Noncommutative geometry, index theory, groupoids, operator algebras.
B.M. and Victor Nistor, A Topological Index Theorem for manifolds with corners, to appear in Compositio Mathematica Abstract: We define an analytic index and prove a topological index theorem
for a non-compact manifold M_0 with poly-cylindrical ends. We
prove that an elliptic operator P on M_0 has an invertible
perturbation P+R by a lower order operator if and only if its analytic
index vanishes. As an application, we determine the K-theory
groups of groupoid C*-algebras of manifolds with corners.
|
PDF Format | |
B.M. and Victor Nistor, The $K$-groups and the index theory
of certain comparison $C^*$-algebras, Noncommutative Geometry and Global Analysis, Contemporary Mathematics
2011, 213-224 Abstract: We compute the $K$-theory of comparison $C^*$-algebra associated to a
manifold with corners. These comparison algebras are an example of the
abstract pseudodifferential algebras introduced by Connes and
Moscovici \cite{M3}. Our calculation is obtained by showing that
the comparison algebras are a homomorphic image of a groupoid
$C^*$-algebra. We then prove an index theorem with values in the
$K$-theory groups of the comparison algebra.
|
PDF Format | |
J. Aastrup, S. T. Melo, B. M. & E. Schrohe, Boutet de Monvel’s Calculus and Groupoids I, Journal of noncommutative geometry Volume 4, Issue 3, 2010, pp. 313–329 Abstract: Can Boutet de Monvel's algebra on a compact manifold with boundary be obtained as the algebra of pseudodifferential operators on some Lie groupoid G? If it could, the kernel of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra of G. While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal isomorphic to the kernel of the principal symbol homomorphism on Boutet de Monvel's algebra.
|
Preprint available on http://fr.arxiv.org/abs/math.KT/0611336 | |
P. Carrillo-Rouse and B. M., An index theorem for manifolds with
boundary, C. R. Acad. Sci. Paris, Ser. I 347 (2009) Abstract:In Connes (Non Commutative Geometry, 1994, II.5), a proof is given of the Atiyah–Singer index theorem for closed manifolds
by using deformation groupoids and appropriate actions of these on RN. Following these ideas, we prove an index theorem for
manifolds with boundary.
|
PDF Format | |
B.M., Contribution of Noncommutative Geometry to Index Theory on singular manifolds, Geometry and topology of manifolds, 221–237, Banach Center Publ., 76, Polish Acad. Sci., Warsaw, 2007 |
Format PDF 331 KB | |
B.M., Contribution de la Géométrie Non-Commutative à la théorie de l'indice sur les variétés singulières, manuscrit d'Habilitation à diriger des recherches (décembre 2005) | PDF 311 KB | |
Robert Lauter, B.M. and Victor Nistor, Spectral invariance for
certain algebras of pseudodifferential operators, J. de l'Inst. Math. Jussieu 4 (2005), Issue 03, 405-442 Abstract: We construct
algebras of pseudodifferential operators on a continuous family groupoid
G that are closed under holomorphic functional calculus, contain the algebra
of all pseudodifferential operators of order 0 on G as a dense subalgebra,
and reflect the smooth structure of the groupoid G, when G is smooth. As
an application, we get a better understanding on the structure of inverses
of elliptic pseudodifferential operators on classes of non-compact manifolds.
For the construction of these algebras closed under holomorphic functional
calculus, we develop three methods: one using two-sided semi-ideals, one
using commutators, and one based on Schwartz spaces on the groupoid. |
DVI , 64 kB, or PostScript, 166 kB) | |
Robert Lauter, B.M. and Victor Nistor, Invariance spectrale
des algèbres d'opérateurs pseudodifférentiels, C. R. Math.
Acad. Sci. Paris 334 (2002), no. 12, 1095--1099 |
DVI , 31 kB, or PostScript , 118 kB | |
B.M., Groupoids and pseudodifferential calculus on manifolds with
corners, Journal of Functional Analysis 199(2003), 243-286
Abstract: We
associate to any manifold with corners (even with non-embedded hyperfaces)
a (non-Hausdorff) longitudinally smooth Lie groupoid, on which we define
a pseudodifferential calh we define a pseudodifferential calh we define
a pseudodifferential calculus. This calculus generalizes the $b$-calculus
of R. Melrose, defined for manifolds with embedded corners. The groupoid
of a manifold with corners is shown to be unique up to equivalence for manifolds
with corners of same codimension.
Using tools from the theory of $C^*$-algebras of groupoids, we also obtain new proofs for the study of $b$-calculus. |
DVI , 267 kB, or PostScript, 407 kB | |
Robert Lauter, B.M. and Victor Nistor, Pseudodifferential
analysis on continuous family groupoids, Documenta Math. 5 (2000) 625-655
Abstract: We study properties and representations
of the convolution algebra and the algebra of pseudodifferential operators
associated to a continuous family groupoid. We show that the study of representations
of the algebras of pseudodifferential operators of order zero completely
reduces to the study of the representations of the ideal of regularizing
operators. This recovers the usual boundedness theorems for pseudodifferential
operators of order zero. We prove a structure theorem
for the normure theorem for the norm completions of these algebras associated
to groupoids with invariant filtrations. As a consequence, we obtain criteria
for certain pseudodifferential operators on certain non-compact manifolds
to be compact or Fredholm. We end with a discussion of the significance
of these results to the index theory of operators on certain singular spaces.
For example, we give a new approach to the question of the existence of
spectral sections for operators on coverings of manifolds with boundary.
We expect that our results will also play a role in the analysis on more
general singular space
|
DVI , 129 kB, or PostScript , 372 kB | |
B.M. and Pierre-Yves Le Gall, K-theory of the indicial
algebra of a manifold with corners, K-Theory 23 (2001), no. 2, 105--113 Abstract: We compute the K-theory
groups of the C*-algebra of the groupoid of a manifold with corners, in
which the analytic index takes its values.
|
DVI , 49 kB, or PostScript , 244 kB | |
B.M., Groupoids of manifolds with corners and index
theory , dans Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), 147--157, Contemp. Math., 282, Amer. Math. Soc., Providence, RI, 2001.
Abstract: This article is a survey on
the relations between pseudodifferential calculus on manifolds with corners
and groupoids, based on a contribution to the conference ``Groupoids in
Geometry, Analysis and Physics'' held in Boulder, USA in 1999.
|
DVI, 41 kB, or PostScript, 206 kB | |
B.M. : Thèse de doctorat : Groupoïdes and calcul pseudo-différentiel sur les variétés à coins, soutenue le 16 janvier 1998 | dvi.gz , 96 kB, or ps.gz , 589 kB | |
B.M. : Pseudodifferential calculus on manifolds
with corners and groupoids, Proceedings of the AMS : 127 (1999),
no.~10, 2871--2881
Résumé : Nous construisons
un groupoïde différentiable longitudinalement lisse associé
à une variété à coins. Le calcul pseudo-différentiel
sur ce groupo&iifférentiel sur ce groupoïde coïncide
avec le calcul pseudo-différentiel de Melrose (aussi appel&eacutl
de Melrose (aussi appelé $b$-calculus). Nous définissons
également une algèbre de fonctions à décroissance
rapide sur ce groupoïde ; elle contient les noyaux des opérateurs
régularisants du (petit) $b$-calculus.
|
DVI , 50 kB, or PostScript , 146 kB | |
B.M. and François Pierrot : Indice analytique
and Groupoïdes de Lie (C.R. Acad. Sci. Paris, Sér.
I, 325, No. 2, 193-198 (1997)
Résumé : Soit $G$ un groupoïde
de Lie. Le calcul pseudodifférentiel sur $G$ définit l'indice
analytique. Le groupoïde tangent associé à $G$ induit
un morphisme de $K$-théorie dont nous prouvons qu'il coïncide
avec l'indice analytique. Ce dernier peut donc se définir sans recours
au calcul pseudodifférentiel.
|
DVI , 29 kB, or PostScript , 106 kB | |
mon Mémoire de Magistère ( PostScript, 635 kB) | ||
Pendant quelques années, j'ai organisé
un séminaire de Philosophie and Sciences à l'Ecole Normale Supérieure , à
Paris. Un de nos sujets de réflexion a été le problème
du déterminisme. Un peu plus d'information est disponible ... |
||
and si vous aimez la littérature autant que les maths, vous
apprécierez peut-être ces quelques
mots ...
|