; and iii) agricultural practices, where only N status was selected. The colors indicate
the ranking of the variables within the models, based on computed variable importance (with
1 being the most important). The sign (+/-) within each rectangle indicates a positive or neg-
ative Kendall correlation coefficient between the response variable (yield) and the explanatory
variable.
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The yield of a focal species in a mixture was positively correlated with its dominance, as
reflected by its stature (height, leaf area, biomass), at the expense of the associated species
(Figure 4 and 5). As a result, the same interspecific variables were selected for both wheat
and the associated legume, but these variables had opposite effects on their respective yields.
Specifically, wheat yield was highly and positively correlated with interspecific differences,
while legume yield showed the opposite trend (Figure 5). These opposing relationships
suggest that competition plays a crucial role in wheat/legume intercrops, with both species
showing similar sensitivity to it. This is evidenced by the nearly identical absolute values
of the correlation coefficients (mean 𝑟 = 0.66, ranging from 𝑟 = 0.23 to 𝑟 = 0.83), with very
close values for both species when considering a given feature and a relationship centered
around zero for both species (Figure 5).
when analyzed at the scale of the experiments, we observed overall lower correlation between
performance and trait distance when factoring years (𝑟 = 0.53, ranging from 0.12 to 0.77).
In some cases, such as the relation between wheat yield and interspecific maximum height
distance, we observed sign-changing correlations between years (from 𝑟 = −0.57 to 𝑟 = 0.63),
while the global relationship was positively correlated (𝑟 = 0.60).

While the effects of competitive processes were consistent across all mixtures, some results
were species-specific. In wheat/faba bean mixtures, wheat yield was partially explained
by differences in the timing of its elongation phase (Figure 5, fourth row), suggesting a
potential impact of intercropping on wheat phenology. Specifically, when wheat began its
growth earlier in intercropping compared to sole-cropping conditions (a pattern observed
in all experiments except in 2013), its yield was positively influenced. This earlier growth
allows wheat to avoid some of the competition for resources with faba bean. A potential
explanation for this could involve plant-plant signaling, mediated by light quality. Stud-
ies have shown that plants can perceived changes in light environment, prompting early
developmental shifts, as seen in wheat/maize (Zhu et al., 2014), soybean/maize (Yang et
al., 2014), and soft wheat/faba bean (Wang et al., 2024a) intercrops. In wheat/pea mix-
tures, several intraspecific indicators were identified for explaining pea yield, particularly
the intraspecific difference in biomass growth rate between intercropping and sole-cropping
conditions (Figure 4). It seems that experimental conditions (i.e, years) shaped and struc-
tured this relationship (Figure 5, col. 4, row 4). Specifically, when the pea was able to grow
faster in intercropping than in sole-cropping, its yield was positively affected.
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Figure 5. Bivariate relationships between grain yield and selected explanatory
variables. Bivariate relationships between the selected explanatory variables (first four ranked
variables), organized by mixture components (columns). Each point corresponds to an exper-
imental unit (unique combination of {year, crop management}). The colour of the points
encode the years (or experiments) and the shape encode the two N-fertilization levels, i.e. N0
= no fertilization, N = fertilization.
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Impact of agricultural-relaed features importance in mixtures

Fertilization, as indicated by crop N status (NNI), was identified as the main explanatory
variable in only one case: for wheat in wheat/pea intercrops (Figure 4). In this context,
wheat yield was positively influenced by its N status, with a notable yield gain resulting
from a moderate N amount (Figure 5, col. 3, row 4). A threshold effect was observed,
with yield gain occurring at NNI values above 0.6, which corresponded to the N-fertilized
experimental units. Consistent with previous studies, N-fertilization affected the balance
between the two intercropped species (Pelzer et al., 2012; Duchene et al., 2017; Mahmoud et
al., 2022). This was further evidenced by changes in the interspecific differences in maximum
LAI and shoot biomass growth rate across varying levels of N-fertilization (Figure 5, col. 3,
rows 1 and 2).

In all models, cultivar identity was never selected as a key explanatory variable, likely
because it was indirectly accounted for by variables representing plant-plant interactions.
However, it is challenging to separate the effects of cultivar identity from other experimental
factors due to the study’s experimental design (Table 1). When focusing on the cultivars
used, the years 2010 and 2011 were quite similar for wheat/faba bean mixtures, as were
2006 and 2007 for wheat/pea mixtures. Only 2012 and 2013 included a greater diversity of
cultivars for all the three species.

In the relationships between species yield and variables related to biomass or leaf area, the
statistical individuals were not clustered according to year or N-fertilization factors (Fig-
ure 5). However, height-related variables (Figure 5, row 3) revealed a clearer clustering
by experiments/year, particularly for wheat/faba bean mixtures. This clustering cannot
be attributed to cultivar effects, as the same cultivars were used in both 2012 and 2013.
Instead, it is likely driven by significant differences in precipitation, with 2013 experiencing
around 80% more rainfall between crop sowing and harvest, compared to other years (Table
1). While notable trends between yield and height-related variables emerged when com-
bining several experiments, these trends were not consistently observed within individual
experiments.

Discussion

Merging statistical cultures to balance predictive accuracy and model
complexity

Performance of linear vs RF-based models

As expected, the performance gap between linear and random forest (RF)-based models
indicated that the relationships between species yield and explanatory variables were better
captured by machine learning algorithms (Breiman, 2001b). However, the goal of account-
ing for the dependence of observations within the dataset was only partially achieved. The
confidence intervals around the random effect coefficients suggested that not all variabil-
ity associated with the experimental factor was captured in the random effect. This was
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highlighted by the similar performance observed in the RF and MERF models, as well as
the grouping structure observed in the bivariate relationships between species yield and
explanatory variables.

Taking into account environmental effects

This difficulty of random-effects models in capturing all intergroup variability has already
been pointed out (Gelman and Hill, 2006). To better estimate the random effects coefficients,
it would be interesting to include a heteroscedastic structure in the mixed model. This could
more accurately account for within-experiment dependencies but would require additional
experimental units per experiment to estimate the variance correctly (Bolker et al., 2009). In
previous iterations of this work (Mahmoud, 2023), accounting for the environment through
physical variables led to weaker predictive approaches compared to the one presented in the
current study, whether it was done by: i) classifying experiments into homogeneous climate
groups (envirotyping, Chenu et al., 2013), or ii) identifying key moments during the growth
cycle when climatic variables influenced yield (Picheny et al., 2019).

We assume that the use of plant traits as predictors already captures a significant portion
of the environmental effects. Considering plant traits (and trait-derived variables) as a sig-
nature of the processes driving mixture functioning provides a robust basis for predictive
models in agricultural conditions. However, increasing experimental variability - for exam-
ple, by including more diverse geographic locations - could challenge this assumption. In
our design, experiments were conducted in contrasting years but at the same location. We
argue that greater geographic variability would likely widen the performance gap in favor
of MERF models.

Integration of mechanistic and machine learning models

Machine learning models, including RF, have shown remarkable success across scientific
disciplines, extending beyond statistics to fields such as ecology and social sciences (Jordan
and Mitchell, 2015). Over time, the line between the different modeling approaches has
blurred, leading to more hybrid methods (Zhao, 2021). Each type of modeling — mech-
anistic, data-driven, and algorithmic — comes with its own trade-offs, such as flexibility,
causality, predictive accuracy, and simplicity. Researchers should position their modeling
approach within this broader space of models (Miller et al., 2021).

This is particularly relevant in agroecology, where agrosystems are becoming increasingly
complex, while models are still mainly developed per species or per type of modeling school
(Gaudio et al., 2022). We argue for more hybrid modeling approaches, aiming to describe
systems through a combination of models, rather than using a single model with a inevitably
limited domain of validity.
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Challenges of random forest in variable selection and dataset imbalance

While RFs have strong predictive ability and robustness, they do not inherently account
for the clustered data structure. We used the RF algorithm in MERF not with the goal of
prediction, but to identify relevant predictors from a set of candidate variables. In this con-
text, the developed models proved to be suitable for the intended purpose of using proxies to
capture the plant interactions occurring within the studied mixtures. While our approach
appears to be scalable with more experiments and predictors, two limitations arise. First,
using RF as a variable selection tool becomes more challenging as the number of predictors
increases. Second, as datasets become larger, importance-based methods may struggle with
the increased imbalance of experimental designs.
When using RF mainly to select variables rather than predict, Strobl et al. (2007) men-
tioned that the value and interpretation of the variable importance measure must actually
depict the importance of the variable and should not be affected by any other characteris-
tics. They showed that the importance estimations in the RF algorithm were not reliable
if the set of predictors included categorical variables with large variations in their category
number along with continuous variables. In our use case, our predictor set was not falling
under those conditions: they were mostly continuous, with only one categorical variable
with a low number of categories (the cultivar identity, with 5 modalities maximum).
Regarding dataset imbalance, larger datasets may introduce more confounding effects (Mah-
moud et al., 2024), warranting future research into causal relationships (Pearl, 2009), espe-
cially between traits. For example, light interception as a driver of biomass accumulation is
a relevant causal relationship. Causal relationships are of great significance in ecology (Arif
and Macneil, 2022), and should be further explored in intercropping studies.

Predictive approaches for crop ecology

Interspecific differences play a predominant role in explaining intercropped species
yield

Our modeling approach effectively explained species yield in mixtures using only 4-7 ex-
planatory variables. Compared to mechanistic models focused on intercrops (Gaudio et
al., 2019), mixed-effects random forest models were more parsimonious while maintaining
strong explanatory power. The process of selecting the most influential variables could also
benefit the design of mechanistic models (e.g. Casadebaig et al., 2016, for wheat in sole
crop), as it helps to prioritize the key variables and processes that are most important in
explaining mixture functioning.

In all fitted models, features indicative of interspecific plant-plant interactions were selected
more frequently than those comparing mixtures to sole cropping. Particularly, differences in
growth dynamics and final stature between species were crucial in explaining their respective
yields, confirming the role of plant interactions within crop mixtures (Justes et al., 2021).
The description of growth processes (onset, rate, maximum) proved particularly useful,
highlighting the importance of capturing dynamic measurements in agronomic experiments,
taking into account variables routinely measured in field trials (biomass, height, leaf area).
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Dialogue between modelers and experimenters is crucial, fostering a two-way exchange that
refines both model predictions and experimental designs (Craufurd et al., 2013; Rötter et
al., 2018). This iterative feedback loop helps guide experiments towards collecting the most
relevant data, improving the models’ predictive capacity, and enabling more targeted field
measurements. Thus, this study provides valuable feedback to experimenters, upon whom
the development of accurate, data-driven models was highly dependent.

The difference in shoot biomass growth rates between intercropped species was identified
as a key factor in all four models, consistent with findings from other studies on different
intercrops such as oat / lupin, rapeseed / maize, or rapeseed / soybean (Dong et al., 2018;
Engbersen et al., 2021). Interestingly, while several studies highlighted the importance of
differences in growth biomass onset to explain intercropped species yield (Dong et al., 2018),
this feature was not selected in our models. However, this discrepancy may be explained
by the fact that many studies emphasizing biomass onset deal with relay intercrops, where
species are sown at different times, relying on temporal niche complementarity (Yu et al.,
2015). Our study focused on simultaneous sowing, where such temporal dynamics may be
less relevant.

In contrast to interspecific plant-plant interactions, we found that it is unlikely to explain
the functioning of the mixtures based on species behavior in the sole crop, as few intraspe-
cific variables were selected. This observation supports the need for breeding programs
specifically tailored to mixed cropping systems, rather than relying on traits selected in sole
crops (Moore et al., 2022). However, we did not include trait differences between the legume
and the cereal grown in sole crop in our models, which may be worth exploring further as
it may provide additional insight into crop mixture performance.

Relationships between performance and trait distance are symmetric for both
intercropped species.

According to the literature, relationships between yield and the relative trait distance were
expected (Kunstler et al., 2012), without assumptions about their shape and strength. Our
results highlighted that the relationships between a species’ yield and relative biomass dis-
tance were globally linear and inversely related for the two intercropped species, indicating
that the dominance of one species occurred at the expense of the other (Mahaut et al.,
2023).

When a variable was selected for both species in the mixture, the strength of the correlations
was similar for both. This symmetry was unexpected. Cereals are typically considered more
competitive than legumes as they tend to accumulate biomass faster and use resources more
efficiently (Hauggaard-Nielsen et al., 2008; Lithourgidis et al., 2011), which should theoret-
ically give them an advantage in mixture conditions. Our results indicate that it’s unlikely
that a single mixture can optimize yields for both species simultaneously. In practical terms,
this means farmers and researchers need to consider trade-offs when designing intercropping
systems.

Depending on the farmer’s objectives when cultivating intercrops, the goal may be to pro-
mote the dominance of a particular species (e.g., for the legume Podgorska-Lesiak and
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Sobkowicz, 2013; Viguier et al., 2018) or to aim for a balance between the two species
(Hauggaard-Nielsen et al., 2008; Bedoussac et al., 2015). This study shows that, with the
same pair of species, all these outcomes are equally possible. To move towards application,
we thus think future research should focus on how a state of equilibrium or dominance occurs
as a function of species or cultivar combinations, given cropping conditions. To limit the
number of combinations of considered mixtures, cultivars could be clustered into functional
groups (Montazeaud et al., 2020) with a modeling step at this grain.

Relationships between performance and trait distance are scale-dependent

In this study, we identified significant bivariate relationships between yield and explana-
tory variables when aggregating all experiments. These findings suggest overarching trends
that emerge when a wide range of environmental conditions and management practices are
considered together. However, these trends were not always consistent when down-scaling
at the individual experiment level, suggesting that local factors (such as soil properties,
climate conditions, or agricultural management) can override or mask broader trends at
smaller scales, as already illustrated in other scientific fields (e.g., Scheiner et al., 2000 in
ecology, on the relationship between species richness and productivity).

This discrepancy between global and local results highlights the complexity of agronomic
systems, where covariation between variables may not behave uniformly across all contexts.
The variability observed at the local level could be driven by site-specific factors or other
unmeasured interactions that influence crop responses in ways not fully captured by linear
predictors alone. Therefore, while aggregated analyses provide valuable insights into gener-
alizable trends, they should be applied with caution in local contexts (Scheiner et al., 2000),
i.e., covariation at one scale cannot necessarily be interpreted as indicative of a process at
another scale (Pollet et al., 2014). Thus, in our case, the linear relationships between species
yield and fitness differences (Wang et al., 2024b) were evident. The challenging issue lies
in identifying which local factors determined the positioning of a species yield along this
relationship.

Conclusion

Crop science can greatly benefit from aggregating distinct experimental datasets into global
datasets (Mahmoud et al., 2024). This approach decreases the cost of data (reuse), in-
creases the reproducibility of studies (Lowndes et al., 2017), and enables the testing of
findings across multiple experiments through joint analysis. In this study, we proposed an
original modeling approach that balances these goals: using machine learning to select and
assess how species-level traits contribute to community productivity, while emphasizing on
accounting for ecological knowledge (with tailored predictors) and environmental variance
(using mixed-effects). Ultimately, as pointed out by Enquist et al. (2024), such model-
centered approaches could gradually evolve both towards generalisation or specialisation,
reflecting a key tension in generating knowledge about agrosystems. On one hand, models
could be refined to incorporate details highlighted by theoretical ecology, increasing their
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applicability domain. On the other hand, new open datasets could be curated to evaluate
model performance, providing feedback by identifying specific contexts or outliers where
existing theories fail.
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