|
DASSFLOW
Some references
If you use the computational software DassFlow or its original algorithms, please cite :)
E.g. as follows:
@misc{dassflow-1d,
title = {DassFlow (Data Assimilation for Free Surface Flows) computational software},
author = {K. Larnier, J. Monnier et al.},
note = {INSA, Math. Institute of Toulouse (IMT), INRAe, ICUBE, CS Group, CNES},
url = {https://www.math.univ-toulouse.fr/DassFlow},
year={2022},
}
@misc{dassflow-2d,
title={DassFlow (Data Assimilation for Free Surface Flows) computational software},
author={L. Pujol, L. Villenave, P.-A. Garambois, J. Monnier et al.},
note = {Math. Institute of Toulouse (IMT), INSA, INRAe, ICUBE, CNRS},
url = {https://www.math.univ-toulouse.fr/DassFlow},
year={2022},
}
The algorithms (e.g. the variational formulations, dedicated regularization terms, 1D-2D integrated solvers, assimilation of lagrangian data etc), the equations (shallow flow models which may be originals), the numerical schemes implemented into the various versions of DassFlow are detailed in the articles mentioned below.
References introducing the approaches, methods, algorithms (and not those focusing on new applications, new flows, databases).
- Know-hows on VDA & fundamentals of DassFlow's algorithms: basics of inverse problems, optimal control, gradient-based methods, gradient computations, adjoints (equations, codes), codes assessements, covariances operators, regularizations terms, link with BLUE - Kalman filters etc :
- J. Monnier, "Variationnal Data Assimilation", Open Online Course, INSA - University of Toulouse.
consult the course.
- Discharge estimation from altimetry data: H2iVDI algorithm (based on 1D and 0.5D flow models). River discharge estimations, bathymetry estimations, identifiability maps (1D SW model = Saint-Venant's equations):
- K. Larnier, J. Monnier. "Learning river features from altimetry". Submitted. Consult.
- K. Larnier, J. Monnier, P.-A. Garambois, J. Verley. "Estimation of river discharges from altimetry". Inv. Pb Sc. Eng.(IPSE), 2020.
Consult.
- P. Brisset, J. Monnier, P.-A. Garambois, H. Roux. "On the assimilation of altimetry data in 1D Saint-Venant river models". Adv. Water Ress. (AWR) Vol. 19, 2018.Consult.
See also two synthetic posters (dec. 2018): HiVDI and an application.
- The complete hydraulic 2d/1d -hydrology chain few advanced applications
[-] L. Pujol, P.-A. Garambois, J. Monnier, K. Larnier et al., submitted, 2022.
Consult.
- A few advanced applications (including complex flows analysis)
[-] L. Pujol, P.-A. Garambois, P. Finaud-Guyot, J. Monnier, K. Larnier, R. Mose, S. Biancamaria, H. Yesou, D. Moreira, A. Paris, S. Calmant. "Estimation of Multiple Inflows and Effective Channel by Assimilation of Multi-satellite Hydraulic Signatures: The Ungauged Anabranching Negro River". J. of Hydrology (JoH), 2020.
Consult.
[-] P.-A. Garambois, K. Larnier, J. Monnier, P. Finaud-Guyot, J. Verley, A. Montazem, S. Calmant. "Variational inference of effective channel and ungauged anabranching river discharge from multi-satellite water heights of different spatial sparsity". J. of Hydrology (JoH), 2019.
Consult.
[-] Tuozzolo, S., Lind, G., Overstreet, B., Mangano, J., Fonstad, M., Hagemann, M., Frasson, R., Larnier, K., Garambois, P.-A., Monnier, J., Durand, M. "Estimating river discharge with swath altimetry: A proof of concept using AirSWOT observations". Geophys. Res. Lett. (GRL), 2019.
Consult.
- 2D flows & VDA inversions
- Flood plain & FV schemes (including 2nd order VF schemes, wet-dry front dynamics, variational sensitivities):
J. Monnier, F. Couderc, D. Dartus, K. Larnier, R. Madec, J.-P. Vila. "Inverse computational algorithms for 2D shallow water equations in presence of wet dry fronts. Application to flood plain dynamics". Adv. Water Res. 2016.
Consult.
- Assimilation of a flood plain image into 2D shallow water model:
- R. Hostache, X. Lai, J. Monnier, C. Puech. J. Hydrology (JoH) (2010).Consult.
- X. Lai, J. Monnier J. Hydrology (2009) and M. Honnorat, X. Lai, J. Monnier, FX Le Dimet, Computational Methods for Water Ressources (2006) -Pearl river, unpublished elsewhere-.
Consult.
- Assimilation of Lagrangian surface data:
M. Honnorat, J. Monnier, FX Le Dimet, Comput. Visu. Sc. (2009).
M. Honnorat, J. Monnier, N. Riviere, E. Huot, FX Le Dimet, Comput. Visu. Sc. (2010).
Consult.
- Bed topography estimations beneath glaciers flows (mix of physical-based models and statistical-learning methods):
J. Monnier, J. Zhu. "Estimations of bed topography elevation inland East Antarctica". Submitted.Consult.
J. Monnier, J. Zhu. "Inference of the bottom topography in anisothermal mildly-sheared shallow ice flows". Comput. Meth. Applied Meth. Eng.". CMAME 2019. Consult.
Code version developped in Python.
- Coupling 1D-2D SW models:
J. Marin, J. Monnier, Math. Comput. Simul. (2009), E. Fernandez-Nieto, J. Marin, J. Monnier, Comput. Fluid. (2010).
Consult.
I. Gejadze, J. Monnier, Comp. Meth. Appl. Mech. Engnr. (2007).
- Save memory and tune your gradient accuracy if using algorithmic - automatic differentiation:
N. Martin, J. Monnier, The Cryosphere (2013) and N.Martin's PhD thesis 2013. Consult.
- Inference of rheometry & conditions at bottom in power-law fluid flows (low inertial flows e.g. glacier, lava flows):
N. Martin, J. Monnier, Europ. J. Mech. B/Fluids (2014). Consult.
- Variational sensitivities for Stokes power-law flows and advanced four fields FE schemes:
N. Martin, J. Monnier, SIAM JSC (2013) and N.Martin's PhD thesis 2013. Consult.
Also, you can consult the present "Applications" web page (few references are cited therein) and some authors' webpages.
|