Bounded critical Fatou components are Jordan domains, for polynomials, avec Y.Yin, Science China Mathematics accepté en Janvier 2021 Julia sets with a wandering branching point, avec Xavier Buff, Jordi Canela, Indiana University Mathematics Journal, Vol. 69, No. 6 (2020) hal-01972955v1 Moduli space of cubic Newton maps, avec Xiaoguang Wang, Yongcheng Yin. Advances in Mathematics, 322 (2017), pp.1-59 Newton maps as matings of cubic polynomials, avec M. Aspenberg, Proc. Lond. Math Soc. (3)113 (2016), no.1, 77-112. Herman's condition and Siegel disks of bicritical polynomials with A. Chéritat, accepted for publication in Com. Math. Phys (2016) Hyperbolic components of McMullen maps with Weiyuan Qiu, Xiaoguang Wang, Yongcheng Yin, accepted for publication in Annales Scientifiques de l'Ecole Normale Supérieure (2014) Introduction to the volume on ``matings of polynomials'' Ann. Fac. Sci. Toulouse Math. (S5) 21 (2012) On (non) local connectivity of some Julia sets with A. Dezotti, Publication in the proceedings of the conference "Frontiers in Complex Dynamics" (2012) Carrots for dessert. with C. L. Petersen, Ergodic Theory and Dynamical Systems (accepted in 2011) Cubic polynomials with a parabolic fixed point. Ergodic Theory and Dynamical Systems (2010), v.30, Issue 6 : pp1843-1867 Tableaux approach of KSS nest. with W.Qiu, W.Peng, L.Tan, Y.Yin. Conform. Geom. Dyn., 14, (2010), pp. 35 -- 67. Parabolic tools. with C. Petersen, Journ. of Diff. Equat. and Appl., 16 (05-06), (2010), pp. 715 -- 738. The boundary of bounded polynomial Fatou components. with Y.Yin, Comptes rendus Mathematique, Vol. 346, (15-16), (2008). On local connectivity for the Julia set of rational maps : Newton's famous example. Annals of Mathematics Vol. 168, 2008. The Yoccoz Combinatorial Analytic Invariant. with C. L. Petersen, Fields Institute Communications, Vol. 53, 2008. Hyperbolic components of polynomials with a fixed critical point of maximal order. Annales Scientifiques de L'Ecole Normale Supérieure, Vol. 40, 2007. On captures for the family Fa(z)=z^2+a/z^2 ``Dynamics on the Riemann Sphere'', EMS, 2006. A non locally connected example, Conform. Geom. Dyn. Vol. 10, 2006 . Holomorphic motions and puzzles (following M. Shishikura). "The Mandelbrot set, theme and variations", London Math. Soc. L. N. S. n.274, Cambridge University Press, 2000. Topologie locale des méthodes de Newton cubiques : plan paramétrique. C.R.Acad.Sci. Paris, t.328, Série I, no. 2, p.151--154 (1999). Puzzles de Yoccoz pour les applications à allure rationnelle. L'Enseignement Mathématique, tome 45, pp 133-168, (1999). Topologie locale des méthodes de Newton cubiques : plan dynamique. C.R.Acad.Sci. Paris, t.326, Série I, p.1221-1226 (1998). Une introduction aux systèmes dynamiques holomorphes. Le Journal de Maths des élèves (1998). Back |