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Abstract

In this paper, we investigate a continuous time version of the Stochastic Gradient
Langevin Dynamics, introduced in [53], that incorporates a stochastic sampling step
inside the traditional over-damped Langevin diffusion. This method is popular in
machine learning for sampling a posterior distribution. We will pay specific attention
to the computational cost in terms of n (the number of observations that produces
the posterior distribution), and d (the dimension of the ambient space where the
parameter of interest is living). We derive our analysis in the weakly convex framework,
which is parameterized with the help of the Kurdyka-Łojasiewicz (KL) inequality, that
permits to handle a vanishing curvature settings, which is far less restrictive when
compared to the simple strongly convex case. We establish that the final horizon
of simulation to obtain an ε approximation (in terms of entropy) is of the order
(d log2(n))(1+r)2 [log2(ε−1) + n2d2(1+r) log4(1+r)(n)] with a Poissonian sub-sampling of

parameter (d log2(n))−(1+r)2 , where the parameter r is involved in the KL inequality
and varies between 0 (strongly log-concave case) and 1 (limiting Laplace situation).
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Stochastic Langevin Dynamics and weak convexity

1 Markovian Stochastic Langevin Dynamics and main results

1.1 Introduction

Motivations: In the recent past years, a huge amount of methods have been developed
in machine learning to handle large scale massive datasets with a large number n of
observations (X1, . . . , Xn) embedded in a high dimensional space Rd. These methods
generally involve either optimization of a data-dependent function (for frequentist
learning) or sampling a data-dependent measure (for Bayesian learning with posterior
distributions). In both approaches, a bottleneck lies on the size of n and d that usually
generates numerical difficulties for the use of standard algorithms. In this paper, we are
interested in the approximation of a posterior distribution following a Bayesian point of
view with a statistical model described by a collection of densities (pθ)θ∈Rd on X , where
the parameter of interest θ belongs toRd and where the (Xi)1≤i≤n are assumed to be i.i.d.
observations in X distributed according to pθ⋆ . A standard Bayesian approach consists of
defining a prior distribution π0 on Rd and then sample the posterior distribution denoted
by µn (which will be proportional to exp(−Uνn) below) using a numerical probabilistic
approximation with the help of a Langevin Dynamics (LD for short and also known as
over-damped Langevin diffusion):

dθt = −∇θUνn
(θt)dt+

√
2dBt.

In this work, we manage to deal with an adaptation of the Stochastic Gradient Langevin
Dynamics (SGLD) algorithm proposed in [53], that exploits some old ideas of stochastic
algorithms introduced in [47]: instead of using the previous equation, the authors
propose a modification of the diffusion that generates a noisy drift in the SGLD due to
a sampling strategy among the set of observations (Xi)1≤i≤n. Before we provide some
details on the precise objects and algorithm necessary to properly define this method,
we first give some literature insights related to it.

State of the art: Approximating measures has a long-standing history and relies on
Markov dynamics. We briefly introduce and describe below some well-known and recent
results around this issue, and then motivate our work. For our purpose, we assume that
U is any coercive function Rd −→ R.

• (Over-damped) Langevin Dynamics (LD)

dθt = −∇θU(θt)dt+
√
2dBt. (1.1)

Under mild conditions on the potential U , [14, 48] proved that the LD defined
in Equation (1.1) converges to the unique stationary distribution µ(θ) ∝ exp(−U(θ)).
Ergodicity and quantitative mixing properties of LD and many other sampling algorithms
is a popular subject of research initiated in the probabilistic works around, roughly
speaking, two strategies.
Coupling approaches The first one relies on pathwise considerations and dynamical
properties of random dynamical systems and is built with some coupling argument and
Lyapunov controls. We refer to the seminal contributions [42, 37], that exploits the
approach of the Doeblin coupling and total variation (TV) bounds. Many extensions
may be derived from this Lyapunov approach and may lead to Wasserstein or L2 upper
bounds, we refer to [10] and the references therein of the same authors for a description
of the link between Lyapunov conditions and ergodicity.
Functional inequality approaches The second strategy derives from spectral properties
of Markov operators and is related to famous functional inequalities (Poincaré and
log-Sobolev among others). The general idea is to differentiate the distance along the
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Stochastic Langevin Dynamics and weak convexity

time-evolution and apply a Gronwall Lemma to obtain a quantitative estimate of the
long-time evolution of the semi-group. We refer to the seminal contributions of [35, 3],
and to [4] for an almost exhaustive survey of all possible inequalities and consequences
on the ergodicity of the Markov semi-groups. Finally, let us emphasize that some strong
links exist between the spectral and the Lyapunov approaches, as pointed out by [2]. If
functional inequalities are then strongly related to mixing properties and especially from
a quantitative point of view, it is therefore necessary to develop a machinery that is able
to assess these inequalities carefully, especially with a specific attention to our statistical
setting of large n and d in the completely non-trivial situation where the target measure
is log-concave but not strongly log-concave, which is a common feature of Bayesian
posterior distributions.

• Langevin Monte Carlo (LMC): usually refers to the discretization of LD and allows
for a concrete algorithm to approximate exp(−U(θ)). LMC stands for an approximation
algorithm of LD, which is the Euler with a step-size η > 0 of Equation (1.1):

ϑk+1 = ϑk − η∇ϑU(ϑk) +
√

2ηξk+1, k ≥ 0, (1.2)

where (ξk)k≥1 are standard Gaussian random variables in Rd, mutually independent and
independent of ϑ0.

The mixing properties of LMC have been largely investigated during the past decade
among the statistical and machine learning communities, strongly motivated by learning
methods such as Exponentially Weighted Aggregation introduced by [19], which involves
sampling a non log-concave and heavy tailed posterior distribution. Then, several works
derive some quantitative estimates in simple or sophisticated frameworks.
Strongly convex situations: A first paper of Dalalyan [15] establishes the cost of LMC
to obtain an ε TV bound in terms of d and ρ when the target measure is ρ strongly
log-concave and proposes a penalized version of LMC to circumvent the lack of strong
log-concavity when the target distribution is only log-concave. Since this pioneering
paper, a huge impressive literature expanded. Among others, we refer to [23] that gives
a careful study of discretized LMC.
Convex situations: Other papers relax the strongly convex assumption using a
modification of the numerical scheme (1.2): we refer to [18] for a kinetic version
of LMC and [17] where the penalized LMC in non strongly-concave situation is studied
in depth. Among all these papers, first, the lack of strong log-concavity is dealt with a
modification of the initial LMC using a surrogate and asymptotically vanishing penalty.
Second, these papers assume that a noiseless gradient of the log-posterior is available
at each iteration of the algorithm, which may not be realistic, especially when U = Uνn

with large n. Finally, [1] provides some upper-bounds on the mixing time of LMC in
both constrained convex and strongly convex cases using some explicit coupling and
projections.
Functional inequality: On the machine learning side, mixing of LMC has also received an
impressive recent amount of interest: [50] proves the convergence in Kullback-Leibler
divergence assuming that the posterior distribution, defined as e−U , satisfies a
log-Sobolev inequality and the Hessian of U is bounded. Later on, [5] develops
a close analysis using the Fisher information distance and the Poincaré inequality.
Metropolis-Adjusted Langevin Algorithm, which is close to LMC (with the addition of
a Metropolis correction), was studied in [13] using the chi-squared divergence for the
class of smooth and strongly convex potentials. More recently, in a weakly log-concave
setting, [24] studied the convergence in Kullback-Leibler divergence of LMC using a
weak version of log-Sobolev inequality and obtain a link between a tail assumption on
e−U and log-Sobolev inequality. As emphasized below, the assumptions they made are
closely related to ours and we will provide further details later on. Using similar ideas, in
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[12], they assume that the invariant measure satisfies a Latala-Oleszkiewicz or modified
log-Sobolev inequality and guarantee convergence on the Rényi divergence for LMC.

• Stochastic Gradient Langevin Dynamic (SGLD): This last framework studies
the behaviour of LMC when an additional noise term is incorporated in (1.2), which
generates a perturbed discretization:

ϑk+1 = ϑk − η∇̂ϑU(ϑk) +
√
2ηξk+1, (1.3)

where ∇̂ϑU(ϑk) is an unbiased estimation of ∇ϑU(ϑk) at iteration k. For example, if

U = 1
n

∑n
i=1 Ui, then ∇̂ϑU(ϑk) =

1
B

∑B
i=1 ∇ϑUIi(ϑk) will appear in Equation 1.3, where

1 ≤ B ≤ n and I1, . . . , IB
i.i.d.∼ Uniform([n]). The computation of the full gradient over the

entire dataset is replaced by computing the gradient over a subset.
Stochastic Gradient Langevin Dynamics (SGLD below) has attracted the interest of

several works: [53] introduced this method and described its efficiency from a numerical
point of view in the particular case of Bayesian learning, which is exactly our framework.
Some recent advances and related contributions may be also cited: in [46], the authors
derive some non-asymptotic bounds (in terms of 2-Wasserstein distance) assuming a
dissipative and smooth potential for optimization purpose.

The contribution of [55] is also related to our work: the authors develop a machinery
for the study of SGLD essentially based on the Poincaré inequality but the way
the lower bound on the spectral gap involved in the LMC is dealt with appears to
be inappropriate. In particular, the diffusion involved in SGLD is used at a very
low-temperature, proportional to 1/n, which generates some important troubles in
the size of the spectral gap in non strongly log-concave framework.

Under similar assumptions to [46], in [57], the authors prove the convergence of
SGLD in total variation distance using an isoperimetric inequality linked to the Cheeger
constant. On the other hand, in [52], the authors propose a Laplacian smoothing version
of SGLD and prove the convergence of the algorithm in 2-Wasserstein distance when
the potential is dissipative, smooth and satisfies a bound variance property. They study
the convex and non-convex cases, however, the dissipative property together with the
smoothness guarantee that the target measure verifies a log-Sobolev inequality.

The most recent works are probably [20, 54], where the convergence of SGLD
is studied in Kullback-Leibler divergence and in total variation. In both situations,
[20] assume smoothness of the potential, in addition to a log-Sobolev inequality and a
4th moment growth condition for the convergence in Kullback-Leibler divergence and
Poincaré inequality and a 6th moment growth condition in total variation.

• Role of functional inequalities and convexity: From the previous discussions
on the related literature on LD, LMC and SGLD, it appears that functional inequalities
play a key role, even in the log-concave situation for the approximation of the measure
e−U (or e−Uνn ). Coming back to [46], the authors identify the important dependency
of the spectral gap denoted by λ∗ in their paper with the temperature level 1/β they
introduced. They obtain some very highly pessimistic bounds in some general situations
(see their discussion in Section 4 of [46]), they conclude their discussion by the urgent
need to find some non-trivial situations where some better lower bounds of λ∗ may be
derived.
Metastability and spectral gap asymptotic: Indeed, the final remark of Section 4 of [46]
is related to the well known meta-stability phenomenon: at a low temperature, the mixing
rates of a lot of reversible and irreversible Markov semi-groups are strongly deteriorated
by the low temperature settings, which is implicitly induced by a Bayesian posterior
sampling problem with a large number n of observations. In a regime of variance noise
of the order O(β−1), the first study of large deviation principle of invariant measures
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traces back to [26] where the authors establish the asymptotic of the spectral gap of
the over-damped Langevin diffusion as exp(−Iβ) ( Chapter 6 of [26]) where I is an
explicit constant that depends on the potential of the Gibbs field. This result has been
extended in depth by [35], which leads to the first precise analyses of the so-called
simulated annealing method (see for example [33, 43]). These works, and more recent
contributions with irreversible dynamical systems in a stochastic settings ([30, 27]) show
that there is almost nothing to expect in meta-stable situations in terms of asymptotic
behaviour of the spectral gap, and indirectly in terms of mixing rate.
Weakly convex case and Kurdyka-Łojasiewicz inequality: Hence, the only situation that
may lead to reasonable results is an intermediary situation between the (almost) trivial
strongly log-concave case and the meta-stable multi-welled case. This is the purpose of
the weakly log-concave situation that is described by the family of Kurdyka-Łojasiewicz
inequalities [38, 40] used in optimization theory [7] that have shown to be efficient for
stochastic optimization [28] or for sampling [29]. Below, we will intensively use this
way to parameterize the “weak convexity” setting and will also relate this assumption
to the recent one introduced in [24]. We also refer to the recent contributions [8] that
derives some functional inequalities within an intermediary framework in which the
curvature ρ is related to their keystone function α that controls the constants involved in
the functional inequalities they are studying.

Sketch of our contributions: Taking together the statistical considerations and
limitations, we are motivated in this paper in the study of a continuous time stochastic
Gradient Langevin Dynamic. This process will be described precisely in the next
paragraph as well as the Kurdyka-Łojasiewicz setup parameterized by a real value
r, which varies between 0 (strongly convex case) and 1 (limiting Laplace asymptotic tail).
We will show that the final horizon of simulation to obtain an ε approximation is of the
order:

(d log(n)2)(1+r)2 [log2(ε−1) + n2d2(1+r) log4(1+r)(n)]

with a Poissonian sub-sampling of parameter (d log2(n))−(1+r)2 .
An important advantage of considering SGLD is that it is not necessary to have all

the observations available at the initial instant, but only the total number of observations
that will be used and modify the potential every exponential time.

Structure of the paper: The rest of the introduction consists of the definitions of the
algorithm in Subsection 1.2, the way we assess the quality of our result with an entropy
criterion in Subsection 1.3, as well as the quantitative weakly log-concave assumption
in Subsection 1.4. We finally state our main result in Subsection 1.5 and provide two
examples in Subsection 1.6.

In order to prove the main result, we first present in Section 2 the classical tools
related to Markov semi-groups and we establish an inequality for the entropy that
depends on the Dirichlet form. Section 3 is dedicated to the study of some functional
inequalities that links the entropy and the Dirichlet form, allowing us, in Section 4, to
establish a differential inequality for the entropy and proving the main result. Section 5
finally presents our technical results.

1.2 Continuous time evolution

Below, we briefly define the continuous time SGLD algorithm for Bayesian learning,
for which a discretized form has been introduced in [53]. For this purpose, we consider
a statistical model that is built with the help of a function (x, θ) 7−→ pθ(x) where θ ∈ Rd

encodes the parameter of the statistical model and x the observation in a space denoted
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by X . We then assume that we have n i.i.d. observations denoted by (X1, . . . ,Xn)

distributed according to pθ∗ , with n ≥ 2. Given a prior distribution π0 on Rd, the
posterior distribution µn is then defined as:

µn(θ) ∝ π0(θ)×
n∏

i=1

pθ(Xi).

We introduce the log-parameterization that leads to the Gibbs form:

Ux(θ) = −[log π0(θ) + n log pθ(x)],

and we then observe that:

µn(θ) ∝ exp

(
− 1

n

n∑
i=1

UXi
(θ)

)
= exp (−Uνn

(θ)) ,

where νn refers to the empirical distribution and Uνn
, the average value of UX(θ) when

X ∼ νn:

νn(x) =
1

n

n∑
i=1

δXi
(x) and Uνn

(θ) = EX∼νn
[UX(θ)].

The standard Langevin Dynamics approach relies on the ergodic behaviour of the
stochastic differential equation:

dθt = −∇Uνn
(θt)dt+

√
2dBt,

that possesses, under some mild assumptions, a unique invariant distribution µn.
The SGLD algorithm takes benefit of both, sampling with a stochastic differential

equation and homogenization of the drift that may be written as an expectation on X

that is sampled uniformly over the set of observations according to νn. The leading
idea is to replace the expectation in Uνn

that depends on the overall set of observations
(X1, . . . ,Xn) by a single unique observation that is randomized uniformly all along the
evolution of the stochastic differential equation, and modified according to a Markov
exponential clock. That being said, we can write an explicit formal definition of the

algorithm as follows. We define
(
ξ
(n)
j

)
j≥1

an infinite sequence of exponential random

variables of mean α−1
n that will be fixed later on and ξ(n)0 = 0.

We also consider a sequence
(
V

(n)
j

)
j≥1

of i.i.d. random variables uniformly

distributed in [n] = {1, 2, . . . , n}. We then define the process (Xt)t≥0 as a jump process
that takes its values in {X1, . . . ,Xn} such that:

Xt = X
V

(n)
j
, if

j−1∑
k=0

ξ
(n)
k ≤ t <

j∑
k=0

ξ
(n)
k , j ≥ 1.

Informally, (Xt)t≥0 should be understood as follows: the process takes the value of one
observation uniformly chosen from the n observations X1, . . . ,Xn during exponential
times with intensity αn. The stochastic Langevin over-damped diffusion we consider is
then given by the joint evolution (θt, Xt)t≥0 and that is defined by:

dθt = −∇θUXt(θt)dt+
√
2dBt, t > 0, (1.4)

where (Bt)t≥0 is a multivariate standard Brownian Motion.
For the completeness, we present the continuous time SGLD algorithm in Algorithm

1, which is built using the Langevin over-damped diffusion (1.4).
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Algorithm 1: Continuous time SGLD

Data: (X1, . . . ,Xn) i.i.d. observations distributed according to pθ∗ , n0 initial
distribution, π0 prior distribution

1 t0 = 0

2 Generate θ0 according to n0
3 for k = 0, 1, . . . do
4 Pick Xk uniformly in {X1, . . . ,Xn}
5 Generate ξk according to an Exponential distribution with mean α−1

n

6 tk+1 = tk + ξk

7 θtk+1
= θtk −

∫ tk+1

tk
∇θUXk

(θs)ds+
√
2Bξk

8 end
9 return lim

k→∞
θtk

1.3 Entropic divergence

To assess the long-time behaviour of the continuous time SGLD, we introduce several
notations related to the pair (θt, Xt)t≥0. Below, we denote by λd the Lebesgue measure
overRd and by νc the counting measure over {X1, . . . ,Xn}. The semi-group induced by L,
defined in Equation (2.1) and being elliptic on the θ coordinate, trivially irreducible and
finitely supported on the x coordinate, makes the law of (θt, Xt) absolutely continuous
with respect to the measure λd × νc as soon as t > 0.

We introduce the notation of mt to refer to the joint density of (θt, Xt) at time t with
respect to λd× νc. In the meantime, nt denotes the marginal distribution of θt and mt(·|θ)
the conditional distribution of Xt given θt = θ. That is:

Law(θt, Xt) = mt, nt(θ) =

n∑
i=1

mt(θ,Xi), mt(x|θ) =
mt(θ, x)

nt(θ)
,

for θ ∈ Rd and x ∈ {X1, . . . ,Xn}.
To show that the algorithm recovers the correct asymptotic behaviour, i.e. that

nt(θ) −→ µn when t −→ ∞, we consider the relative entropy (or Kullback-Leibler
divergence) of nt with respect to µn that is well defined thanks to the ellipticity, and
given by:

Jt = Entµn

(
nt
µn

)
=

∫
Rd

log

(
nt(θ)

µn(θ)

)
dnt(θ).

Jt measures at any time t > 0 a divergence between the instantaneous law of the process
at time t and the (presumably) invariant distribution µn of the process (θt, Xt)t≥0. It
would also be possible to measure this difference between the two distributions in terms
of the L2 or the χ-square distance and to produce a theoretical analysis with the help of
functional analysis but it would rely on stronger assumptions on the function Uνn

.

1.4 Main assumptions

1.4.1 Weak convexity:

We will study a continuous time version of SGLD into a weakly convex framework, i.e.
when Uνn is assumed to be convex but not necessarily strongly convex. SGLD has
recently received an important interest in the machine learning community and has
been studied in various situations where functional inequalities are involved. We refer to
[55, 20] (uniform Poincaré inequality) and to [46, 52, 20] (Log-Sobolev inequality), where
the functional inequalities play a crucial role to analyze the behavior of the process. In
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[46, 55, 52], the authors develop a 2-Wasserstein analysis of the algorithm assuming
restrictive assumptions like dissipativity. On the other hand, in [20], they study the
convergence in Kullback-Leibler divergence and in total variation. In both analysis,
they assume smoothness of the potential, in addition to a Log-Sobolev inequality and a
4th moment growth condition for the convergence in Kullback-Leibler divergence and
Poincaré inequality and a 6th moment growth condition in total variation.

Importantly, Poincaré or Log-Sobolev inequalities are not so innocent since they
generally require convexity (see e.g. [6, 4]) to be reasonably dimension-dependent, and
even strong convexity to be dimension free. Otherwise, the constant involved in these
functional inequalities are exponentially degraded by the “temperature” (n−1 in our
case) and the dimension (d for us) as indicated in [35].

In our work, we have chosen to parameterize this lack of strong convexity with
the help of the Kurdyka-Łojasiewicz inequality [38, 40], which is a standard tool in
optimization to describe the transition between convexity and strong convexity and
makes the bounds more explicit. This assumption allows to observe how the entropy
evolves according to the key exponent involved in the KL inequality. In particular, it
makes possible to understand the influence of the lack of strong convexity that is more
or less hidden in the uniform Poincaré or Log-Sobolev inequalities. We introduce a
parametric form of the KL inequalities following [28].

For this purpose, we denote by C2 the set of twice continuously differentiable functions
and for any C2-function V , we denote the spectrum of the Hessian matrix of V as
Sp(∇2V (θ)). Furthermore, if V is convex, we denote

λ∇2V (θ) = inf Sp(∇2V (θ)), θ ∈ Rd.

Hypothesis 1.1 (Hr
KL(c, L)). We say that a function V : Rd → R satisfies a

Hr
KL(c, L)-condition if:

a) V is a C2-function,

b) V is convex and minθ∈Rd V (θ) = V (θ∗) > 0,

c) ∇V is L-Lipschitz and

d) there exist some constants 0 ≤ r < 1 and c > 0 such that

cV −r(θ) ≤ λ∇2V (θ), ∀θ ∈ Rd. (1.5)

Let us briefly comment this assumption.

• In [29], a slightly different parameterization is used with the introduction of another
exponent 0 ≤ q ≤ r related to λ∇2V (θ) = supSp(∇2V (θ)), θ ∈ Rd. The authors
also assume the upper bound λ∇2V (θ) ≤ c̃V −q(θ). When r = q, they recover a
global standard KL inequality (see [28, 7]). Here, we have chosen to simplify this
assumption and use a rough upper bound on the eigenvalues of the Hessian matrix
given by the Lipschitz constant L, i.e. in the last inequality we simply use c̃ = L

and q = 0.

• The case r = 0 is of course associated to the strongly convex situation where the
curvature of the function is uniformly lower bounded by c, and the case r = 1 would
correspond to the limiting Laplace situation.

• We shall observe that if V (θ) = (1 + ∥θ∥22)p with p ∈ [1/2, 1], then V satisfies a
Hr

KL(c, L)-condition with r = 1−p
p and c = 2p(1− 2(1− p)), see Remark 7 of [29] for

further details. In particular, the larger p, the smaller r, which translates into a
better curvature of the potential function. It is expected that the complexity of the
algorithm increases with the lack of curvature, i.e. is an increasing function of r.
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• The Hr
KL(c, L) assumption in our work is tightly related to that one of [24]. They

assume that the potential function U is degenerately convex at infinity, which
means that there exists a function Ũ such that for a constant ϵ ≥ 0, ∥U − Ũ∥∞ ≤ ϵ

where λ∇2Ũ (θ) ≥ κ(1+ 1
4∥θ∥

2
2)

−τ/2 for some κ > 0 and τ ≥ 0. This parameterization
is similar to the one considered in (1.5), however, we bound the eigenvalues by a
power of the same function U , while they use a power of ∥θ∥22. The example above
which satisfies a Hr

KL(c, L)-condition with r = 1−p
p is also degenerated at infinity

taking Ũ(θ) = U(θ) = (1 + ∥θ∥2)p and τ = 2(1− p) = 2r
1+r .

Below, we will establish that an important consequence of Hr
KL(c, L) is that the

invariant distribution verifies a weak log-Sobolev inequality, that will be useful
to assess the ergodic behaviour of our procedure. In [24], even though not
exactly equivalent, the strategy is rather close and the authors establish a modified
log-Sobolev inequality with the help of a perturbation strategy (see in particular
Appendix A of [24]).

In Section 5.1 we recall some important consequences of the KL inequality obtained
in Lemma 15 of [29]. In particular, the growth of any function that satisfies Hr

KL(c, L) is
lower and upper bounded by a positive power of the distance to its minimizer.

Remark 1.2. If inequality (1.5) holds for a constant c, then it holds for all positive values
less than c. For that reason, we assume that c ≤ (8L/(1 + r))

1+r, which will be used in
Proposition 5.10.

1.4.2 Others assumptions

We state below an important consequence of a “population” satisfying the Hr
KL(c, L)

assumption, but before, let us state some mild assumptions on π0.

Hypothesis 1.3 (Hπ0(ℓ0)). π0 is a log-concave C2-function such that
minθ∈Rd − log π0(θ) > 0 and θ 7→ ∇ log π0(θ) is ℓ0-Lipschitz.

Since the prior distribution is chosen by the user, our Hπ0(ℓ0) hypothesis is not
restrictive and some typical examples satisfy these conditions, such as Gaussian, Weibull
and Gamma, both with shape parameter larger than 1, Gumbel, among others.

The following proposition shows the consequence on the function Uνn
of assuming the

hypothesis Hπ0(ℓ0) and Hr
KL(c, L) on θ 7→ − log pθ(x), for any x. The proof of Proposition

1.4 may be found in Section 5.2.

Proposition 1.4. We assume Hπ0(ℓ0) and that there exist (c, r) such that for any x:
θ 7−→ − log pθ(x) satisfies Hr

KL(c, L). Then Uνn
satisfies Hr

KL(cn
1+r, nL + ℓ0), and in

particular, for any Xi, UXi
satisfies Hr

KL(cn
1+r, nL+ ℓ0).

We introduce the notation a ≲uc b (a ≳uc b) which means a ≤ cb (a ≥ cb) where c is a
universal constant i.e. a positive constant independent of n and d.

We assume that the minimizers and the minimums of the functions UXi
are contained

in balls of radius depending of n and d.

Hypothesis 1.5 (Hmin). There exists a constant β ≥ 0 such that

max
i

∥ argminUXi
∥2 ≲uc

√
d logβ(n) and max

i
min
θ∈Rd

UXi
(θ) ≲uc d log

2β(n).

Assumption Hmin is not restrictive. In dimension d = 1, consider a concentrated i.i.d.
sample (Xi)1≤i≤n with a suitable sub-Gaussian like behaviour for which the Laplace
transform of | argminUXi

|, for any i, is upper bounded as:

E[exp(λ| argminUXi
|)] ≤ exp(σ2λk), ∀λ > 0,
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where k ≥ 1 and σ > 0 are fixed constants. The Markov inequality and the upper bound
above imply that, in this case for any λ > 0 and s > 0:

P
(
max

i
| argminUXi |) > s

)
≤ e−sλE

(
max

i
exp(λ| argminUXi |)

)
≤ e−sλE

(
n∑

i=1

exp(λ| argminUXi |)

)
≤ n exp(−sλ+ σ2λk).

If we choose λ = σ− 2
k log

1
k (n/δ) and s = 2σ

2
k log

k−1
k (n/δ) where δ is a small positive

constant, then:

P
(
max

i
| argminUXi

| > 2σ
2
k log

k−1
k (n/δ)

)
≤ δ.

Therefore the value of β involved in Hmin is given by β = k−1
k . We recover in

particular the situation where β = 1/2 when k = 2. For larger dimensions, the result
may be extended using that ∥x∥22 ≤ d max1≤j≤d(x

j)2, where xj is the j-th component
of x. We should keep in mind from this last discussion that even if Hmin is stated (and
makes sense) for any value of β ≥ 0, it holds in general for 0 ≤ β ≤ 1. If we replace
∥ argminUXi

∥22 by minUXi
in the previous example, we obtain an analogous behavior of

maxi minUXi
.

Hypothesis Hmin and Hπ0(ℓ0) lead to an almost similar behaviour of the minimizer
and the minimum of Uνn

. Details appear in Proposition 5.3.

1.5 Long-time entropy convergence

We introduce for any time t ≥ 0, the density function of θt with respect to µn, which
is given by:

ht(θ) =
nt(θ)

µn(θ)
.

We will choose the initial distribution n0 such that h0 is bounded, then ht will also be
bounded, for any t > 0. This property plays an important role in proving the main
theorem of the paper and it will be studied in Section 3. Let us denote as 0d and Id the
null vector of Rd and the identity matrix of size d respectively .

Hypothesis 1.6 (Hn0(L, ℓ0)). A positive constant σ2 exists such that n0 is the density
function of a N (0d, σ

2Id) random variable. Moreover, there exist two universal constants
c1 and c2 such that 0 < c1 ≤ c2 < 1 and:

c1
nL+ ℓ0

≤ σ2 ≤ c2
nL+ ℓ0

.

This hypothesis guarantees the boundedness of h0 and the initial entropy:

J0 =

∫
Rd

log (h0(θ)) dn0(θ) ≲uc n(d log
2β(n))1+r + rd log (d/n) .

We refer to Proposition 3.9 in Section 3 for further details.
The next result assesses a mixing property in terms of decrease of the entropy and

therefore states the convergence of nt towards the correct measure µn.

Theorem 1.7. Assume Hπ0(ℓ0), Hmin, Hn0(L, ℓ0) and that each θ 7→ − log pθ(Xi) satisfies
Hr

KL(c, L). Then:

1. If r = 0, then µn satisfies a log-Sobolev inequality with constant CLSI(µn) = 2
cn .

Moreover, for any ε > 0, if αn = n and

t ≳uc n
−1
[
log(ε−1) + log(d) + log(n)

]
,

then Jt ≤ ε.
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2. If 0 < r < 1, then µn satisfies a Poincaré inequality with constant CPI(µn),

indistinctly denoted as CPI. Let us define cn,d = n4
(
d log2β(n)

)1+r

and

On,d =
(
C1d
n

) dr
2 exp

(
C2n

(
d log2β(n)

)1+r
)

, where C1 and C2 are positive universal

constants. For any t > 0,

Jt ≲uc (J0 +On,d + cn,dCPI) e
−
√

3t
16aCPI ,

where a is a universal constant. For any ε > 0, if αn =
(
d log2β(n)

)−(1+r)2

, then

Jt ≤ ε if

t ≳uc

(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)
]
.

If we denote tε the smallest value such that Jtε ≤ ε, then the choice of αn guarantees
that the mean number of jumps αntε of the process (Xt)0≤t≤tε is the minimum possible.

It is important to point out that in the weakly log concave case, the bound used for
the Poincaré constant CPI adds noise in terms of the dimension d and possibly in n. If
the constant CPI were explicitly calculable, then Jt ≤ ε if αn = 1

CPI
and:

t ≳uc CPI

[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)
]
.

We observe that the choice of αn is similar in both cases, ignoring proportional constants.
In terms of ε, moving from the strongly log-concave case to the weakly log-concave
case requires squaring the dependence on ε. Additionally, the dependence on n and d
deteriorates as well.

1.6 Examples

We present two examples. First, we apply the convergence result stated in Theorem
1.7 in a synthetic situation and we compare the result with the one that would be
obtained for the LD algorithm. As a second example, we study an application to the
Bayesian logistic regression.

Synthetic example. Consider 0 < r < 1 and the potential function U (r)(θ, x) : Rd×R→
R as:

U (r)(θ, x) = (1 + x2)(1 + ∥θ∥22)
1

1+r .

We then observe X1, . . . ,Xn i.i.d. random variables in R, and we define:

U (r)
νn

(θ) =
1

n

n∑
i=1

U (r)(θ,Xi)

which verifies a Hr
KL(cn

1+r, L)-condition with constants c = 2(1−r)
(1+r)2 (1 + minX2

i )
1+r and

L = 2
1+r (1 + maxX2

i ). This choice of potential leads to the weakly log-concave density
function:

µ(r)
n (θ) =

e−U(r)
νn

(θ)

Zn
.

We consider two stochastic processes to sample the distribution µ(r)
n . Let

(
θ
(1)
t

)
t≥0

be

the solution of the over-damped Langevin Dynamics:

dθ
(1)
t = −∇θU

(r)
νn

(θ
(1)
t )dt+

√
2dWt, t > 0,
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while
(
θ
(2)
t

)
t≥0

is the solution of the continuous time SGLD defined by:

dθ
(2)
t = −∇θU

(r)
Xt

(θ
(2)
t )dt+

√
2dBt, t > 0,

where (Xt)t≥0 is taking the value of one observation uniformly chosen from the n

observations X1, . . . ,Xn during exponential times with intensity αn. In both cases
(Wt)t≥0 and (Bt)t≥0 are d-dimensional standard Brownian Motions and we assume that

θ
(1)
0 and θ(2)0 are centered Gaussian random variables with a tuned covariance matrix as

is specified in hypothesis Hn0(L, ℓ0).

To find the order of convergence (in terms of entropy) for θ(1)t , we proceed in a similar

way as is done in the proof of Theorem 1.7. Let ñt be the law of θ(1)t , we denote by J̃t
and Ẽt the entropy and the Dirichlet form of ñt with respect to µn respectively. Then J̃t
satisfies the equality:

∂t

{
J̃t

}
= −Ẽt.

We could use weak log-Sobolev inequality and prove that a sufficient condition to obtain
J̃t ≤ ε is:

t ≳uc

(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)
]
. (1.6)

This is indeed the same result that we will obtain for θ(2)t . Theorem 1.7, guarantees that

if αn =
(
d log2β(n)

)−(1+r)2

then the time to obtain an ε-error is given by (1.6). Although

the results coincide in order of convergence, it does not mean that they have the same
proportionality constants.

Formally, we can conclude that both processes would have the same order of
convergence, however, the continuous time SGLD process does not need to compute the
average of the functions U (r)(θ,Xi), only change the observation Xi every exponential
clock.

Bayesian logistic regression. This example is inspired by the Bayesian logistic
regression problem studied in [22] (see also [34, 31, 45]).

Consider n ≥ 1 i.i.d. observations (X1, Y1), . . . , (Xn, Yn) where X1, . . . , Xn are
d-dimensional input variables and Y1, . . . , Yn are binary output responses. The output
responses are distributed as Bernoulli random variables such that:

Yi ∼ Ber
(
ϕ(θ⊤Xi)

)
, i ∈ {1, . . . , n},

where ϕ is the logit function defined by ϕ(x) = (1 + e−x)
−1

, x ∈ R and θ ∈ Rd is the
parameter of interest. We consider a prior distribution given by the following density
with respect to Lebesgue measure on Rd:

π
(r)
0 (θ) ∝ exp

{
−a
(
1 + ∥θ∥22

) 1
1+r

}
, θ ∈ Rd,

where a is a positive constant and the parameter r ∈ (0, 1) is related to weakly
log-concavity. The log-concave posterior distribution of θ is given by the density:

µ(r)
n (θ|(X1, Y1), . . . , (Xn, Yn)) ∝ exp

{
−

n∑
i=1

ℓi(θ)− a
(
1 + ∥θ∥22

) 1
1+r

}
,

where the log-likelihoods are ℓi(θ) = log
(
1 + exp

(
(1− 2Yi)θ

⊤Xi

))
. We now introduce

the potential:

U (r)
νn

(θ) =

n∑
i=1

ℓi(θ) + a
(
1 + ∥θ∥22

) 1
1+r ,
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which verifies a Hr
KL(c, nL)-condition with parameters c = 2(1−r)

(1+r)2 a
1+r and L =

2
1+r maxi,j X

2
ij , where Xij represents the j-th component of Xi.

The proof of the main result is based on the fact that Uνn
satisfies Hr

KL(cn
1+r, nL+ℓ0),

so if now U
(r)
νn satisfies Hr

KL(c, nL), we obtain that the bound of the Poincaré constant is
worse:

CPI ≲uc n
(1+r)(2+r)

(
d log2β(n)

)(1+r)2

,

and as a consequence we obtain an ε-error if αn = n−(1+r)(2+r)
(
d log2β(n)

)−(1+r)2

and

t ≳uc n
(1+r)(2+r)

(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)
]
.

Once again, we recall that in the weakly log-concave case the bound of the Poincaré
constant adds an important dependence in terms of n and d. One way to improve this
result would be to consider, for example a = n in the definition of π(r)

0 , so we would
obtain the original result of Theorem 1.7.

2 Markov tools and evolution of the entropy Jt

It is straightforward to verify that the joint evolution of (θt, Xt)t≥0 exists and is weakly
unique (in law) with the help of the Martingale Problem (MP below). For this purpose,
we preliminary define the operator L that acts on any function f ∈ C2(Rd ×X ) as:

Lf(θ, x) = −⟨∇θUx(θ),∇θf(θ, x)⟩+∆θf(θ, x)︸ ︷︷ ︸
L1f(θ,x)

+
αn

n

n∑
i=1

[f(θ,Xi)− f(θ, x)︸ ︷︷ ︸
L2f(θ,x)

], (2.1)

for all (θ, x) ∈ Rd ×X .
The operator L is divided into two terms, L1 acts on the component θ and is associated

to the diffusion part, while L2 is the jump operator that acts on the x component. Thanks
to the finite number of observations (X1, . . . ,Xn), we can apply the results of Sections 4
and 5 of chapter 4 of [25] and deduce the following result:

Proposition 2.1. Assume that for any x ∈ X , Ux is C2(Rd) and ∇θUx is Lx-Lipschitz,
then for any initial distribution ν on Rd ×X , the martingale problem (L, ν) is well-posed.
The associated (weakly) unique process (θt, Xt)t≥0 is a Feller Markov process associated
to the semi-group L. In particular, the θ component verifies the S.D.E. (1.4).

If we denote by L⋆ the adjoint operator of L in L2(Rd ×X ), the Kolmogorov forward
equation (or Fokker-Plank equation) yields:

∂t{mt(θ, x)} = L⋆mt(θ, x), (2.2)

in the weak sense. However, using Remark 3.19 of [39], we could verify that the first and
second derivatives of mt with respect to θ are bounded, therefore, mt is differentiable in
time and Equation (2.2) is satisfied in the strong sense.

We now introduce two operators, which will be the keystone of our work. The first
one describes the infinitesimal action on the θ coordinate under the average effect of Xt

at time t that applies for any function f ∈ C2(Rd) as:

Gtf(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi
(θ)⟩mt(Xi|θ) + ∆θf(θ). (2.3)
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The second one is very close to the first one except that the average effect of Xt is
replaced by the targeted ideal distribution νn. It leads to the definition: for any function
f ∈ C2(Rd),

Gf(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi
(θ)⟩νn(Xi) + ∆θf(θ)

= −⟨∇θf(θ),∇θUνn
(θ)⟩+∆θf(θ). (2.4)

2.1 Study of J0 and ∂t{Jt}
Our starting point is to establish a differential inequality for Jt. But first, we state

the following proposition in which it is proved that the initial entropy J0 is bounded.

Proposition 2.2. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and that, for any x, θ 7→ − log pθ(x)

satisfies Hr
KL(c, L), then:

i) Two positive constants C1 and C2 exist, which are independent from n and d and
such that:

∥h0∥∞ ≲uc (C1d/n)
dr
2 exp

(
C2n(d log

2β(n))1+r
)
.

ii) As a consequence:

J0 =

∫
Rd

log (h0(θ)) dn0(θ) ≲uc n(d log
2β(n))1+r + rd log (d/n) .

The proof of Proposition 2.2 may be found in Section 5.3.
Let us now define the Dirichlet form of

√
nt(θ)/µn(θ) (proportional to the relative

Fisher information of nt with respect to µn) as:

Et =
∫
Rd

∥∥∥∥∥∇
(√

nt(θ)

µn(θ)

)∥∥∥∥∥
2

2

dµn(θ) =
1

4

∫
Rd

∥∥∥∥∇ log

(
nt(θ)

µn(θ)

)∥∥∥∥2
2

dnt(θ).

The following proposition shows the link between ∂t{Jt} and Et.
Proposition 2.3. Assume Hmin, Hπ0(ℓ0) and for each Xi, θ → − log pθ(Xi) satisfies
Hr

KL(c, L). Then, for any t > 0,

∂t{Jt} ≤ −3Et + cn,de
− 2αn

3 t,

where cn,d ≲uc n
4
(
d log2β(n)

)1+r

.

Proof of Proposition 2.3. The existence of ∂t{Jt} and the equalities:

∂t{Jt} =

∫
Rd

(
1 + log

(
nt(θ)

µn(θ)

))
∂t{nt(θ)}dθ =

∫
Rd

Gt log

(
nt(θ)

µn(θ)

)
dnt(θ).

are justified in Section 5.4. Then, we are led to split ∂t{Jt} into two terms :

∂t{Jt} =

∫
Rd

Gt log

(
nt(θ)

µn(θ)

)
dnt(θ),

=

∫
Rd

G log

(
nt(θ)

µn(θ)

)
dnt(θ)︸ ︷︷ ︸

J1,t

+

∫
Rd

(Gt − G) log
(
nt(θ)

µn(θ)

)
dnt(θ)︸ ︷︷ ︸

J2,t

. (2.5)

We study each term separately.
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• Study of J1,t. Since G is a diffusion operator and µn is the invariant measure
associated to G, then we can use the classical link between J1,t and the Dirichlet
form Et (see [4]):∫

Rd

G log

(
nt(θ)

µn(θ)

)
dnt(θ) =

∫
Rd

nt(θ)

µn(θ)
G log

(
nt(θ)

µn(θ)

)
dµn(θ) = −4Et. (2.6)

• Study of J2,t. We use the difference between G and Gt, for any twice differentiable
function f :

(Gt − G) f(θ) = −
n∑

i=1

⟨∇θf(θ),∇θUXi
(θ)⟩ [mt(Xi|θ)− νn(Xi)]

= − 1

n

n∑
i=1

⟨∇θf(θ),∇θUXi
(θ)⟩

[
mt(Xi|θ)
νn(Xi)

− 1

]
,

where we used that νn(Xi) =
1
n , for any i. Then, the term J2,t may be computed as:

|J2,t| =
∣∣∣∣∫
Rd

(Gt − G) log
(
nt(θ)

µn(θ)

)
dnt(θ)

∣∣∣∣
=

1

n

∣∣∣∣∣
∫
Rd

n∑
i=1

⟨∇θ log

(
nt(θ)

µn(θ)

)
,∇θUXi(θ)⟩

[
mt(Xi|θ)
νn(Xi)

− 1

]
dnt(θ)

∣∣∣∣∣ .
Using the Cauchy-Schwarz inequality with respect to the measure νn(Xi)× dnt(θ)

in the first line and 2ab ≤ a2 + b2, for any a and b, in the second line, we obtain that:

|J2,t| ≤ 2E
1
2
t

(
1

n

∫
Rd

n∑
i=1

∥∇θUXi
(θ)∥22

[
mt(Xi|θ)
νn(Xi)

− 1

]2
dnt(θ)

) 1
2

≤ Et +
1

n

∫
Rd

n∑
i=1

∥∇θUXi
(θ)∥22

[
mt(Xi|θ)
νn(Xi)

− 1

]2
dnt(θ).

Replacing Equation (2.6) and the inequality above in Equation (2.5), we get:

∂t {Jt} ≤ −3Et +
1

n

∫
Rd

n∑
i=1

∥∇θUXi
(θ)∥22

[
mt(Xi|θ)
νn(Xi)

− 1

]2
dnt(θ)︸ ︷︷ ︸

∆t

. (2.7)

We then focus on the second term of the right hand side. For this purpose, we
consider a strictly positive function g(t), which will be fixed later and we split ∆t into
two terms as:

∆t =
1

n

∫
Rd

n∑
i=1

∥∇θUXi(θ)∥
2
2 1∥∇θUXi

(θ)∥2≤g(t)

[
mt(Xi|θ)
νn(Xi)

− 1

]2
dnt(θ)

+
1

n

∫
Rd

n∑
i=1

∥∇θUXi(θ)∥
2
2 1∥∇θUXi

(θ)∥2>g(t)

[
mt(Xi|θ)
νn(Xi)

− 1

]2
dnt(θ)

=∆1,t +∆2,t. (2.8)

We study each term separately.

• Study of ∆1,t. We introduce a weighted L2 distance between the conditional
distribution of Xt given θt = θ and the measure νn. This distance is denoted by It
and is defined as:

It =
1

n

∫
Rd

n∑
i=1

(
mt(Xi|θ)
νn(Xi)

− 1

)2

dnt(θ). (2.9)
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This quantity measures the average closeness (with respect to θ) of the conditional
law of x given θ at time t to νn. Using the definition of It, the first term of (2.8) is
bounded by:

∆1,t ≤ g2(t)It.

In Section 5.5, Proposition 5.7, we show that It ≤ (n− 1)e−2αnt. Then, we get that:

∆1,t ≤ ng2(t)e−2αnt.

• Study of ∆2,t. We recall that for any i, νn(Xi) = 1/n and mt(Xi|θ) ∈ [0, 1], then∣∣∣mt(Xi|θ)
νn(Xi)

− 1
∣∣∣ ≤ n, which implies that:

∆2,t ≤ n

∫
Rd

n∑
i=1

∥∇θUXi
(θ)∥22 1∥∇θUXi

(θ)∥2>g(t)dnt(θ).

The Cauchy-Schwarz inequality leads to:

∆2,t ≤ n

(∫
Rd

n∑
i=1

∥∇θUXi(θ)∥
4
2 dnt(θ)

) 1
2
(∫

Rd

n∑
i=1

1∥∇θUXi
(θ)∥2>g(t)dnt(θ)

) 1
2

= n

(
n∑

i=1

Ent

(
∥∇θUXi

(θt)∥42
)) 1

2
(

n∑
i=1

Pnt
(∥∇θUXi

(θt)∥2 > g(t))

) 1
2

. (2.10)

Thanks to Propositions 1.4 and 5.1, we deduce that for any θ ∈ Rd:

∥∇θUXi
(θ)∥22 ≤ 2(nL+ ℓ0)UXi

(θ),

then:

1

n

n∑
i=1

Ent

(
∥∇θUXi(θt)∥

4
2

)
≤ 4(nL+ ℓ0)

2

n

n∑
i=1

Ent

(
U2
Xi

(θt)
)

≤ 4(nL+ ℓ0)
2

n
Ent

( n∑
i=1

UXi
(θt)

)2


≤ 4n(nL+ ℓ0)
2Ent

(
U2
νn
(θt)

)
, (2.11)

where we used the relation ∥.∥2 ≤ ∥.∥1 in Rn in the second step, that is, for any
θ ∈ Rd and any i, UXi

(θ) ≥ 0, then U2
X1

(θ)+ . . .+U2
Xn

(θ) ≤ (UX1
(θ)+ . . .+UXn

(θ))2.
Taking expectation in θ, we obtain the inequality.

Furthermore,

1

n

n∑
i=1

Pnt
(∥∇θUXi

(θt)∥2 > g(t)) ≤ 1

n

n∑
i=1

Pnt

(
2(nL+ ℓ0)UXi

(θt) > g2(t)
)

≤ 2(nL+ ℓ0)

ng2(t)

n∑
i=1

Ent
(UXi

(θt))

≤ 2(nL+ ℓ0)

g2(t)
Ent

(Uνn
(θt)) , (2.12)

where we used Markov inequality in the second line.
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Replacing (2.11) and (2.12) in (2.10), we get that:

∆2,t ≤
n5/2[2(nL+ ℓ0)]

3/2

g(t)

[
Ent

(U2
νn
(θt))Ent

(Uνn
(θt))

]1/2
≤ Cn

11
2

(
d log2β(n)

) 3(1+r)
2

g−1(t),

where C is a positive constant obtained when we apply Proposition 5.10 with α = 2

and α = 1 to upper the moments of Uνn
(θt).

Going back to ∆t in (2.8), we have proven that:

∆t ≤ ng2(t)e−2αnt + Cn
11
2

(
d log2β(n)

) 3(1+r)
2

g−1(t).

Optimizing with respect to g(t), we deduce that:

∆t ≤ Cn4
(
d log2β(n)

)1+r

e−
2αnt

3 , ∀t ≥ 0.

We conclude the proof by replacing the bound of ∆t in (2.7).

3 Functional inequalities and Hr
KL(c, L)

This section studies some functional inequalities that links the Dirichlet form and
the relative entropy. When the probability measure is strongly log-concave (i.e. r = 0

under a Hr
KL(c, L) condition) a standard approach is to apply the log-Sobolev inequality

(LSI for short). This idea relies on the initial works of [32] where LSI were introduced.
The consequences of LSI to exponential ergodicity has then been an extensive field of
research and we refer to [4] for an overview on this topic. A popular sufficient condition
that ensures LSI is the log strong-concavity of the targeted measure (see among other [3])
and an impressive amount of literature has been focused on the existing links between
these functional inequalities, ergodicity of the semi-group, transport inequalities and
Lyapunov conditions. We refer to [10, 2] (these two works are far from being exhaustive).
The great interest of LSI has then been observed in machine learning and statistics more
recently as testified by the recent works in Monte Carlo samplings of [41, 44].

A popular way to extend LSI from the strongly concave situation to a more general
case relies on the “strong convexity outside a ball” hypothesis using the perturbation
argument of the seminal contributions of [35]. If this method proves to be suitable for
the study of the simulated annealing process in [43], [35], it appears to be doubtful for
the study of sampling problems with convex potentials V that satisfies Hr

KL(c, L) as this
settings do not imply an asymptotic strong convexity of θ 7−→ V (θ) for large values of
∥θ∥2. That being said, and maybe an even worst consequence of such approach, is the
unavoidable dependency on the dimension for the LSI constant when using a perturbation
approach, which leads to a serious exponential degradation of the convergence rates
with the dimension of the ambient space.

To overcome these difficulties, we have chosen to use a slightly different functional
inequality that may be considered as an innocent modification of LSI, but that indeed
appears to be well suited to weakly log-concave setting described through an Hr

KL(c, L)

assumption (i.e. 0 < r < 1 under Hr
KL(c, L)) . For this purpose, we shall use weak

log-Sobolev inequalities (WLSI for short below) that have been introduced in [9] and
whose interest has been extensively studied in many works to obtain exponentially
sub-linear rates of mixing. To derive such inequalities, our starting point will be the
contribution of [11] that makes the link between Lyapunov conditions and WLSI. Our
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approach based on Hr
KL(c, L) certainly shares some similarities with the recent work of

[8] where some functional inequalities (Poincaré and transport inequalities) are obtained
within a framework of variable curvature bound.

It is worth to mention that we pay special attention to the dependence of all constants
involved in the functional inequalities in terms of n, d and r.

3.1 Poincaré, log-Sobolev and weak log-Sobolev inequalities

In this section we will focus on describing Poincaré, log-Sobolev and weak log-Sobolev
inequalities in a general setting. These inequalities link the norm of a function or a
related quantity to the norm of its derivative. Hence, we start by presenting some
definitions and well-known facts.

Let be B(Rd) the Borel algebra on Rd and m a probability measure defined on
(Rd,B(Rd)). Consider a function f : Rd → R. For any p ≥ 1, we define Lp

m(Rd): the space
of functions with finite p-norm

∥f∥Lp
m(Rd) =

[∫
Rd

|f |pdm
]1/p

,

whenever this quantity is finite. Moreover,

H1
m(Rd) =

{
f : Rd → R; f ∈ L2

m(Rd),∇f ∈
(
L2
m(Rd)

)d}
,

where ∇f is defined in the weak sense. C1
b (R

d) is the set of bounded and once
differentiable functions on Rd.

For any function f ∈ L1
m(Rd), we define its variance as:

V arm(f) =

∫
Rd

(f −m[f ])2dm,

where m[f ] =
∫
Rd fdm and when f ∈ H1

m(Rd), the Dirichlet form of f is defined as:

Em(f) =

∫
Rd

∥∇f∥22dm.

The Poincaré inequality links the variance of f to its Dirichlet form.

Definition 3.1 (Poincaré inequality). The probability measure m satisfies a Poincaré
inequality if there exists a constant CPI(m) such that for any f ∈ H1

m(Rd),

V arm(f) ≤ CPI(m)Em(f).

The optimal constant CPI(m) is referred to as the Poincaré constant.

Remark 3.2. An important property of log-concave measures is that they satisfy a
Poincaré inequality and in this situation a bound on the Poincaré constant may be found
in Theorem 1.2 of [6].

We briefly introduce the log-Sobolev inequality (LSI). For any function f : Rd → R

such that
∫
Rd f

2| log(f)|dm <∞, we define the entropy of f2 as:

Entm(f2) =

∫
Rd

f2 log(f2)dm−
∫
Rd

f2dm log

(∫
Rd

f2dm

)
,

in this definition 0 log 0 is interpreted as 0.

Definition 3.3 (Log-Sobolev inequality). The probability measure m satisfies a LSI if
there exists a positive constant CLSI(m) such that for any f ∈ H1(Rd),

Entm(f2) ≤ CLSI(m)Em(f).
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Remark 3.4. In the particular case when m is a c-strongly log-concave measure, a LSI
is verified, see [3], and the log-Sobolev constant is CLSI(m) = 2

c , which is independent of
the dimension d.

However, as mentioned before, in a weakly log-concave setting such as Hr
KL(c, L)

when 0 < r < 1, a weak log-Sobolev inequality (WLSI) would seem to be suitable to
derive a good functional inequality which links the entropy and the Dirichlet form.

Definition 3.5 (Weak log-Sobolev inequality). The probability measure m satisfies a
WLSI if a non-increasing function φ : (0,+∞) 7→ R+ exists such that for any f ∈ C1

b (R
d)

and any s > 0,

Entm(f2) ≤ φ(s)Em(f) + sOsc2(f),

where Osc(f) = sup f − inf f .

This functional inequality was introduced in [9] and in said study they prove that
the above definition is only necessary for small values of s, since it always holds that
Entm(f2) ≤

(
1
e + 1

2

)
Osc2(f).

The following proposition establishes an important link between the Poincaré
inequality and the WLSI, which can be obtained as a particular case of Proposition
3.1 in [9]. As discussed above, the function φ is described only for small values of s, in
particular, we only describe it for 0 < s ≤ e−1.

Proposition 3.6. Assume that m satisfies a Poincaré inequality of constant CPI(m), then
m satisfies a WLSI. Moreover the function φ could be defined as follows:

φ(s) = aCPI(m) log (1/s) , 0 < s ≤ e−1,

where a > 0 is a universal constant.

The proof may be found in Section 5.6.

3.2 Functional inequalities under Hr
KL(c, L)

In order to find a good functional inequality that links Jt and Et, we specify that the
measure m is actually µn and the function is

f(θ) =
√
ht(θ) =

√
nt(θ)/µn(θ),

where t > 0. Then we deduce that Jt = Entµn
(ht) and Et = Eµn

(
√
ht).

Under the Hr
KL(c, L) hypothesis, we are able to describe two situations: when r = 0

the probability measure µn is strongly log-concave and we will apply LSI, while when
0 < r < 1, µn is weakly log-concave and we will use WLSI. We study each situation
separately.

3.2.1 Strongly log-concave case

From Proposition 1.4, we observe that Uνn
satisfies a Hr

KL(cn
1+r, nL+ ℓ0)-condition, and

then, r = 0 implies that Uνn
is a cn-strongly convex function. The following proposition is

an immediate consequence of Remark 3.4, therefore we omit the proof.

Proposition 3.7. Assume Hπ0(ℓ0) and that each θ 7→ − log pθ(Xi) satisfies Hr
KL(c, L)

with r = 0. Then µn verifies a LSI with constant CLSI(µn) =
2
cn , which is independent of

d and indistinctly denoted as CLSI. In particular:

Jt ≤ CLSIEt.
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3.2.2 Weakly log-concave case

Since µn is a log-concave measure, then a Poincaré inequality is verified with constant
CPI(µn), from now on denoted as CPI. In addition, using Proposition 3.6, we observe
that µn also satisfies a WLSI with function

φ(s) = aCPI log (1/s) , 0 < s ≤ e−1,

where a is a universal constant. Then, in order to apply WLSI to f =
√
ht, we need to

find bounds for CPI and for Osc(
√
ht).

The next proposition states two lower bounds on the Poincaré constant within the
Hr

KL(c, L) framework when 0 < r < 1. The first one always holds, regardless the value of
(X1, . . . , Xn) that may be been randomly sampled. The second one has to be considered
with high probability, with respect to the sampling process (X1, . . . , Xn). The proof of
Proposition 3.8 is deferred to Section 5.3.

Proposition 3.8. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and for any x, θ 7→ − log pθ(x)

satisfies Hr
KL(c, L) where 0 < r < 1, then:

i) For any sample (X1, . . . , Xn), it holds:

CPI ≲uc

(
d log2β(n)

)(1+r)2

.

ii) Assume that θ 7→ Pθ is injective and θ0 exists such that (X1, . . . , Xn) ∼ Pθ0 . If
locally around θ0, θ 7→ ∥θ − θ0∥−α

2 W1(Pθ,Pθ0) does not vanish, then:

E(X1,...,Xn)∼Pθ0
[CPI] ≲uc

(
d log n

n

)α

.

We are finally led to show that ht is a bounded function and then compute an upper
bound of the oscillation Osc

(√
ht
)
, for any time t > 0 . For this purpose, we observe

that the Markov semi-group induces that ht = nt/µn = Pth0 where h0 = n0/µn. The
next proposition implies the boundedness of ht over Rd when n0 is chosen as a Gaussian
distribution with a carefully tuned covariance matrix.

Proposition 3.9. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and that, for any x, θ 7→ − log pθ(x)

satisfies Hr
KL(c, L). Then ht is bounded for any t > 0 and there exist two universal

constants C1 > 0 and C2 > 0 such that:

Osc2(
√
ht) ≤ Osc (ht) ≤ Osc(h0) ≲uc (C1d/n)

dr
2 exp

(
C2n(d log

2β(n))1+r
)
.

The proof of Proposition 3.9 may be found in Section 5.3.
As a consequence of Remark 3.2 and Propositions 3.6 and 3.9, we state the following

proposition, which we will not prove.

Proposition 3.10. Assume Hmin,Hn0(L, ℓ0), Hπ0(ℓ0) and that, for any x, θ 7→ − log pθ(x)

satisfies Hr
KL(c, L). Then:

i) µn satisfies a Poincaré inequality with constant CPI.

ii) For any t > 0 and any s > 0,

Jt ≤ φ(s)Et + sOn,d,

where On,d = (C1d/n)
dr
2 exp

(
C2n(d log

2β(n))1+r
)

and φ could be defined as:

φ(s) = aCPI log (1/s) , 0 < s ≤ e−1,

where a > 0 is a universal constant.
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4 Proof of the main result

In Proposition 2.3, we proved that for any t > 0:

∂t{Jt} ≤ −3Et + cn,de
− 2αn

3 t, (4.1)

where cn,d ≲uc n
4
(
d log2β(n)

)1+r

. Once again, we study the cases strongly log-concave

case (r = 0) and weakly log-concave case (0 < r < 1) separately.

Strongly log-concave case (r = 0). From Proposition 3.7, µn verifies a LSI with
constant CLSI =

2
cn . Then, in particular:

Jt ≤ CLSIEt.

We combine this inequality with (4.1) to get that for any t > 0,

∂t {Jt} ≤ − 3Jt
CLSI

+ cn,de
− 2αn

3 t.

Applying Gronwall’s lemma, we deduce that:

Jt ≤ J0e
− 3t

CLSI + cn,de
− 3t

CLSI

∫ t

0

e

(
3

CLSI
− 2αn

3

)
u
du.

Now, we upper bound the second term assuming that αn ̸= 9
2CLSI

, the same bound is

obtained if αn = 9
2CLSI

. We apply the mean value theorem to the function y 7→ −e−yt in

the interval
(
min

{
3

CLSI
, 2αn

3

}
,max

{
3

CLSI
, 2αn

3

})
to get that:

e
− 3t

CLSI

∫ t

0

e

(
3

CLSI
− 2αn

3

)
u
du =

e−
2αnt

3 − e
− 3t

CLSI

3
CLSI

− 2αn

3

= te−at ≤ te
−min

{
3

CLSI
, 2αn

3

}
t
,

where a ∈
(
min

{
3

CLSI
, 2αn

3

}
,max

{
3

CLSI
, 2αn

3

})
.

Using that for any x ≥ 0, xe−x ≤ e−x/2, with x = min
{

3cn
2 , 2αn

3

}
t, we obtain that:

e
− 3t

CLSI

∫ t

0

e

(
3

CLSI
− 2αn

3

)
u
du ≤ max

{
CLSI

3
,

3

2αn

}
e
−min

{
3

2CLSI
,αn

3

}
t
.

We proved that:

Jt ≤
(
J0 + cn,d max

{
CLSI

3
,

3

2αn

})
e
−min

{
3

2CLSI
,αn

3

}
t
, t > 0.

A sufficient condition to obtain Jt ≤ ε is that(
J0 + cn,d max

{
CLSI

3
,

3

2αn

})
e
−min

{
3

2CLSI
,αn

3

}
t ≤ ε,

or equivalently:

t ≥ max

{
2CLSI

3
,
3

αn

}[
log(ε−1) + log

(
J0 + cn,d max

{
CLSI

3
,

3

2αn

})]
.

Using that CLSI =
2
cn , J0 ≲uc d, cn,d ≲uc n

4d log2β(n) and taking αn = n, we deduce that:

t ≳uc n
−1
[
log(ε−1) + log(d) + log(n)

]
=⇒ Jt ≤ ε.

The choice of αn = n guarantees that the expected number of jumps until obtaining an
ε-error is minimal.
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Weakly log-concave case (0 < r < 1). From Proposition 3.10, we deduce a differential
inequality for Jt. For any t > 0 and 0 < s ≤ e−1:

∂t {Jt} ≤ − 3Jt
φ(s)

+
3sOn,d

φ(s)
+ cn,de

− 2αn
3 t.

Using Gronwall’s lemma, we get that:

Jt ≤ inf
0<s≤e−1

{
J0e

− 3t
φ(s) + sOn,d + cn,de

− 3t
φ(s)

∫ t

0

e(
3

φ(s)
− 2αn

3 )udu

}
.

The mean value theorem, as in the strongly log-concave case, implies that:

Jt ≤ inf
0<s≤e−1

{
J0e

− 3t
φ(s) + sOn,d + cn,d max

{
φ(s)

3
,

3

2αn

}
e−min{ 3

2φ(s)
,αn

3 }t
}
.

We then choose s = st = e−A
√
t, with A > 0. We observe that 0 < st ≤ e−1 if t ≥ A−2, and

then:
φ(st) = aCPI log (1/st) = aACPI

√
t,

which leads to

Jt ≤ J0e
− 3

√
t

aACPI +On,de
−A

√
t + cn,d max

{
aACPI

√
t

3
,

3

2αn

}
e
−min

{
3

2aACPI
√

t
,αn

3

}
t
.

The choice A =
√

3
aCPI

guarantees that the first two terms are of the same order with

respect to t. Moreover, the condition t ≥ A−2 becomes t ≥ aCPI

3 .
Then,

Jt ≤ (J0 +On,d)e
−
√

3t
aCPI + cn,d max

{√
aCPIt

3
,

3

2αn

}
e
−min

{√
3

4aCPIt
,αn

3

}
t
.

We assume that
√

3
4aCPIt

≤ αn

3 , that is, t ≳uc
1

α2
nCPI

, then

Jt ≤

(
J0 +On,d + cn,d

√
aCPIt

3

)
e
−
√

3t
4aCPI

≲uc (J0 +On,d + cn,dCPI) e
−
√

3t
16aCPI ,

where we used the inequality: for any x ≥ 0, xe−x ≤ e−x/2), with x =
√

3t
4aCPI

.

A sufficient condition to get Jt ≤ ε is that the right hand of the previous equation is
less than ε, which is verified if:

t ≳uc CPI

[
log2(ε−1) + log2 (J0 +On,d + cn,dCPI)

]
and t ≳uc

1
α2

nCPI
. To find αn, we look for the value of αn that minimizes αn · tε, where tε is

the minimum time required to achieve an ε-error. From this, we observe that αn = 1
CPI

.
Of course, in the choice of αn we ignore multiplicative constants that do not depend on
n nor d.

To obtain explicit estimates that depend on n and d, we use Proposition 3.8, where we

showed that CPI ≲uc

(
d log2β(n)

)(1+r)2

. Instead of working with the constant CPI in φ,

we directly use the upper bound κ
(
d log2β(n)

)(1+r)2

. This allows us to keep all previous
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computations unchanged, with the only difference being the substitution of CPI by its
upper bound.

Therefore, using the values of On,d, cn,d and the upper bound of J0, we finally observe

that if αn =
(
d log2β(n)

)−(1+r)2

and

t ≳uc

(
d log2β(n)

)(1+r)2
[
log2(ε−1) + n2

(
d log2β(n)

)2(1+r)
]
,

then Jt ≤ ε.

5 Technical results

5.1 Growth properties under the Kurdyka-Łojasiewicz inequality

We remind here some important consequences of the KL inequality that implies
several relationships between the function and the norm of its gradient. The proof of
these inequalities may be found in Lemma 15 of [29] (a small mistake appears and we
correct the statement with a factor 2 in our work).

Proposition 5.1. Assume that a function V satisfies Hr
KL(c, L), then for all θ ∈ Rd,

2c

1− r

[
V 1−r(θ)−minV 1−r

]
≤ ∥∇V (θ)∥2 ≤ 2L [V (θ)−minV ] ≤ 2LV (θ).

It is furthermore possible to assess a minimal and maximal growth property of any
function that satisfies Hr

KL(c, L), which is necessarily lower and upper bounded by a
positive power of the distance to its minimizer.

Proposition 5.2. Assume that a function V satisfies Hr
KL(c, L), then for all θ ∈ Rd,

V 1+r(θ) ≥ V 1+r(θ)−min(V )1+r ≥ (1 + r)c

2
∥θ − argminV ∥2

and

V (θ)−min(V ) ≤ L

2
∥θ − argminV ∥2.

5.2 Properties of Uνn
and Zn

We star by proving Proposition 1.4, which shows how a Hr
KL(c, L) condition on

θ 7→ − log pθ(x) is translated to Uνn
.

Proof of Proposition 1.4. First, we observe that if each θ 7→ ∇ log pθ(Xi) is L-Lipschitz
and θ 7→ ∇ log π0 is ℓ0-Lipschitz, then the triangle inequality implies that

∥∇Uνn
(θ1)−∇Uνn

(θ2)∥2 ≤ ∥∇UX1
(θ1)−∇UX1

(θ2)∥2 ≤ (nL+ ℓ0)∥θ1 − θ2∥2,

for any θ1, θ2 ∈ Rd. Then θ 7→ ∇Uνn
(θ) is (nL+ ℓ0)-Lipschitz.

Second, we consider the lower-bound property on the curvature and observe that for
any θ ∈ Rd,

λ∇2Uνn
(θ) = inf

e∈Rd:∥e∥2=1
eT (∇2Uνn(θ))e ≥

1

n

n∑
i=1

inf
e∈Rd:∥e∥2=1

eT (∇2UXi(θ))e.

The log concavity of the prior yields

λ∇2Uνn
(θ) ≥ 1

n

n∑
i=1

λ∇2(−n log pθ(Xi))
=

n∑
i=1

λ∇2(− log pθ(Xi))
.
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Then, the Hr
KL(c, L) property applied to each term of the sum above and the condition

minθ∈Rd − log π0(θ) > 0 from Hπ0(ℓ0) yield

λ∇2Uνn
(θ) ≥ c

n∑
i=1

[− log pθ(Xi)]
−r ≥ cnr

n∑
i=1

U−r
Xi

(θ) = cn1+r

(
1

n

n∑
i=1

U−r
Xi

(θ)

)
.

From the Jensen inequality, we finally deduce that:

λ∇2Uνn
(θ) ≥ cn1+r

(
1

n

n∑
i=1

U−r
Xi

(θ)

)
≥ cn1+rU−r

νn
(θ).

We conclude that Uνn satisfies Hr
KL(cn

1+r, nL+ℓ0). The proof is similar when we consider
UXi instead of Uνn .

The following proposition shows the growth of the minimum and the minimizer of
Uνn with respect to d and n.

Proposition 5.3. Assume Hπ0(ℓ0), Hmin and that for any x: θ 7−→ − log pθ(x) satisfies
Hr

KL(c, L). Then:

∥ argminUνn
∥2 ≲uc (

√
d logβ(n))1+r and min

θ∈Rd
Uνn

(θ) ≲uc nd log
2β(n).

Proof. Proposition 1.4 shows that Uνn
satisfies Hr

KL(cn
1+r, nL+ℓ0). Hence, we can apply

Proposition 5.2 with θ = 0 and argminUνn
= θ∗n. We deduce that:

∥θ∗n∥22 ≤ 2

(1 + r)cn1+r
U1+r
νn

(0).

To obtain an upper bound of Uνn
(0) we first find an upper bound of UXi

(0) using Hmin

and once again Proposition 5.2, for all i, as follows:

UXi(0) ≤ min UXi +
nL+ ℓ0

2
∥ argminUXi∥22 ≲uc nd log

2β(n),

then Uνn
(0) ≲uc nd log

2β(n) and:

∥θ∗n∥22 ≲uc

(
d log2β(n)

)1+r

.

The second part comes from Uνn
(θ∗n) ≤ Uνn

(0).

Proposition 5.4. Assume Hπ0(ℓ0), Hn0(L, ℓ0), Hmin and that for any x: θ 7−→ − log pθ(x)

satisfies Hr
KL(c, L). Then the normalizing constant of µn verifies the following inequality:

Zn ≤ 2

(
2π

cn1+r

)d/2

ddr/2.

Proof. In Proposition 1.4, we proved that Uνn
satisfies a Hr

KL(cn
1+r, nL+ ℓ0)-condition,

then if we apply Proposition 5.2 to Uνn
and denote θ⋆n = argminUνn

, we deduce that:

Uνn
(θ) ≥ an,r∥θ − θ∗n∥

2
1+r

2 ,

where an,r = n
(

(1+r)c
2

) 1
1+r

. We compute an upper bound of Zn using the inequality

above:

Zn =

∫
Rd

e−Uνn (θ)dθ ≤
∫
Rd

e−an,r∥θ−θ⋆
n∥

2
1+r
2 dθ.
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A change of variable and the well known equality∫
Rd

e−a∥θ∥ℓ
2dθ =

πd/2Γ(d/ℓ+ 1)

ad/ℓΓ(d/2 + 1)
, ∀a > 0, ∀ℓ > 0,

imply that:

Zn ≤
∫
Rd

e−an,r∥θ∥
2

1+r
2 dθ ≤

(
π

a1+r
n,r

)d/2 Γ
(

d(1+r)
2 + 1

)
Γ
(
d
2 + 1

) .

Then, from standard relations on the Gamma function we conclude that:

Zn ≤ 2

(
2π

cn1+r

)d/2

ddr/2.

5.3 Smoothness and boundedness of the semi-group

Proof of Proposition 2.2. i) We start by proving that h0 = n0(θ)/µn(θ) is a bounded

function. For all θ ∈ Rd,

h0(θ) = (2πσ2)−d/2Zne
− ∥θ∥22

2σ2 +Uνn (θ) ≤ 2
(
σ2cn1+r

)−d/2
d

dr
2 e−

∥θ∥22
2σ2 +Uνn (θ), (5.1)

where we used that n0 is the density function of a N (0d, σ
2Id) random variable and the

bound of Zn obtained in Proposition 5.4. Let us focus on the exponent of Equation (5.1).
From Proposition 1.4, Uνn

satisfies a Hr
KL(cn

1+r, nL+ ℓ0)-condition. Then, we denote
θ⋆n = argminUνn

and apply Proposition 5.2 to Uνn
:

Uνn(θ) ≤ Uνn(θ
⋆
n) +

(nL+ ℓ0)

2
∥θ − θ⋆n∥22.

The exponent of (5.1) satisfies the following inequality:

−∥θ∥22
2σ2

+ Uνn(θ) ≤ −∥θ∥22
2σ2

+ Uνn(θ
⋆
n) +

(nL+ ℓ0)

2
∥θ − θ⋆n∥22.

For all σ2 ≤ c2
nL+ℓ0

where 0 < c2 < 1, a straightforward optimization on θ yields:

−∥θ∥22
2σ2

+
(nL+ ℓ0)

2
∥θ − θ⋆n∥22 ≤ (nL+ ℓ0)

2(1− c2)
∥θ⋆n∥22,

then:

−∥θ∥22
2σ2

+ Uνn
(θ) ≤ Uνn

(θ⋆n) +
(nL+ ℓ0)

2(1− c2)
∥θ⋆n∥22 ≤ C2n

(
d log2β(n)

)1+r

, (5.2)

where we used Proposition 5.3 in the last step and we define C2 as a constant. Replacing
(5.2) in (5.1), we get that:

∥h0∥∞ ≤ 2
(
σ2cn1+r

)−d/2
ddr/2eC2n(d log2β(n))

1+r

≤
(
C1d

n

) dr
2

eC2n(d log2β(n))
1+r

,

where we used c1
nL+ℓ0

≤ σ2 from hypothesis Hn0(L, ℓ0) and one more time we define C1

as a universal constant.
ii) Using that x 7→ log x is increasing and the part i), we have that:

J0 ≤ log (∥h0∥∞) ≲uc n(d log
2β(n))1+r + rd log (d/n) .
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Proof of Proposition 3.8 . i). The proof relies on an argument set up with a "fixed" sample
(X1, . . . , Xn). Our starting point is Proposition 1.4 where we proved that Uνn

satisfies
a Hr

KL(cn
1+r, nL+ ℓ0)-condition. Then, we apply Proposition 5.2 with θ∗n = argminUνn

and deduce that:

∥θ − θ∗n∥22 ≤ 2

(1 + r)cn1+r
U1+r
νn

(θ).

We use the fact that for any distribution µ and any a ∈ Rd, we have V arµ(θ) ≤ Eµ(∥θ−a∥22).
Taking µ = µn and a = θ∗n, then:

V arµn
(θ) ≤ Eµn

(
∥θ − θ∗n∥22

)
≤ 2

(1 + r)cn1+r
Eµn

[U1+r
νn

(θ)].

We then use the ergodic behaviour of (θt)t≥0 and observe that there exists a constant C
independent from n and d such that:

V arµn
(θ) ≤ 2

(1 + r)cn1+r
lim sup

t≥0
Ent

[U1+r
νn

(θt)] ≤ C
(
d log2β(n)

)(1+r)2

,

where the last inequality comes from Proposition 5.10.
We now use the Bobkov bound on the Poincaré constant for a log-concave distribution,

see Theorem 1.2 of [6], and deduce that a universal constant K exists such that:

CPI(µn) ≤ 4K2V arµn
(θ).

Using the upper bound of the variance, we deduce that a universal κ > 0 exists such
that:

CPI(µn) ≤ κ
(
d log2β(n)

)(1+r)2

.

ii). For the second point, we consider a situation on average over the samples and the
result uses the concentration of the posterior distribution around its mean. We know
from Theorem 3 of [29] that a constant c > 0 exists such that:

E(X1,...,Xn)∼Pθ0
[V arµn

(θ)] ≤ cϵn,d,

with ϵn,d =
(

Ld logn
n

)α−1

. The result follows using the Jensen inequality and the Bobkov

bound.

Proof of Proposition 3.9 . We proved in Proposition 2.2 that h0 is bounded and

∥h0∥∞ ≤
(
C1d

n

) dr
2

eC2n(d log2β(n))
1+r

,

where C1 and C2 are two positive constants independent of n and d. In addition, by
definition, for any measurable function h0:

ht(θ) = Pth0(θ) = E[h0(θt)|θ0 = θ], t > 0,

where Pt is a Markov Feller semi-group. If h0 is bounded, then inf h0 ≤ ht(θ) ≤ suph0,
for any θ ∈ Rd and any t > 0. In addition,

Osc
(√

ht

)
≤ Osc

(√
h0

)
, t > 0.

We get the statement taking into account that Osc
(√
h0
)
≤
√

∥h0∥∞.
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5.4 Regularity of Jt

Let’s start by proving the following result that will be used several times.

Proposition 5.5. Let Gt be the diffusion operator under the average effect of Xt, defined
in Equation (2.3). If G⋆

t is the adjoint operator of Gt in L2(Rd), then for any t > 0:

∂t{nt(θ)} = G⋆
t nt(θ). (5.3)

Proof. Let’s prove (5.3) in the weak sense. Consider g ∈ C2(Rd) and define g̃(θ, x) = g(θ),
for any x ∈ X . We deduce that:∫

Rd

g(θ)∂t{nt(θ)}dθ =
∫
Rd

g(θ)∂t

{
n∑

i=1

mt(θ,Xi)

}
dθ

=

∫
Rd

n∑
i=1

g(θ)∂t{mt(θ,Xi)}dθ

=

∫
Rd

n∑
i=1

g̃(θ,Xi)∂t{mt(θ,Xi)}dθ

=

∫
Rd

n∑
i=1

Lg̃(θ,Xi) mt(θ,Xi)dθ,

where we used the definition of nt in the first step and Kolmogorov forward Equation
(2.2) in the last one. Since g̃ does not depend on x, we observe that L2g̃(θ,Xi) = 0 and
we only need to compute the remaining term L1g̃(θ,Xi):∫

Rd

g(θ)∂t{nt(θ)}dθ =
∫
Rd

n∑
i=1

L1g̃(θ,Xi) mt(θ,Xi)dθ

=

∫
Rd

n∑
i=1

[−⟨∇θg(θ),∇θUXi
(θ)⟩+∆θg(θ)]mt(θ,Xi)dθ

= −
∫
Rd

n∑
i=1

⟨∇θg(θ),∇θUXi(θ)⟩mt(Xi|θ)dnt(θ) +
∫
Rd

∆θg(θ)dnt(θ)

=

∫
Rd

Gtg(θ)dnt(θ),

where we used the fact that mt(θ,Xi) = mt(Xi|θ)nt(θ). Using one more time Remark
3.19 of [39], we could verify that the first and second derivatives of nt with respect to θ
are bounded, therefore, nt is differentiable in time and Equation (5.3) is satisfied in the
strong sense.

Now let’s focus on proving that Jt is finite. Using the ellipticity of the semi-group
generated by Gt, we can use the result of [36] and have that for any t > 0, nt ∈ C∞(Rd)

and the irreducibility yields ∀t ≥ 0, nt > 0. In Proposition 3.9 we will prove that
h0 = n0(θ)/µn(θ) is bounded and a standard consequence is that:∥∥∥∥ nt(θ)µn(θ)

∥∥∥∥
∞

= ∥ht∥∞ ≤ ∥h0∥∞.

Therefore Jt <∞, for any t > 0.

In the following proposition it is shown that Jt is differentiable and that it is possible
to exchange derivative and the integral sign.
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Proposition 5.6. Assume Hπ0(ℓ0), Hmin, Hn0(L, ℓ0) and that each θ 7→ − log pθ(Xi)

satisfies Hr
KL(c, L). Then:

∂t{Jt} =

∫
Rd

(
1 + log

(
nt(θ)

µn(θ)

))
∂t{nt(θ)}dθ =

∫
Rd

Gt log

(
nt(θ)

µn(θ)

)
dnt(θ).

Proof. We need to verify that the function of t 7→ log
(

nt(θ)
µn(θ)

)
nt(θ) is differentiable, which

is an immediate consequence of the fact that t 7→ mt(θ, x) is differentiable for any
(θ, x) ∈ Rd ×X . Then so are t 7→ nt(θ) and t 7→ log(nt(θ)/µn(θ))nt(θ).

The second part of the proof consists of finding an integrable function g such that∣∣∣∂t {log ( nt(θ)
µn(θ)

)
nt(θ)

}∣∣∣ ≤ g(θ) for any t > 0.

For any θ ∈ Rd and any t > 0, we observe that:∣∣∣∣∂t{log( nt(θ)µn(θ)

)
nt(θ)

}∣∣∣∣ = ∣∣∣∣(1 + log

(
nt(θ)

µn(θ)

))
∂t{nt(θ)}

∣∣∣∣
≤ |1 + log(∥h0∥∞)||∂t{nt(θ)}|.

We then have to focus on ∂t{nt(θ)}. Let us denote by p0,t(ϑ, ·) the density function of
θt|θ0 = ϑ, then the density of θt could be rewritten as:

nt(θ) =

∫
Rd

n0(ϑ)p0,t(ϑ, θ)dϑ

where n0 is the density function of θ0 and we assumed in hypothesis Hn0(L, ℓ0) that n0 is
a Gaussian distribution. We recall that p0,t(ϑ, ·) satisfies the Fokker Planck equation:

∂t{p0,t(ϑ, θ)} = G⋆
t p0,t(ϑ, θ),

where G⋆
t is the adjoint operator of Gt in L2(Rd). Using the Remark 3.19 of [39], for any

multi-index α ∈ Nd, the functions (t, θ) 7→ ∂|α|

∂θα p0,t(ϑ, θ) are continuous and bounded by
a polynomial of ∥ϑ∥2 for any t ∈ [T−1, T ] and T > 1. Therefore, the previous equation
is satisfied in the strong sense when t ∈ [T−1, T ]. The following steps are true for
t ∈ [T−1, T ].

Taking into account that we can exchange derivative with the integral sign to find
∂t{nt(θ)} since the spatial derivatives of p0,t are bounded by a polynomial function and
n0 is a Gaussian density, we then observe that ∂t{nt(θ)} could be written as follows:

∂t{nt(θ)} =

∫
Rd

n0(ϑ)∂t {p0,t(ϑ, θ)} dϑ =

∫
Rd

Gtn0(ϑ)p0,t(ϑ, θ)dϑ.

Using the definition of Gt in Equation (2.3), we deduce that for any ϑ ∈ Rd:

Gtn0(ϑ) =
1

σ2

(
n∑

i=1

⟨ϑ,∇ϑUXi
(ϑ)⟩mt(Xi|ϑ) +

∥ϑ∥22
σ2

− d

)
n0(ϑ),

where θ0 ∼ N (0d, σ
2Id) and mt(·|ϑ) is the conditional distribution of Xt when θ0 = ϑ.

Note that mt(·|ϑ) is the probability distribution of a discrete random variable, then
mt(Xi|ϑ) ≤ 1, for any i.

The Lipschitz regularity of ∇θUXi(θ) guarantees that there exists a positive
polynomial q2 of degree 2 such that:

|Gtn0(ϑ)| ≤ q2(ϑ)n0(ϑ).
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The bound above and the Cauchy-Schwarz inequality lead to:

|∂t{nt(θ)}| ≤
∫
Rd

q2(ϑ)n0(ϑ)p0,t(ϑ, θ)dϑ

≤
(∫

Rd

q22(ϑ)n0(ϑ)p0,t(ϑ, θ)dϑ

) 1
2
(∫

Rd

n0(ϑ)p0,t(ϑ, θ)dϑ

) 1
2

≤
√
ATnt(θ),

where we used that the first integral is bounded by a constant AT since p0,t(ϑ, θ) is
bounded by a polynomial of ∥ϑ∥2 and n0 is the density function of a Gaussian distribution.

We have proven that for any t ∈ [T−1, T ]:∣∣∣∣∂t{log( nt(θ)µn(θ)

)
nt(θ)

}∣∣∣∣ ≤ (1 + log(∥h0∥∞))
√
ATnt(θ)

≤ (1 + log(∥h0∥∞))
√
AT ∥h0∥∞

√
µn(θ) = g(θ).

The integrability of the function θ 7→
√
µn(θ) is a consequence of Propositions 1.4 and

5.2, from which we deduce that Uνn satisfies a Hr
KL(cn

1+r, nL+ ℓ0) condition, then for
all θ ∈ Rd: √

µn(θ) ≤ Z−1/2
n exp

{
−ar∥θ − argminUνn∥2/(1+r)

}
,

where ar depends of r and n. The inequality above guarantees that
∫
Rd g(θ)dθ <∞.

After proving the exchange of derivative and integral sign when t ∈ [T−1, T ], for any
T > 1, we can conclude it for any t > 0. The second part of the statement is immediate
from Proposition 5.5.

5.5 Evolution of the weighted L2 distance It

The quantity It defined in (2.9) measures how close to νn the conditional distribution
of Xt|θt is. Then, to study It, we first remark that it may be rewritten in a simpler way.

It =
1

n

∫
Rd

n∑
i=1

(
mt(Xi|θ)
νn(Xi)

− 1

)2

dnt(θ)

=

∫
Rd

n∑
i=1

(
m2

t (Xi|θ)
νn(Xi)

− 2mt(Xi|θ) + νn(Xi)

)
dnt(θ)

=

∫
Rd

(
n∑

i=1

m2
t (Xi|θ)
νn(Xi)

− 1

)
dnt(θ)

=

∫
Rd

n∑
i=1

m2
t (Xi|θ)
νn(Xi)

dnt(θ)− 1.

Using that mt(Xi|θ)nt(θ) = mt(θ,Xi) and νn(Xi) =
1
n for i = 1, 2, . . . , n, we obtain that:

It = n

∫
Rd

n∑
i=1

m2
t (θ,Xi)

nt(θ)
dθ − 1. (5.4)

The next proposition then assesses how fast It decreases to 0 as t −→ +∞.

Proposition 5.7. Assume Hπ0(ℓ0) and for each Xi, θ → − log pθ(Xi) satisfies Hr
KL(c, L).

Then, for any initial distribution n0 and t ≥ 0:

It ≤ I0e
−2αnt ≤ (n− 1)e−2αnt.
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Proof. Our starting point is Equation (5.4). The existence of ∂t{It} and the exchange of
derivative and integral sign could be justified as in Section 5.4. We then compute its
derivative with respect to t as follows:

∂t{It} = 2n

∫
Rd

n∑
i=1

mt(θ,Xi)

nt(θ)
∂t{mt(θ,Xi)}dθ − n

∫
Rd

n∑
i=1

m2
t (θ,Xi)

n2t (θ)
∂t{nt(θ)}dθ

= 2n

∫
Rd

n∑
i=1

mt(Xi|θ)∂t{mt(θ,Xi)}dθ − n

∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t{nt(θ)}dθ.

Using the Kolmogorov forward equation in the first line and L = L1 + L2 in the second
one where L1 and L2 are defined in Equation (2.1), we have that:

∂t{It} = 2n

∫
Rd

n∑
i=1

Lmt(Xi|θ) mt(θ,Xi)dθ − n

∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t{nt(θ)}dθ

= 2n

∫
Rd

n∑
i=1

L1mt(Xi|θ) mt(θ,Xi)dθ︸ ︷︷ ︸
I3,t

+2n

∫
Rd

n∑
i=1

L2mt(Xi|θ) mt(θ,Xi)dθ︸ ︷︷ ︸
I1,t

−n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t{nt(θ)}dθ︸ ︷︷ ︸
I2,t

. (5.5)

Then, ∂t{It} may be splitted into three terms that are studied separately.

• Study of I1,t. We observe that for any i and θ ∈ Rd:

L2mt(Xi|θ) =
αn

n

n∑
j=1

[mt(Xj |θ)−mt(Xi|θ)] =
αn

n
− αnmt(Xi|θ). (5.6)

We then use this last equation in the definition of I1,t and obtain that:

I1,t = 2αn

∫
Rd

n∑
i=1

mt(θ,Xi)dθ − 2αnn

∫
Rd

n∑
i=1

mt(Xi|θ)mt(θ,Xi)dθ

= 2αn − 2αnn

∫
Rd

n∑
i=1

m2
t (θ,Xi)

nt(θ)
dθ

= −2αnIt. (5.7)

• Study of I2,t. Using the definition of nt, we get that:

I2,t = −n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t{nt(θ)}dθ

= −n
∫
Rd

n∑
i=1

m2
t (Xi|θ)∂t


n∑

j=1

mt(θ,Xj)

dθ

= −n
∫
Rd

n∑
j=1

n∑
i=1

m2
t (Xi|θ)∂t{mt(θ,Xj)}dθ

= −n
∫
Rd

n∑
j=1

(
n∑

i=1

Lm2
t (Xi|θ)

)
mt(θ,Xj)dθ

= −n
∫
Rd

n∑
i=1

Lm2
t (Xi|θ)dnt(θ).

EJP 0 (2023), paper 0.
Page 30/39

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic Langevin Dynamics and weak convexity

where we used the Kolmogorov forward equation in the fourth line and again the
definition of nt in the last line. Again, the decomposition L = L1 + L2 yields:

I2,t = −n
∫
Rd

n∑
i=1

L1m
2
t (Xi|θ)dnt(θ)− n

∫
Rd

n∑
i=1

L2m
2
t (Xi|θ)dnt(θ).

We repeat some similar computations as those developed in Equation (5.6) to study
the action of the jump component induced by 2 on m2

t (Xi|θ). Then, we deduce that:

L2m
2
t (Xi|θ) =

αn

n

n∑
k=1

m2
t (Xk|θ)− αnm

2
t (Xi|θ).

We use this last equation to show that:

I2,t =− n

∫
Rd

n∑
i=1

L1m
2
t (Xi|θ)dnt(θ)− αn

∫
Rd

n∑
i=1

n∑
k=1

m2
t (Xk|θ)dnt(θ)

+ αnn

∫
Rd

n∑
i=1

m2
t (Xi|θ)dnt(θ)

=− n

∫
Rd

n∑
i=1

L1m
2
t (Xi|θ)dnt(θ)− αnn

∫
Rd

n∑
k=1

m2
t (Xk|θ)dnt(θ)

+ αnn

∫
Rd

n∑
i=1

m2
t (Xi|θ)dnt(θ)

=− n

∫
Rd

n∑
i=1

L1m
2
t (Xi|θ)dnt(θ).

• Study of I2,t + I3,t. We observe that this sum involves only 1, which was defined in
Equation (2.1) . We first compute:

L1mt(Xi|θ) = −⟨∇θUXi
(θ),∇θmt(Xi|θ)⟩+∆θmt(Xi|θ),

Then:

I3,t = 2n

∫
Rd

n∑
i=1

L1mt(Xi|θ) mt(θ,Xi)dθ

= 2n

∫
Rd

n∑
i=1

[−⟨∇θUXi
(θ),∇θmt(Xi|θ)⟩+∆θmt(Xi|θ)]mt(θ,Xi)dθ.

Similarly, we deduce that:

L1m
2
t (Xi|θ) = − ⟨∇θUXi(θ),∇θm

2
t (Xi|θ), ⟩+∆θm

2
t (Xi|θ)

=2mt(Xi|θ) (−⟨∇θUXi(θ),∇θmt(Xi|θ)⟩+∆θmt(Xi|θ))
+ 2∥∇θmt(Xi|θ)∥22.

Using that mt(Xi|θ)nt(θ) = mt(θ,Xi), we get that:

I2,t =− n

∫
Rd

n∑
i=1

L1m
2
t (Xi|θ)dnt(θ)

=− 2n

∫
Rd

n∑
i=1

[−⟨∇θUXi(θ),∇θmt(Xi|θ)⟩+∆θmt(Xi|θ)]mt(θ,Xi)dθ

− 2n

∫
Rd

n∑
i=1

∥∇θmt(Xi|θ)∥22dnt(θ).
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It is immediate that:

I2,t + I3,t = −2n

∫
Rd

n∑
i=1

∥∇θmt(Xi|θ)∥22dnt(θ) ≤ 0.

Gathering this last inequality with (5.7) into Equation (5.5) yields:

∂t{It} ≤ −2αnIt.

We conclude with a direct application of the Gronwall lemma while observing that
I0 ≤ n− 1.

5.6 From Poincaré inequality to WLSI

We will prove that if a measure m verifies a Poincaré inequality then it verifies a WLSI.
Although this result is part of Proposition 3.1 in [9], we rewrite its proof to explicitly find
a function φ. We recall the Remark 1.3 in [9]: by Rothaus lemma, for any function f :

Entm(f2) ≤ Entm(f̃2) + 2V arm(f),

where f̃ = f − m[f ]. Moreover, Popoviciu’s inequality establishes that V arm(f) ≤
1
4Osc

2(f). We also notice that Osc(f) = 1 implies sup f̃2 ≤ 1 and then Entm(f̃2) ≤ 1
e .

Hence, by homogeneity:

Entm(f2) ≤
(
1

e
+

1

2

)
Osc2(f).

For s ≥ 1
e + 1

2 , we could take φ(s) as a constant, as was mentioned in [9].
In order to recall a measure - capacity inequality and some results obtained in [4],

we first define the capacity of a measurable set.

Definition 5.8 (Capacity). Let A and Ω be two measurable sets of Rd such that A ⊂ Ω,
the capacity Capm(A,Ω) is defined as

Capm(A,Ω) = inf
{
Em(f),1A ≤ f ≤ 1Ω

}
,

where f is a Lipschitz function on Rd. If m(A) ≤ 1
2 , then we denote

Capm(A) = inf

{
Capm(A,Ω),A ⊂ Ω,m(Ω) ≤ 1

2

}
.

The measure - capacity inequalities are a class of inequalities that, as their name
indicates, involve the capacity of measurable sets. They are commonly used to describe
some functional inequalities as Poincaré and LSI, for a more in-depth study we refer to
[4]. So, in order to prove Proposition 3.6 we state the following lemma which was taken
from [9] and it shows a sufficient condition to verify a WLSI.

Lemma 5.9. Let ϕ : (0,+∞) → R+ be a non-increasing function such that for every
measurable subset A with 0 < m(A) ≤ 1/2, one has

m(A) log
(
1 + e2

m(A)

)
− s

ϕ(s)
≤ Capm(A), ∀s > 0. (5.8)

Then the measure m satisfies a WLSI with the function φ(s) = 16ϕ(3s/14) for s > 0.

From Lemma 5.9, the proof of Proposition 3.6 is reduced to finding a function ϕ(s)
that satisfies inequality 5.8.
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Proof of Proposition 3.6. Let A be a measurable subset with 0 < m(A) ≤ 1/2. From
Proposition 8.3.1 of [4], if a probability measure satisfies a Poincaré inequality with
constant CPI(m), then:

m(A)CPI(m)

2
≤ Capm(A).

Using the inequality above, a positive function ϕ verifies (5.8) if, for any s > 0,

2CPI(m)

[
log

(
1 +

e2

m(A)

)
− s

m(A)

]
≤ ϕ(s).

Let us fix s > 0 small and define the function gs(x) = log
(
1 + e2

x

)
− s

x , for 0 < x ≤ 1
2 .

Using that gs reaches its maximum at

xmax =

{
se2

e2−s , 0 < s ≤ e2

2e2+1
1
2 , s > e2

2e2+1

,

then gs(x) ≤ gs(xmax) where

gs(xmax) =

{
log
(
1
s

)
+ s

e2 + 1, 0 < s ≤ e2

2e2+1

log(1 + 2e2)− 2s, s > e2

2e2+1

.

We define ϕ(s) = 2CPI(m)gs(xmax) if s > e−1, while we choose

ϕ(s) = aCPI(m) log (1/s) ≥ 2CPI(m)gs(xmax),

for any 0 < s ≤ e−1, where a = 2 + e−3.

5.7 Moments upper bounds

Proposition 5.10. Assume Hn0(L, ℓ0), Hπ0(ℓ0), Hmin and that for each Xi, θ 7→
− log pθ(Xi) satisfies Hr

KL(c, L). Then:

i) Three positive constants C1, C2 and C3, independent from n and d, exist such that
for any t > 0:

Ent

[
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

]
≤ C1

(
d log2β(n)

)r
eC2nd log2β(n) + Cd

3e
(1+r)nc

1
1+r

16 .

ii) For any t > 0 and for any α ≥ 1:

Ent [U
α
νn
(θt)] ≲uc n

α
(
d log2β(n)

)α(1+r)

.

Proof of i). The proof is based on a Lyapunov argument. Consider the twice
differentiable function:

f(θ) = exp
(a
2
(∥θ∥22 + 1)ρ

)
, θ ∈ Rd,

where 0 < ρ < 1 and a > 0 are two constant to fix later on. For any θ ∈ Rd, the gradient
of f is:

∇f(θ) = aρ(∥θ∥22 + 1)ρ−1f(θ)θ,

and the Laplacian of f satisfies the following inequality:

∆f(θ) = aρ(∥θ∥22 + 1)ρ−2f(θ)
[
aρ(∥θ∥22 + 1)ρ∥θ∥22 + d(∥θ∥22 + 1) + 2(ρ− 1)∥θ∥22

]
≤ aρ(∥θ∥22 + 1)ρ−1f(θ)

[
aρ(∥θ∥22 + 1)ρ + d

]
,
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where we used that 0 < ρ < 1 and ∥θ∥22 ≤ ∥θ∥22 + 1.
We then deduce that for any t > 0 and θ ∈ Rd:

Gtf(θ)

f(θ)
=

1

f(θ)

[
−

n∑
i=1

⟨∇UXi ,∇f(θ)⟩mt(Xi|θ) + ∆f(θ)

]

≤ aρ(∥θ∥22 + 1)ρ−1
[
−

n∑
i=1

⟨θ,∇θUXi(θ)⟩mt(Xi|θ) + aρ(∥θ∥22 + 1)ρ + d
]

≤ aρ(∥θ∥22 + 1)ρ−1

[
−

n∑
i=1

(UXi
(θ)− UXi

(0))mt(Xi|θ) + aρ(∥θ∥22 + 1)ρ + d

]
, (5.9)

where we used the convexity of Ux for any position x.

First considerations: For any i, we denote by θi = argminUXi and from hypothesis
Hmin, there exist two positive constants K1 and K2 independent on n and d such that:

max
i

∥θi∥22 ≤ K1d log
2β(n) and max

i
UXi(θi) ≤ K2d log

2β(n).

So, in order to lower bound the term
∑n

i=1 (UXi(θ)− UXi(0))mt(Xi|θ), let us establish
the bounds of UXi(θ) and UXi(0) separately.
• In Proposition 1.4 we proved that each non-negative function UXi satisfies a
Hr

KL(cn
1+r, nL + ℓ0)-condition, then we are able to apply Proposition 5.2 and obtain

that for any UXi :

UXi
(θ) ≥ n

[
(1 + r)c

2

] 1
1+r

∥θ − θi∥
2

1+r

2 .

Since 2
1+r > 1, the Jensen inequality yields (u + v)

2
1+r ≤ 2

1−r
1+r

[
u

2
1+r + v

2
1+r

]
, for all

(u, v) ∈ R2
+ and we deduce that for any θ ∈ Rd:

∥θ − θi∥
2

1+r

2 ≥ 2
r−1
1+r ∥θ∥

2
1+r

2 − ∥θi∥
2

1+r

2 ≥ 2
r−1
1+r ∥θ∥

2
1+r

2 −
(
K1d log

2β(n)
) 1

1+r

.

Then we use this inequality to obtain a lower bound of UXi :

UXi
(θ) ≥ 2n

[
(1 + r)c

8

] 1
1+r

∥θ∥
2

1+r

2 − n

[
(1 + r)c

2

] 1
1+r

(K1d log
2β(n))

1
1+r

≥ nc
1

1+r

4
∥θ∥

2
1+r

2 − nc
1

1+r (K1d log
2β(n))

1
1+r ,

where we used some uniform upper bounds when r ∈ [0, 1).
• An upper bound of maxi UXi

(0) comes from Proposition 1.4 and 5.2 as follows:

UXi
(0) ≤ UXi

(θi) +
nL+ ℓ0

2
∥θi∥22 ≤

(
K2 +

K1(nL+ ℓ0)

2

)
d log2β(n) ≤ Knd log2β(n),

where K is a constant independent of n and d and could proportionally change from line
to line.

Using the previous bounds and the fact that
∑n

i=1mt(Xi|θ) = 1, it yields:

n∑
i=1

(UXi
(θ)− UXi

(0))mt(Xi|θ) ≥
nc

1
1+r

4
∥θ∥

2
1+r

2 −Knd log2β(n).

We omit the term nc
1

1+r (K1d log
2β(n))

1
1+r since it could be bounded by Knd log2β(n) if we

proportionally change the value of K. Returning to inequality (5.9), we now get:

Gtf(θ)

f(θ)
≤ aρ(∥θ∥22 + 1)ρ−1

[
−nc

1
1+r

4
∥θ∥

2
1+r

2 +Knd log2β(n) + aρ(∥θ∥22 + 1)ρ

]
.
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Values of a and ρ: We choose ρ = 1
1+r and deduce that:

Gtf(θ)

f(θ)
≤ a

1 + r
(∥θ∥22 + 1)−

r
1+r

[
−nc

1
1+r

4
∥θ∥

2
1+r

2 +Knd log2β(n) + a

1 + r
(∥θ∥22 + 1)

1
1+r

]
,

using the inequality (∥θ∥22 + 1)
1

1+r ≤ ∥θ∥
2

1+r

2 + 1, then:

Gtf(θ)

f(θ)
≤ a

1 + r
(∥θ∥22 + 1)−

r
1+r

[
−

(
nc

1
1+r

4
− a

1 + r

)
∥θ∥

2
1+r

2 +Knd log2β(n)

]
.

Let us fix a = n(1+r)c
1

1+r

8 , then for any t > 0 and θ ∈ Rd,

Gtf(θ)

f(θ)
≤ −n

2c
2

1+r

64
(∥θ∥22 + 1)−

r
1+r

[
∥θ∥

2
1+r

2 −Kd log2β(n)
]
. (5.10)

Lyapunov contraction: We study two complementary situations and below, we denote
by Kn,d the radius of the key compact set involved by the previous Lyapunov contraction:

K
2

1+r

n,d = Cd log2β(n).

• When ∥θ∥2 is large enough (∥θ∥2 ≥ Kn,d), we use the fact that for any two fixed

constants k ≥ 0 and 0 ≤ r < 1, the function x 7→ −(x + 1)−
r

1+r (x
1

1+r − k), for x ≥ k1+r,
is decreasing and we observe that a large enough C > 0 independent of n and d exists
such that:

∥θ∥
2

1+r

2 ≥ Cd log2β(n) =⇒ Gtf(θ)

f(θ)
≤ −n

2c
2

1+r

64

(C −K)

2Cr
(d log2β(n))1−r

=⇒ Gtf(θ)

f(θ)
≤ −n

2c
2

1+r

128
(d log2β(n))1−r = −an,d. (5.11)

• When ∥θ∥2 is upper bounded (∥θ∥2 ≤ Kn,d), we use the upper bound stated in Equation
(5.10) and obtain that a universal C1 (whose value may change from line to line) exists
such that :

∥θ∥
2

1+r

2 ≤ Cd log2β(n) =⇒ Gtf(θ) ≤ C1n
2d log2β(n)f(θ)

=⇒ Gtf(θ) ≤ C1n
2d log2β(n) exp

(
Cc

1
1+r nd log2β(n)

)
=⇒ Gtf(θ) ≤ bn,de

δn,d , (5.12)

where we denoted bn,d = C1n
2d log2β(n) and δn,d = Cc

1
1+r nd log2β(n).

We then use Equations (5.11) and (5.12) as follows. We define the function ψn,d as
ψn,d(t) = Ent [f(θt)]. The existence of ∂t{ψn,d(t)} and the following equality are justified
as in Section 5.4:

∂t {ψn,d(t)} = Ent
[Gtf(θt)] = Ent

[
Gtf(θt)

(
1∥θt∥2≥Kn,d

+ 1∥θt∥2≤Kn,d

)]
≤ Ent

[
−an,df(θt)1∥θt∥2≥Kn,d

+ bn,de
δn,d1∥θt∥2≤Kn,d

]
≤ −an,dψn,d(t) + an,d sup

∥θ∥2≤Kn,d

f(θ) + bn,de
δn,d

≤ −an,dψn,d(t) + (an,d + bn,d)e
δn,d .
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We apply the Gronwall Lemma and obtain that:

∀t > 0, ψn,d(t) ≤
(
1 +

bn,d
an,d

)
eδn,d + ψn,d(0)e

−an,dt. (5.13)

From the Hn0(L, ℓ0) hypothesis, n0 is a Gaussian distribution, the we find an upper
bound of ψn,d(0) = En0 [f(θ0)] =

∫
Rd f(θ)dn0(θ) as follows:

ψn,d(0) =
(
2πσ2

)− d
2

∫
Rd

e
a
2 (∥θ∥

2
2+1)

1
1+r − ∥θ∥22

2σ2 dθ ≤
(
2πσ2

)− d
2 e

a
2

∫
Rd

e−
∥θ∥22

2 ( 1
σ2 −a)dθ,

if σ2 < 1
a = 8

n(1+r)c
1

1+r
then the integral above is finite. From Remark 1.2, we verify that

c2 < 1 ≤ 8L

(1+r)c
1

1+r
, which guarantees that σ2 < 1

a and:

ψn,d(0) ≤
(
1− aσ2

)− d
2 e

a
2 ≤ Cd

3e
(1+r)nc

1
1+r

16 ,

where C3 is a constant independent from n and d.
Finally, using the value of an,d and bn,d in (5.13), we deduce that for any t > 0,

Ent

[
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

]
≤ C1

(
d log2β(n)

)r
eC2nd log2β(n) + Cd

3e
(1+r)nc

1
1+r

16 .

where C2 is another universal constant, which concludes the proof.

Proof of ii). We consider α > 1 and below, C > 0 refers to a constant independent from
n and d, whose value may change from line to line. Our starting point is the upper bound
of the exponential moments obtained in i). Proposition 1.4 shows that Uνn satisfies
Hr

KL(cn
1+r, nL+ ℓ0), then thanks to Proposition 5.2:

Ent
[Uα

νn
(θt)] ≤ Ent

[(
Uνn

(θ∗n) + Cn∥θt − θ∗n∥22
)α]

≤ Ent

[(
Uνn

(θ∗n) + Cn∥θ∗n∥22 + Cn∥θt∥22
)α]

,

where θ∗n = argminUνn
.

By using Proposition 5.3 and the inequality derived from the Jensen inequality
(a+ b)α ≤ cα(a

α + bα) for (a, b) ∈ R2
+ and α ≥ 1, we obtain that:

Ent [U
α
νn
(θt)] ≤ CEnt

[(
nd log2β(n) + n

(
d log2β(n)

)1+r

+ n∥θt∥22
)α]

≤ Cnα
[(
d log2β(n)

)α(1+r)

+ Ent

(
∥θt∥2α2

)]
. (5.14)

Let us focus on the moment of order 2α. It could be rewritten as:

Ent

(
∥θt∥2α2

)
= k−α(1+r)Ent

(
logα(1+r)

(
ek∥θt∥

2
1+r
2

))
≤ k−α(1+r)Ent

(
logα(1+r)

(
eα(1+r)−1+k∥θt∥

2
1+r
2

))
.

The Jensen inequality and the concavity of x 7→ logp(x) on [ep−1,+∞[ when p ≥ 1 yield:

Ent

(
∥θt∥2α2

)
≤ k−α(1+r) logα(1+r)

(
Ent

(
eα(1+r)−1+k∥θt∥

2
1+r
2

))
≤ k−α(1+r)

[
α(1 + r)− 1 + log

(
Ent

(
ek∥θt∥

2
1+r
2

))]α(1+r)

≤ k−α(1+r)

[
α(1 + r)− 1 + log

(
Ent

(
ek(∥θt∥

2
2+1)

1
1+r

))]α(1+r)

,
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where we used in the last inequality that ∥θ∥22 ≤ ∥θ∥22 + 1.

We then apply i) in Proposition 5.10, we choose k = (1+r)nc
1

1+r

16 and obtain that:

Ent

(
∥θt∥2α2

)
≤ C

nα(1+r)

[
1 + log

(
Ent

(
e

(1+r)nc
1

1+r

16 (∥θt∥2
2+1)

1
1+r

))]α(1+r)

≤ C

nα(1+r)

[
1 + log

[
C1

(
d log2β(n)

)r
eC2nd log2β(n) + Cd

3e
(1+r)nc

1
1+r

16

]]α(1+r)

≤ C
(
d log2β(n)

)α(1+r)

, (5.15)

where we used in the previous lines simple algebra and log(a+b) ≤ log(2)+log(a)+log(b)

when a ≥ 1 and b ≥ 1. Replacing (5.15) in (5.14), we conclude that:

Ent [U
α
νn
(θt)] ≤ Cnα

(
d log2β(n)

)α(1+r)

.
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