Scientifc works

  1. F. Boyer, P. Fabrie : Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques et Applications Vol. 52, 405 p., Springer (2006) Published on-line
  2. F. Boyer, P. Fabrie : Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, vol. 183, Springer (2013) Published on-line Erratum and complements
  1. F. Boyer : Nonhomogeneous Cahn-Hilliard fluids, Annales de l'IHP : Analyse non linéaire, Vol. 18 no 2, pp 225-259 (2001) Published on-line
  2. F. Boyer, L. Chupin, P. Fabrie : Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model, European Journal of Mechanics - B Fluids Vol. 23 no 5, pp 759-780 (2004) Published on-line
  3. B. Andreianov, F. Boyer, F. Hubert : Finite-volume schemes for the p-laplacian on cartesian meshes, M2AN, Vol. 38, N°6, pp. 931-959 (2004) Published on-line
  4. B. Andreianov, F. Boyer, F. Hubert : Besov regularity and new error estimates for finite volume approximations of the p-laplacian, Numerische Mathematik, Vol. 100, N°4, pp. 565 - 592 (2005) Published on-line
  5. F. Boyer : Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential and Integral Equations Vol. 18, N°8, pp. 891-934 (2005)
  6. B. Andreianov, F. Boyer, F. Hubert : On the finite volume approximation of regular solutions of the p-laplacian, IMA Journal of Numerical Analysis Vol. 26, N°3, pp. 472-502 (2006) Published on-line
  7. F. Boyer, C. Lapuerta : Study of a three component Cahn-Hilliard flow model, M2AN Vol. 40 no 4, pp. 653--687,(2006) Published on-line
  8. B. Andreianov, F. Boyer, F. Hubert : Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes, Numerical Methods for PDEs Vol. 23, N°1, pp 145--195, (2007) Published on-line
  9. B. Andreianov, F. Boyer, F. Hubert : Discrete Besov framework for finite volume approximation of the p-laplacian on non-uniform cartesian grids, ESAIM Proceedings, Vol. 18, pp. 1--10, (2007) Published on-line
  10. F. Boyer, P. Fabrie : Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations, Discrete and Continuous Dynamical Systems - B, Vol. 7, N°2, pp. 219--250, (2007) Published on-line
  11. F. Boyer, F. Hubert : Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM Journal on Numerical Analysis, Vol. 46, N° 6, pp. 3032--3070, (2008) Published on-line
  12. P. Angot, F. Boyer, F. Hubert : Asymptotic and numerical modelling of flows in fractured porous media, M2AN Vol. 43 no 2, pp. 239-275, (2009) Published on-line
  13. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar : A local adaptive refinement method with multigrid preconditionning illustrated by multiphase flows simulations, ESAIM Proceedings, Vol. 27, pp. 15--53 (2009) Published on-line
  14. F. Boyer, F. Hubert, S. Krell : Non-overlapping Schwarz algorithm for solving 2D m-DDFV schemes, IMA Journal on Numerical Analysis, Vol. 30, no 4, pp. 1062-1100, (2010) Published on-line
  15. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, M. Quintard : Cahn-Hilliard / Navier-Stokes model for the simulation of three-phase flows, Transport in Porous Media, Volume 82, Issue 3, pp. 463--483 (2010) Published on-line
  16. F. Boyer, F. Hubert, J. Le Rousseau : Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Mathématiques Pures et Appliquées, Vol. 93, no 3, pp. 240-273 (2010) Published on-line
  17. F. Boyer, F. Hubert, J. Le Rousseau : Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications, SIAM Journal on Control and Optimization, Vol. 48, No 8, pp.5357-5397 (2010) Published on-line
  18. F. Boyer, S. Minjeaud : Numerical schemes for a three component Cahn-Hilliard model, M2AN Vol. 45, no 4, pp. 697-738 (2011) Published on-line
  19. F. Boyer, F. Hubert, J. Le Rousseau : Uniform null-controllability properties for space/time-discretized parabolic equations, Numerische Mathematik, Vol. 118, no 4, pp. 601-661 (2011) Published on-line
  20. F. Boyer : Analysis of the upwind finite volume method for general initial and boundary value transport problems, IMA Journal on Numerical Analysis, Vol. 32 no 4, pp. 1404-1439 (2012) Published on-line
  21. F. Boyer, J. Le Rousseau : Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Annales de l'IHP - Analyse non linéaire, Vol. 31, Issue 5, pp. 1035–1078, (2014) Preprint HALPublished on-line
  22. F. Boyer, F. Dardalhon, C. Lapuerta, J.C. Latché : Stability of a Crank-Nicolson pressure correction scheme based on staggered discretizations, International Journal for Numerical Methods in Fluids, Vol. 74, Issue 1, pp. 34–58, (2014) Preprint HALPublished on-line
  23. F. Boyer, S. Krell, F. Nabet : Inf-Sup stability of the Discrete Duality Finite Volume method for the Stokes problem, Math. Comp., Vol. 84, pp. 2705-2742, (2015) Preprint HALPublished on-line
  24. F. Boyer : On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM Proceedings, Vol. 41, pp. 15-58, (2013) Preprint HALPublished on-line
  25. F. Boyer, S. Minjeaud : Hierarchy of consistent n-component Cahn-Hilliard systems, M3AS Vol. 24, No 14, pp. 2885-2928 (2014) Preprint HALPublished on-line
  26. F. Boyer, G. Olive : Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Mathematical Control and Related Fields, Vol. 4, No. 3, pp. 263-287 (2014) Preprint HALPublished on-line
  27. A. Benabdallah, F. Boyer, M. González-Burgos, G. Olive : Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the $N$-dimensional boundary null-controllability in cylindrical domains, SIAM Journal on Control and Optimization, Vol. 52, No. 5, pp. 2970-3001 (2014) Preprint HALPublished on-line
  28. P. Bousquet, F. Boyer, F. Nabet : On a functional inequality arising in the analysis of finite-volume methods, Calcolo, Vol. 53, No. 3, pp. 363-397 (2016) Preprint HALPublished on-line
  29. F. Boyer, F. Nabet : A DDFV method for a Cahn-Hilliard-Stokes phase field model with dynamic boundary conditions, M2AN, Vol. 51, No. 5, pp. 1691--1731 (2017) Preprint HALPublished on-line
  30. T. Blanc, M. Bostan, F. Boyer : Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete and Continuous Dynamical System - Serie A, Vol. 37, No. 9, pp. 4637-4676 (2017) Preprint HALPublished on-line
  31. N. Aguillon, F. Boyer : Error estimate for the upwind scheme for the linear transport equation with boundary data, IMA Journal on Numerical Analysis, Vol. 38, Issue 2, pp. 669–719 (2018) Preprint HALPublished on-line
  32. D. Allonsius, F. Boyer, M. Morancey : Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, Vol. 140, No 4, pp. 857–911 (2018) Preprint HALPublished on-line
  33. F. Boyer, V. Hernandez-Santamaria, L. de Teresa : Insensitizing controls for a semilinear parabolic equation : a numerical approach, Mathematical Control and Related Fields, Vol. 9, No 1, pp. 117-158. (2019) Preprint HALPublished on-line
  34. D. Allonsius, F. Boyer : Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries, Mathematical Control and Related Fields, Vol. 10, No 2, pp.217-256. (2020) Preprint HALPublished on-line
  35. A. Benabdallah, F. Boyer, M. Morancey : A block moment method to handle spectral condensation phenomenon in parabolic control problems, Annales Henri Lebesgue, Vol. 3, pp. 717-793 (2020) Preprint HALPublished on-line
  36. F. Boyer, V. Hernandez-Santamaria : Carleman estimates for time-discrete parabolic equations and applications to controllability, ESAIM Control and Calcul of Variations, Vol. 26, (2020) Preprint HALPublished on-line
  37. K. Bhandari, F. Boyer : Boundary null-controllability of coupled parabolic system with Robin conditions, Evolution Equations and Control Theory, Vol. 10, No 1, pp. 61-102, (2021) Preprint HALPublished on-line
  38. D. Allonsius, F. Boyer, M. Morancey : Analysis of the null-controllability of degenerate parabolic systems of Grushin type via the moments method, Journal of Evolution Equations, Vol. 21, pp. 4799-4843 (2021) Preprint HALPublished on-line
  39. K. Bhandari, F. Boyer, V. Hernandez-Santamaria : Boundary null-controllability of 1-D coupled parabolic systems with Kirchhoff-type condition, Mathematics of Control, Signals, and Systems, Vol. 33, No 3, pp. 413-471, (2021) Preprint HALPublished on-line
  40. F. Boyer, G. Olive : Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method, Annales de l'Institut Fourier, 74 (5), pp. 1943-2012 (2024) Preprint HALPublished on-line
  41. K. Bhandari, F. Boyer : Local exact controllability to the steady states of a parabolic system with coupled nonlinear boundary conditions, Mathematical Control and Related Fields, Vol. 14, No 3, pp. 1086-1127 (2024) Preprint HALPublished on-line
  42. F. Boyer, M. Morancey : Analysis of non scalar control problems for parabolic systems by the block moment method, Comptes Rendus Mathématiques, Volume 361, pp. 1191-1248, (2023) Preprint HALPublished on-line
  43. D. Pastor-Alonso, M. Berg, F. Boyer, N. Formin-Thuenamnn, M. Quintard, Y. Davit, S. Lorthois : Modeling oxygen transport in the brain: en efficient coarse-grid approach to capture perivascular gradients in the parenchyma, PLoS Computational Biology, 20 (5), e1011973 (2024) Preprint HALPublished on-line
  44. F. Boyer, M. Morancey : Distributed null-controllability of some 1D cascade parabolic systems, submitted Preprint HAL
  45. F. Boyer, V. Hernandez-Santamaria : Boundary controllability of time-discrete parabolic systems: a moments method approach, submitted Preprint HAL
  46. H. Parada, F. Boyer : Null controllability of coupled parabolic equations with first-order perturbations, submitted Preprint HAL