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Abstract: Additional to the usual dimensions of an aircraft trajectory (longi-
tude, latitude, altitude), it is often valuable to consider weather dimensions when
studying a flight. Geostatistics provides powerful methods to associate a weather
value to a given point of a trajectory. Using kriging equations allows to predict
weather values for any point of the flight and to take uncertainties into account.
We present the steps to perform kriging of wind speed values on pressure levels
with drift and anisotropy. Focus is made on the spatial dimension.
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1 Motivation and problem statement

For a given flight, the position of an aircraft is recorded for a finite set
of observation times. This indexed set of positions is interesting but may
be an incomplete summary of the flight. Indeed, knowing the experienced
weather at each observation time may help to better understand the dy-
namics of fuel consumption or noise emission. The goal of this work is to
associate each point of a trajectory with a weather value, so that experi-
enced weather during the flight is a piece of information that can be used
in further statistical analyses.
Past weather data are not available at any instant in time (if only for storage
reasons). Rather, weather data are processed so that a three-dimensional
weather grid is available every hour. Because most flights in Europe last
more than an hour, the task of matching weather values typically involves
several weather grids as schematized in Figure 1.
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FIGURE 1. Adding weather data to a flight departing from Toulouse-Blagnac
(LFBO) and landing at Paris-Orly (LFPO) in March 2015 may involve at least
three weather grids.

Formally, this problem is often tackled as an interpolation or spatio-temporal
prediction task. This task is common in environmental sciences as testifies
the review of spatial interpolation methods written by Li and Heap (2014).
In this work, a focus is made on the spatial aspect of the problem. In other
words, a simple rule is adopted for the time dimension: for each point of a
trajectory, the closest weather grid in time is used to perform the spatial
interpolation. The interpolation problem boils down to a three-dimensional
kriging problem involving an unknown drift and anisotropy. The solution
is detailed in the sequel.

2 Raw data, scope of the study

Two data sources are used in the paper.
Trajectory data are taken from the R&D data archive that contains more
than 18 million flights as of January 2023. The data are collected by Euro-
control from all commercial flights operating in and over Europe. Data are
available for 4 months each year: March, June, September and December.
Weather data are taken from ERA5 hourly data on pressure levels. ERA5 is
the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis for the global climate and weather.
We focus on the interpolation of the three weather grids presented in Fig-
ure 1. The weather variable of interest is the horizontal wind speed (ex-
pressed in m.s−1) for the flight departing from Toulouse-Blagnac (LFBO)
and landing at Paris-Orly (LFPO) in March 2015. For 23 pressure levels,
horizontal wind speed values are given on a 0.25◦×0.25◦ longitude-latitude
grid. The weather grid on which kriging is done is three-dimensional. For a
single weather grid, there are 57 (longitude values)×41 (latitude values)×
23 (pressure values) = 53, 751 wind values.

3 A geostatistical framework

3.1 Dealing with projection and pressure levels

Raw weather data are given on a three-dimensional grid, often called a
region of interest, commonly denoted D in geostatistics. Projecting is a safe
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FIGURE 2. Weather grid n°1 giving wind speed values on 2015-03-01 05:00:00.

option when working with spatial data coming in longitude and latitude
coordinates. It ensures that all statistical quantities based on the Euclidean
distance are accurate. To safely use the Euclidean distance, pressure levels
(in hectopascals) must be converted to altitude values in meters.
To go from a pressure level p to an altitude h in meters (m), the following
formula is provided by the National Oceanic and Atmospheric Administra-
tion (NOAA):

h =
145366.45

[
1−

(
p

1013.25

)0.190284]
3.281

.

It is based on the International Standard Atmosphere (ISA). The resulting
grid once the two steps are performed (projection, conversion) is given in
Figure 2. The Lambert 93 conformal conic projection is used as it is a very
popular option for flights over Metropolitan France.

3.2 Mathematical framework

Every hour, raw data come as a collection of n regionalized values denoted
{z(si), i = 1, ..., n}. Each location s on D is viewed as the realisation z(s)
of a random variable Z(s). Values are said to be regionalized because they
exhibit some spatial correlation. The family of real-valued random variables
{Z(s), s ∈ D} is traditionally called a spatial random field. In the sequel, we
assume that the first moment as well as the usual second-order moments of
the random field are well-defined. Contrary to usual multivariate statistics,
there is only one realization of the random field making inference impossible
without some assumptions. Geostatistics often relies on the second-order
stationary hypothesis. The hypothesis is as follows:

1. The expectation exists and is constant, and therefore does not depend
on the location s: µ(s) = µ.
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2. The covariance exists for every pair of random variables, Z(s) and
Z(s + h), and only depends on the vector h that joins the locations
s and (s + h), but not specifically on them: C(Z(s), Z(s + h)) =
C(h), ∀s ∈ D, ∀ h ∈ Rd such that s+ h ∈ D.

3.3 A drift violates the second-order stationarity assumption

The second-order stationarity assumption doesn’t hold for wind data as the
mean of the random field depends on location. It is a drift problem. This
smooth systematic non-random variation should be taken into account. To
do so, the random field is broken down into the sum of two components,
Z(s) = µ(s) + ε(s), where µ(s) denotes the unknown drift and ε(s) the
stochastic part that can be treated as second-order stationary.
Parametric models to the drift are often fit to detrend the data before at-
tempting the analysis of the spatial correlation structure existing in the
residuals. This approach is called residual kriging by Montero et al. (2015).
This approach has been historically studied by Volpi and Gambolati (1978)
through numerical simulations and applied to the mapping of an hydraulic
head field of three major aquifers underlying the Venetian lagoon by Gam-
bolati and Volpi (1979). Regarding our application, a quadratic trend has
been found to be satisfactory to model the horizontal wind speed drift.
Characterization of the spatial dependence in the residuals relies on the
empirical (or experimental) semivariogram. Note that the variogram of the
random field is defined as the variance of the first differences of the random
field:

2γ(si − sj) = V(Z(si)− Z(sj)), ∀si, sj ∈ D.

The function γ is called the semivariogram. In the case of second-order
stationarity, the covariance function and the semivariogram are equivalent
when it comes to defining the structure of spatial dependence displayed by
the phenomenon. One reason for which the semivariogram is preferred to
the covariogram is that it does not require the knowledge of the mean of
the random field.

3.4 A key aspect: anisotropy

A given empirical semivariogram may not meet the theoretical properties
of a valid semivariogram. These theoretical properties are given in most
textbooks in geostatistics. The so-called structural analysis step is then
concerned with the fitting a valid model to the empirical semivariogram.
This step is necessary to make valid spatial predictions. Valid models are
often isotropic. Isotropic covariance functions only depend on the distance
between the locations s and s+ h as opposed to anisotropic ones. Regard-
ing wind data, the dependence between Z(s) and Z(s + h) is obviously a
function of both the magnitude and the direction of h. General anisotropy
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FIGURE 3. Estimated horizontal and vertical semivariograms on the residuals
on 2015-03-01 05:00:00. A sample of 10,000 points (drawn at random out of
53,751 locations) is used in the estimation of the semivariograms to improve
the computation time. The spatial dependence decreases rapidly in the vertical
direction.

models have recently been studied by Allard et al. (2015). In practice, ge-
ometric anisotropy is the only one that can be corrected using a linear
change of coordinates. Indeed, geometric anisotropy is obtained by some
stretching of an isotropic model. Speaking in terms of semivariogram, geo-
metric anisotropy is characterized by:

γ(h) = γiso(∥Ah∥2)

where the matrix A defines the transformation from the initial space to the
isotropic space. A linear transformation of the coordinates in enough to use
an isotropic model. As put by Chilès and Delfiner (2012), the matrix A is
usually written

A =

b1 0 0
0 b2 0
0 0 b3


︸ ︷︷ ︸

T

 cos(θ3) sin(θ3) 0
−sin(θ3) cos(θ3) 0

0 0 1


︸ ︷︷ ︸

Rθ3

1 0 0
0 cos(θ2) sin(θ2)
0 −sin(θ2) cos(θ2)


︸ ︷︷ ︸

Rθ2

 cos(θ1) sin(θ1) 0
−sin(θ1) cos(θ1) 0

0 0 1


︸ ︷︷ ︸

Rθ1︸ ︷︷ ︸
R

where T is matrix of scaling factors and R a rotation matrix. Estimating
anisotropy parameters is usually done with a directional semivariogram. In
R3, taking anisotropy into account is key for good predictions because the
vertical spatial dependence usually evolves very differently as compared to
the horizontal one.
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FIGURE 4. Geostatistical predictions of the wind speed values along the raw
trajectory.

4 Results

For each grid, the trend is taken into account using Ordinary Least Squares
(OLS). The horizontal and vertical semivariograms are then estimated on
the residuals. As can be seen in Figure 3, a strong anisotropy should be
taken into account, specifically in the vertical direction for which the spa-
tial dependence is rapidly decreasing. Once corrected, predicted values are
computed. Predicted wind values for the flight are shown in Figure 4. Note
that the 95% confidence intervals only make sense if a Gaussian assumption
holds for each weather grid. Confidence intervals are pointwise.
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