Adresse professionnelle :
  INSA Toulouse,
  135 Avenue de Rangueil,
  31400 Toulouse.

Contact :
  06 77 95 80 44
  arnaud.duran@gmail.com
Arnaud Duran

Post-Doctorant
Mathématiques Appliquées


















Manuscrit de thèse

  • A. Duran.
    Numerical simulation of depth-averaged flow models : a class of Finite Volume and discontinuous Galerkin approaches.
    Université Montpellier II , Octobre 2014. [pdf] [Hal]

Publications


  • A. Duran.
    A robust and Well Balanced scheme for the 2D Saint-Venant system with friction source term on unstructured meshes.
    Int. J. Numer. Meth. Fluids, 78 :89-121, 2015. [Journal] [Hal]


  • A. Duran, F. Marche.
    Discontinuous Galerkin discretization of a new class of Green-Naghdi equations.
    CiCP, 17 :721-760, 2015. [Journal] [Hal]


  • A. Duran, F. Marche, R. Turpault, C. Berthon.
    Asymptotic Preserving Scheme for the Shallow Water equations with source terms on unstructured meshes.
    J. Comput. Phys, 287 :184-206, 2015. [Journal]


  • A. Duran, F. Marche.
    Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms.
    Comput. & Fluids, 101 :88-104, 2014. [Journal] [Hal]


  • A. Duran, F. Marche, Q. Liang.
    On the well-balanced numerical discretization of shallow water equations on unstructured meshes.
    J. Comput. Phys., 235 :565-586, 2013. [Journal] [Hal]

Proceeding dans une conférence internationale

  • A. Duran, F. Marche, C. Berthon, R .Turpault.
    Numerical discretizations for shallow water equations with source terms on unstructured meshes.
    AIMS on Applied Mathematics. Hyperbolic Problems : Theory, Numerics, Applications. Proceedings of the 14 th International Conference on Hyperbolic Problems, Padova, June 25-29, 2012, 8 :541-550, 2014. [pdf]

Soumis à la publication

  • A. Duran, F. Marche.
    A discontinuous Galerkin method for a new class of Green-Naghdi equations
    on unstructured simplicial meshes.
    Submitted. [ArXiv]


  • F. Couderc, A. Duran, J.P. Vila.
    An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification.
    Submitted. [ArXiv]

  • A. Duran, J.P. Vila.
    An entropy-satisfying scheme on general staggered grids for the multilayer shallow water system.
    Submitted.